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ABSTRACT 

As the number of IoT devices grows, the management and configuration of IoT devices 

becomes crucial in resource constraint networks. It is hard to manage and configure a large 

amount of heterogeneous resource constraint IoT devices because people need to know how they 

connect to each other, what internet-enabled services are available to provide, and how people 

interact with things through the internet.  

The thing-centric approach focuses on user experience when engaging things, but the cloud-

centric approach switch the focus to IoT services that can process data streams collected from 

things and applications that help get people joined in the IoT world. To manage IoT populations 

effectively in a centralized manner, not only does it mean that moving computational power 

closer to the edge is a way to reduce bandwidth and latency, but it also implies that it is 

necessary to build an architecture which can scale and manage tons of connected devices by a 

uniform interface. In particular, RESTful Web services can provide a uniform interface that 

operates resources by HTTP methods. For example, users can read and write data by a uniform 

interface, and a flowerpot can write data and be triggered to water plants by a uniform interface. 

Thus, in the scope of IoT, embedded middleware can implement uniform interface by REST 

model. 

Virtualizing physical things has emerged as a design pattern to build IoT systems. Resource 

less constraint devices are capable of being virtualized with enough CPU power, memory, 

networking, but they are more expensive and power consuming. However, resource highly 

constraint devices take advantage of low energy consumption and cheaper price, but they cannot 

be virtualized because they do not have ability to even run a single multi-threaded program. 

Therefore, it is very important to select the right platforms for the right roles. In our case, we use 

Raspberry Pi 3 as a middleware and Nordic nRF52832 as a BLE endpoint. 

In this thesis, a REST-based IoT management system based on Service-Oriented Architecture 

is built, and the performance of the system has been tested, including the response time of HTTP 

GET and POST requests of the centralized server in a Fog domain and a script engine onto a 

BLE-enabled endpoint.  
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CHAPTER 1 

INTRODUCTION 

Rykowski and Wilusz [36] state that “as IoT is very dynamic and heterogeneous, efficient 

management system for IoT environment should address these features”. Gubbi et al. [32] 

identify Object-centric architecture and Internet-centric architecture in the vision of IoT and “see 

Cloud-centric architecture to be the best where cost based services are required”. Kantarci and 

Mouftah [10] believe that “Cloud-centric IoT can leverage the efficiency of several applications 

including but not limited to pervasive healthcare, future transportation systems, smart city, and 

public safety which is a featured application area of the smart city”. However, convergence of 

IoT and Cloud can foresee new challenges. Biswas and Giaffreda [6] announce that “IoT-Cloud 

has to provide real-time data processing and service provisioning techniques considering such 

Big Data. Another issues are to provide more dynamic resources management and orchestration 

techniques, dynamically offloading from clients / hosts to cloud”.  

IoT can be seen as a collection of various protocols and Web services [63]. Ashraf et al. [47] 

further explore that seamless communication can be achieved by middleware interfaces serving a 

batch of connected IoT edge devices who are able to run customized applications, so that the 

status on edge devices can be dynamically controlled. Chowdhury et al. [53] specify that “the 

data retrieved from the device can be applied to several processes in the network, such as 

aggregation and abstraction, and the result of these procedures is transmitted to other entities”. 

Finally, users are able to read processed data, write command to devices, and change code onto 

devices through RESTful Web services. Meanwhile, HTTP is a Web application protocol that is 

perfect to work with REST model. In resource constraint environment, REST model can provide 

a Web-like uniform interface for devices and users, and it effectively shifts the computational 

power from Cloud to Fog closer to IoT endpoints with the same user experience.  

    In this thesis, an architecture based on Service-Oriented Architecture to manage and configure 

IoT devices will be proposed. A Raspberry Pi 3 will be used as Middleware to provide REST 

Web services and as BLE master to establish BLE connection. A Nordic nRF52832 will be used 

as a BLE peripheral that provides BLE services to BLE masters. Later, the experiments will 

evaluate the performance of REST model on a Raspberry Pi 3 and the performance of script 

engine on Nordic nRF52832. 
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1.1 Problem Definition 

    The goal of this research is to propose an architecture that can enable IoT device management. 

There is a case that lots of flowerpots need to be watered every certain period in a greenhouse. If 

there is a system that can tell the soil moisture of each flowerpot, what software version is 

running on it, and can upload new versions at run-time through applications, that would be a 

great help to water flowers in a timely manner, and that is able to track all behaviors on each 

flowerpot. Not only can it reduce labor work, but it also boosts the ability of managing and 

configuring edge things. 

 

Figure 1-1. Computational power level comparison 
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    In the scope of IoT, figure 1-1 shows that Cloud computing can cause high latency and high 

bandwidth, whereas Fog (i.e. Micro-Cloud) computing can optimize those important features. 

However, rather than using traditionally centralized computation (e.g. Cloud), effectively 

managing IoT devices in Fog domain, as Cherrier et al. [54] identify control flow and different 

settings for actuators, becomes key challenges as the number of devices increases. Thus, my 

problems break down to the followings: 

1. How to provide uniform web-like interface? 

2. How can we use this interface to send command to things? 

3. How can we change command / code to run new functionality? 

1.1.1 How to provide uniform web-like interface? 

    It is easy to imagine that there will be tons of IoT devices working at the edge of the network 

in the near future. However, it is not easy to manage them. For example, users may want to know 

the latest status of some devices and the configurations those devices are running on. According 

to Farahzadi et al. [2], “Middleware is a solution for implementing different services in a 

heterogeneous environment”. Therefore, in the context of IoT, a concept of virtualization 

management system can help. A direct way is to develop a centralized system embedded onto a 

physical one with a uniform interface supplied to heterogeneous IoT endpoints and users, and 

Web is the most scalable thing we have. 

1.1.2  How can we use this interface to send commands to things? 

It is easy to send a complete program to an edge device through an IDE. For example, Kolias 

et al. [21] relies on a single-board computer programmed in C / C++ to execute sensing and 

actuating. Typically, an Arduino sketch programmed in C / C++ is compiled by built-in gcc 

compiler in Arduino IDE, then the hex code is uploaded to an Arduino device by wire or wireless. 

Therefore, we need a way to send commands that it can support real-time wireless status change 

and deliver better user experience instead of using an IDE. 

However, what if a user just wants to send a simple command to blink an LED at run-time in a 

low energy device through a pervasive Web-like interface? Kohler et al. [39] have realized that 

an agent which can be implemented on a physical product can manage the connection to the Web 
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platform via RESTful or SOAP Web services. Therefore, a script engine mounted onto a 

physical one is supposed to work in PAN-based low energy environment which is in the 

coverage of Web services. In particular, sending a command at run-time via Web GUI to change 

an actuator’s status on a BLE-enabled device with a script engine installed for command 

execution is one of the ways to do so. In spite of 20 bytes of single BLE packet size limit, it is 

possible to break up a command or a program into up to 20 bytes per packet.  

1.1.3  How can we change code to run new functionality? 

A mobile app can help directly send a single command in PAN, but it is complicated for users 

to type code, and also it requires users to be in the range of PAN. However, it is easy for users to 

type code on a Web GUI and send through a Web application to BLE endpoints wherever they 

are. Then, the corresponding Web services able to change code are needed. In particular, given 

the code written in JavaScript, pushing the JavaScript code through Web interface and executing 

the code by script engine to have new functionality run on the expected device.  

1.1.4  Research Goal 

The goal of this research is to propose an architecture that includes a middleware embedded 

onto a resource-rich physical device and a script engine onto a resource highly constraint device, 

in order to make IoT device management and configuration more functional, accessible, flexible 

and scalable. To achieve the goal, we will do the followings: 

• To provide uniform web-like interface. 

• To use this interface to send commands to things. 

• To change command / code to run new functionality. 
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CHAPTER 2 

LITERATURE REVIEW 

    In this Chapter, there are the following areas reviewed. In the first section, we started with the 

concept of Internet of Things (IoT). In the second section, we compared some typical resource 

constraint devices to demonstrate what the roles of these hardware is playing in IoT world. In the 

third section, a REST-based IoT model was introduced. In the fourth section, we introduced 

underlying protocols, such as HTTP and CoAP, TCP and UDP, and BLE to see where they are a 

good fit in connectivity. In the fifth section, we proposed solutions to the problems.  

2.1 IoT 

    The term of IoT is coined by Kevin Ashton [37] in 1999, but it was used in supply chain 

management. As figure 2-1 shows, IoT describes a system where items in the physical world, 

and sensors within or attached to these items, are connected to the Internet via wireless and wired 

Internet connections [20]. Basically, there are three things that the Internet of Things will [20]: 

 

Figure 2-1. The deployment map of IoT [58] 

• Connect both inanimate and living things. IoT is a relatively new concept since Industrial 

4.0 was presented, but the things (objects) in IoT were widely deployed in industrial 
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equipment for many years. Today, the things are ubiquitous. It appears and ranges from 

smart cities to anything micro.	

• Use sensors for data collection. RFID and sensor technology enable computers to observe, 

identify and understand the world—without the limitations of human-entered data [1]. 

The physical objects are just like human beings who need to have some senses to tell 

what they feel like. Generally, sensors are functionally designed for different scenarios, 

such as temperature sensors, humidity sensors, fire alarm sensors, push buttons, buzzers, 

rotary encoders, etc. Then, the objects hooked up with sensors connect to each other 

and/or to systems so that desired data can be collected. 

• Change what types of item communicate over IP Network. Every physical object cannot 

be wirelessly accessed unless they are assigned unique identities, and IPv4 and IPv6 are 

such identities. IPv4 is the most widely deployed Internet protocol used to connect 

devices to the Internet, whereas IPv6 that provides 128-bit space is the successor to IPv4. 

With this digital identity, every object can be tracked then. 

    Once the above three are ready, a centralized interface is required to process the data collected, 

and this kind of interface could be in large scale or even as small as in the object itself. In the rest 

of this chapter, we will review the heterogeneity of objects, the necessity of common interface 

and the connectivity between objects and interface. 

    Considering heterogeneous IoT devices operating in various solutions, Morabito [51] realizes 

that the virtualization of physical devices is another important challenge. Such an idea that the 

capabilities of physical devices could be enhanced by connecting them to remote software 

components who monitor the status of physical things.  

    Kim et al. [33] highlight that “The devices in IoT often compose Personal Area Networks 

(PANs)”, and “it is possible to track locations and states of IoT devices”. Kranz et al. [40] point 

out that “middleware can be used with embedded interaction to help integrate physical 

interaction, communication, and data exchange, enabling a holistic approach toward interaction 

with the Internet of Things”. 
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2.2 Hardware Platforms 

    Gartner, Inc. forecasts [22] that up to 8.4 billion of connected things will be in use worldwide 

in 2017, 31 percent higher than 2016, and will reach to around 20.4 billion by 2020 (see Table 2-

1). Total spending on endpoints and services will reach to around $2 trillion in 2018 (see Table 

2-2). Obviously, connected IoT devices will be wherever you are, and the economic profit of that 

will be such huge amount. 

Table 2-1. IoT Units Installed Base by Category (Millions of Units) [22] 

	
Table 2-2. IoT Endpoint Spending by Category (Billions of Dollars) [22] 

	
    IoT devices are also called edge devices which are located at the edge of the network, and they 

are the necessity of Edge (Fog) Computing that could work independently as a tiny Cloud or 

work with Cloud service. Choosing proper edge devices is the entry of IoT, and we have to know 

where each device should be placed. 

2.2.1 The Concept of SoC 

    First of all, let’s simply clear up the concept of microprocessor and microcontroller. A 

microprocessor is a CPU (Central Processing Unit) that is compacted into a chip semiconductor 

device, whereas a microcontroller (or MCU for microcontroller unit) typically includes small 

amounts of RAM and ROM, and I/O ports and timers [56]. Microprocessors are used to execute 

big and generic applications, while a microcontroller will only be used to execute a single task 

within one application. Some of the benefits of microcontrollers include the following [50]: (1) 

lower cost due to the relationship between input and output is defined to perform specific tasks; 

(2) less power consumption due to microcontrollers are generally built using a technology known 
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as Complementary Metal Oxide Semiconductor (CMOS). This technology is a competent 

fabrication system that uses less power and is more immune to power spikes than other 

techniques; (3) All-in-one due to a microcontroller usually comprises of a CPU, ROM, RAM and 

I/O ports, built within it to execute a single and dedicated task, while a microprocessor needs a 

lot of peripherals to match. Today different manufacturers produce microcontrollers with a wide 

range of features available in different versions. Some manufacturers are ATMEL, Microchip, TI, 

Freescale, Philips, Motorola, etc [50]. 

    There are tons of microcontrollers available in the market, and they are typically categorized 

by single chips and SoC (System on the Chip) based on capabilities. In our early research, single 

chips such Arduino Uno equipped with ATmega328P was used. The ATmega328P is a low-

power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture [7]. 

    However, if there is a system running on the chip, there would be more possibilities coming up. 

A system-on-a-chip, or SoC, is a computer system that all of whose components are integrated 

onto a single chip [18]. The components of an SoC are called intellectual property blocks, or IPs 

in brief. As figure 2-2 shows, IPs of an SoC include one or more processors (called cores) and 

several peripheral devices [52].  

	
Figure 2-2. Typical components of SoC [15] 
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2.2.2 Introduction of SoCs 

    The SoCs involved in our research are Arduino Yun, Raspberry Pi 3, Wemos D1, Arduino 101, 

BotSpine (TI CC2541), Nordic (nRF52832): 

(1) Arduino Yun has one single microcontroller named ATmega32u4 plus one microprocessor 

named Atheros AR9331 with peripherals externally connected. The Atheros processor supports a 

Linux distribution based on OpenWrt (a version dedicated for embedded system) named Linino 

OS [4]. AR9331 chip is widely used in routers, such as TP-Link TL-WR703N [4]. 

	
Figure 2-3. Arduino Yun layout [4] 

	
Figure 2-4. Arduino Yun AVR microcontroller specifications [4] 
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Figure 2-5. Arduino Yun microprocessor specifications [4] 

    Figure 2-3 shows the main components of Arduino YUN. Figure 2-4 shows the specifications 

of Arduino side, and figure 2-5 shows the specifications of Linux side. 

    There are a few features worth pointing out: 

• The Linino OS installation occupies around 9 MB of the 16 MB available of the internal 

flash memory [4], and you are discouraged from using the Yún's built-in non-volatile 

memory, because it has a limited number of writes [4], so Arduino Yun can support 

microSD card extension if more disk space is needed. 

• OpenWRT provides Advanced Configuration Panel (GUI) powered by Luci web 

interface, where allows users to manage any information on Arduino Yun, including 

network status, software installation and uninstallation, real-time graphs, CPU power 

consumption, etc. 

• The communication between both two environments is enabled by the Bridge library that 

provides some classes for variant communication. 
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Figure 2-6. Arduino Yun Bridge [27] 

    Figure 2-6 shows the bridging connection between Arduino side and Linux side through 

UART series. 

(2) Raspberry Pi 3 is the third generation Raspberry Pi. Raspberry Pi 3 is a 64-bit mini Linux 

computer that can do most tasks as the same as on a Linux desktop. Figure 2-7 shows the 

components of a Raspberry Pi 3, and figure 2-8 shows the specifications of a Raspberry Pi 3. 

	
Figure 2-7. Raspberry Pi 3 layout [34] 
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Figure 2-8. Raspberry Pi 3 specifications [49] 

    Let’s have a direct understanding of Raspberry Pi 3 performance by using sysbench software. 

However, it is no meaningful to test Arduino Yun for a comparison because of obviously distinct 

CPU architecture. 

	
Figure 2-9. Raspberry Pi 3 CPU profile 
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Figure 2-10. Raspberry Pi 3 CPU test at 4 threads 

    Figure 2-9 shows CPU profile of a Raspberry Pi 3, and figure 2-10 shows a CPU test of a 

Raspberry Pi 3 at 4 threads by sysbench. 

(4) Wemos D1 is equipped with a wifi module on the 32-bit Esp8266 chip running RTOS named 

FreeRTOS utilized in RTOS SDK that features multi-tasking operations. Considering network 

connectivity, FreeRTOS includes network lwip API (sockets, IPv4, TCP/UDP, etc) and JSON 

library. It supports Arduino libraries, where "setup()" and "loop()" are called in 

"core_esp8266_main.cpp" by "#include <Arduino.h>", which makes Wemos become a wifi 

version Arduino Uno. As our later research indicates, some other RTOS such as Espruino can 

also be applied to Esp8266 chip. Figure 2-11 shows the specifications of an Esp8266-12E. 
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Figure 2-11. Esp8266-12E parameters [24] 

There are a few features worth pointing out: 

• Esp8266 supports UART (CH340G USB-serial converter chip) -wifi pass-through that 

the remote server receives exactly what the serial input is, through wifi module. It is fast 

and easy to set up a peer-to-peer TCP/UDP communication through a common server in 

the internet. After connecting a nearby access point, use AT command "AT+CIFSR" to 

get IP address of Esp8266, then start a UDP connection by "AT+CIPSTART="UDP", 

"server IP address or DNS", port", followed by "AT+CIPMODE=1" to start pass-through 

mode, finally send message by "AT+CIPSEND" to the common server. If the connection 

is successful, then you can start pass-through to a receiver via the internet. NAT traversal 

is automatically executed in the router.  
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• Esp8266 supports light sleep mode that the CPU may be suspended in application like 

wifi switch. Without data transmission, the Wi-Fi Modem circuit can be turned off and 

CPU suspended to save power according to the 802.11 standard (U-APSD). The power 

<0.9mA. Modem sleep mode that requires CPU to be working. According to 802.11 

standards (like U-APSD), it saves power to shut down the Wi-Fi Modem circuit while 

maintaining a Wi-Fi connection with no data transmission. The power <15mA. Deep 

sleep mode that does not require wifi connection to be maintained. The power <10uA 

[23]. 

(5) Arduino 101 is equipped with Intel Curie module chip, which features a dual-core 

architecture, includes a BLE module on the 32-bit Intel Quark SE core and a sensor subsystem (a 

6-axis accelerometer and a gyroscope) on 32-bit RISC (reduced instruction set computer) ARC 

EM4 core with FPU (floating point unit). Intel Quark SE core runs IoT-oriented Zephyr RTOS 

hosted by the Linux foundation. Figure 2-12 shows the specifications of an Arduino 101. 

	
Figure 2-12. Arduino 101 specifications [26] 

(6) BotSpine, which was developed by a local company named EIC (Environmental Instruments 

Canada Inc.) located in Saskatoon, is equipped with TI CC2541 (8051 MCU) BLE-enabled SoC. 

The language it uses is Basic interpreted by an interpreter named BlueBasic. The convenience of 

using BotSpine is that programs can be directly flashed from a mobile app into the chip through 

BLE, and it provides easier way to prototype in Basic rather than C. However, there are some 

drawbacks that unfortunately it does not support FPU, BlueBasic only defines 26 variables from 

A to Z, and currently it can only be a BLE peripheral. However, the existence of those so-called 

drawbacks is to make it easier for developers. Figure 2-13 shows the profile of a BotSpine. 
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Figure 2-13. BotSpine profile 

(7) nRF52832 is a 32-bit ARM Cortex-M4F SoC from Nordic, and it supports BLE and ANT 

protocol stacks depending on different SoftDevices. Due to its small size, it can be easily 

embedded into wearables. Figure 2-14 shows the profile of a Nordic nRF52832 development 

board. 

 

Figure 2-14. Nordic nRF52832 development board 
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There are a few features worth pointing out: 

• nRF52832 is RTOS-independent, so developers can build their customized firmware in 

64KB RAM, 512KB flash footprint, such as Zephyr OS, JavaScript engine. 

• nRF52 DK includes wireless protocol stack libraries called SoftDevices that are 

precompiled and linked binary image implementing BLE protocol stack on SoC. The 

protocol stack and application are independently separated, which means they do not 

compile and link together. It simplifies application development in a stand-alone manner. 

The SoftDevice enables the application developers to develop their code as a standard 

ARM Cortex® -M4 project without having the need to integrate with proprietary IC 

vendor software frameworks [46]. This means that any ARM Cortex® -M4-compatible 

toolchain can be used to develop Bluetooth Low Energy applications with the SoftDevice 

[46]. In comparison, TI CC2541 BLE stack is precompiled to object files, and it requires 

to be joined with application code at link stage, which means it requires developers to use 

the same tool-chain to develop application. 

2.2.3 Summary 

    Apparently, compared with single chip, SoC has an inherent dominance that SoC can connect 

wirelessly while single chip can only do through wire. Deeply, with SoC, the development 

difficulty can be reduced. For example, an OS coordinates different function programs to do the 

same work, meanwhile, it isolates each function programs to reduce their coupling. It is 

convenient for programmers to program each module, and the system architecture is logically 

clear, especially for complex logic system. Furthermore, with SoC, code readability can be 

improved for maintenance convenience. For example, developers can manage their codes 

hierarchically, from driver layer to application layer. The priority of every task and the period of 

execution are expectable. Moreover, with SoC, code portability can be increased. For example, 

most logics are already set up in OS, so only porting OS is needed. Due to the above distinctions, 

only SoC devices are employed for our research. Due to different SoCs offer different interfaces, 

so a common interface accessible to heterogeneous SoCs is required in the context of IoT. 
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2.3 IoT Model 

    Atzoria et al. [38] present that IoT relies on heterogeneous set of objects accessed by its own 

dialect, so “there is the need for an abstraction layer capable of harmonizing the access to the 

different devices with a common language and procedure”. Yannuzzi et al. [41] assert that 

“Unfortunately, the requirements and design space of IoT make Cloud Computing unfeasible in 

numerous scenarios, especially, when the goal is to build a general and multipurpose platform 

that can serve a wide variety of IoT applications”. 

2.3.1 IoT Fog 

    According to Vermesan and Friess [43], “Many Internet of Things applications require 

mobility support and geo-distribution in addition to location awareness and low latency, while 

the data need to be processed in “real-time” in micro clouds or fog”. A Fog is a Micro-Cloud 

working closer to the edge of the network. As shown in section 2.2, 20 billion “things” are 

estimated to be connected to the internet by 2020, and a huge amount of bandwidth is required if 

the data generated is directly moved to the Cloud. Additionally, Xu and Helal [62] discover that 

scalability significantly challenges interactions between services and physicals. To be closer to 

the device, Fog computing plays an important role in helping speed up outputs, boost service 

quality and increase scalability. 

	
Figure 2-15. Integrated Fog Cloud IoT Architecture [5] 
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    According to Munir et al. [5] who proposed IFCIoT (Integrated Fog Cloud IoT Architecture 

Paradigm), as depicted in Figure 2-15, a Fog node represents an edge server, and much 

processing takes place in a fog node. Every Fog node can be deployed locally close to the edge 

devices, and each one transmits information to a centralized cloud service. “In IFCIoT 

architecture, each operational Fog node is autonomous to ensure uninterrupted operations of the 

facility / service it provides” [5]. A Fog node can be connected to other Fog nodes through radio 

networks (e.g. routers). One of the practical application scenarios is to set up a smart farm. Tons 

of IoT devices send data to edge servers locally distributed, and edge servers process data and 

determine the behaviours to IoT devices instead of going to the Cloud. The work in the Cloud is 

to analyze the data sent from Fog servers for specific applications, then Cloud is able to optimize 

farming system.  

    From the above architecture, obviously, Fog computing effectively reduces bandwidth and 

latency, and increases scalability. A further question may come up: where to place a Fog? 

2.3.2 SDN 

    As Liu et al. [61] state that “Software-Defined Networking (SDN), a novel solution to network 

configuration and management, has shown great potential to simplify the existing complex and 

inflexible network infrastructure”. Oliveira et al. [17] further identify that “this emerging 

paradigm uses a logically centralized software to control the behavior of a network”. Moreover, 

Julia and Skarmeta [45] believe that SDN is able to help solve the challenges raised by 

heterogeneous entities. Rahman [29] proposes an approach of logical clustering against physical 

clustering where SDN approach is utilized for clustering identifications and managements. 

2.3.3 Virtualization of IoT Fog 

The virtualization of physical things has emerged in recent years. “Virtualization refers to 

abstraction of logical resources from their underlying physical characteristics in order to improve 

agility, enhance flexibility and reduce cost” [9]. As Nastic et al. state [57] that Software-defined 

IoT (SD-IoT) uses abstraction to simplify provisioning and customization of its components. 

This approach allows that virtual networks are set up onto a physical device. Even though this 

approach does not define IoT physicals due to the recognition of costs and processing power of 

them, we could try to recognize them by their different capabilities for specific roles. 
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2.3.4 Restful Model 

    Restful model is the key to connect virtualized IoT Fog node and physicals. All web 

applications can be developed by provisioning web service, either SOAP (Simple Object Access 

Protocol) or RESTful (Representational state transfer) web service. SOAP is a protocol, and 

REST is a style. Both two are not comparable, but it is important to know who they are.  

    A SOAP message is made by standardized XML document [25]. As shown in figure 2-16, a 

SOAP envelope contains SOAP header and SOAP body filled with XML messages, and it can be 

packed in HTTP body and transmitted by HTTP. SOAP and REST are both protocol-

independent. 

	
Figure 2-16. SOAP message format [16] 

    REST is not a standard but a set of constraints that describe three principles [44]: 

• Addressability. REST operates data on resources that are identified by URI (Universal 

Resource Identifier). The resources can be named in any form. 

• Uniform interface. The resources are accessible over HTTP standard. Four main REST 

operations: create, read, update and delete (CRUD) are supported, and they can be 

implemented by four corresponding HTTP (POST, GET, PUT, DELETE) methods. 

Uniform interface tells how to operate resources.  

• Statelessness. Each request contains all the information that a server needs. The server 

responds to a new request without referencing any of previous requests. 
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    The most advantage of using REST web service is that you can encode representations in 

JSON rather than XML the only choice in SOAP, so that you save many bytes, and JSON is 

easier and faster to parse. According to Potti’s experiment [44], “REST wireless response times 

are comparatively better than SOAP, as the number of simultaneous clients increased”, shown in 

figure 2-17. Therefore, REST would be a better fit in our architecture and experiment. 

	
Figure 2-17. SOAP and REST wireless response time [44] 

2.3.5 CREST 

    Furthermore, CREST (Computational REST), which “CREST’s framing by explicitly 

emphasizing computation over information makes it far clearer that these are active resources 

intended to be discoverable and composable” [35], is “a computation-centric successor to the 

REST architectural style” [35]. “This style recasts the web from a model where content is the 

fundamental measure of exchange to a model where computational exchange is the primary 

mechanism” [35]. For example, a client wants to execute a program and sends a request to a 

server, and then the server executes the program and return the result. Briefly, a service behavior 

changes with client conditions.  

2.3.6 Summary 

In the heterogeneous context, Fog computing allows virtualization network to be feasible in 

logical cluster against physical cluster by Restful model. The proper management of the 

virtualized system must be along with proper communication protocols. 
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2.4 Protocols 

    Fog environment is comprised of many nodes, so the computation is horizontally distributed, 

but it can be less energy efficient than in centralized cloud systems [8]. According to Dastjerdi 

and Buyya [8], “using efficient communications protocols such as CoAP, effective filtering and 

sampling techniques, and joint computing and network resource optimization can minimize 

energy consumption in fog environments”. On the other hand, according to Chowdhury et al. 

[53], “Does HTTP/2 save energy? Yes, when round trip times are above 30ms and when TLS is 

being used, our tests indicate that HTTP/2 outperforms HTTP/1.1 with TLS in most scenarios”. 

For example, in the Chowdhury’s tests [53], the Mozilla Firefox Nightly implementation of 

HTTP/2 consumes less energy than HTTP/1.1 implementation at doing the same work regardless 

of the webserver used in the tests. Thus, it is hard to compare HTTP and CoAP in the case of 

energy consumption. 

2.4.1 Transport Layer Protocols 

    In the transport layer, TCP (Transmission Control Protocol) and UDP (User Datagram 

Protocol) are mainly employed over the network layer. The main comparison of TCP and UDP is 

listed as follows: 

• TCP is connection-oriented and reliable (guaranteed delivery), whereas UDP is not. Thus, 

important packets use TCP because UDP does not react on packet loss. 

• TCP establishes a connection before actual data transmission takes place, whereas UDP 

does not, and also UDP does not do error checking for packets, so UDP is faster than 

TCP. 

• TCP re-arranges packets in an specific order, whereas UDP does not because every 

packet of UDP is independent of each other. However, application layer can manage the 

order if required. 

2.4.2 Application Layer Protocols 

    The corresponding Client-Server model based application layer protocols of TCP and UDP are 

typically HTTP and CoAP in the scope of IoT paradigm.  
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    CoAP is a simplified version of HTTP. It is typically designed for the communication between 

resource constrained devices, as shown in figure 2-18. Constrained environment and internet 

environment are bridged through proxy devices. 

	
Figure 2-18. CoAP architecture [64] 

     Figure 2-19 depicts what CoAP message format looks like. CoAP message is written in 

binary, and it must be initialized with 4 bytes formatted headers. In the message: 

	
Figure 2-19. CoAP message format [64] 

• “Ver” is a 2-bit unsigned integer. It mentions CoAP version number. “T” is a 2-bit 

unsigned integer. It indicates message types: CON (0), NON (1), ACK (2), RST (3). 

“TKL” is a 4-bit unsigned integer. It indicates the length of token (0-8 bytes). “Code” is 

an 8-bit unsigned integer. It is combined with 3-bit class representing a request (0), a 

successful response (2), an error response from client (4), or an error response from 

server (5), and 5-bit detail. The last two bytes are network byte order according to big-

endian order. 

• Followed by “Token” that associate a request and a response. Then there is 0 option or 

multi-options. There could be no payload after options. 
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• If there is a payload, and its length is not 0, there must be a payload identifier 0xFF 

before payload. 0xFF only happens after the end of an option. 

	
Figure 2-20. HTTP message format [1] 

    While HTTP message format is depicted in figure 2-20: 

• The start line indicates an HTTP method (GET, PUT, POST, DELETE, HEAD, 

OPTIONS, TRACE, CONNECT where CoAP shrinks it to GET, PUT, POST, DELETE 

in “Code”), URL, HTTP version. 

• HTTP headers are name-value pairs separated by a colon similar to JSON format that is 

easy to parse. 

• Followed by one blank line, then body starts if it is available. 

    From the above comparison, CoAP has some advantages in the view of application: 

• UDP is lightweight (fixed 8-byte header) while TCP has a bigger header (at least 20-byte). 

• CoAP supports IP multi-cast and uni-cast communication while TCP only supports point-

to-point that is not suitable for notification services. 

    While HTTP has also some advantages: 

• TCP is stream-oriented that is used to transmit a continuous data flow, and all bytes are 

guaranteed to be received identical as sent, and in a correct order. 

• HTTP header and body are plain text that is friendly to programmers, while CoAP header 

and body are binary that only machine is able to read it. 
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Both two protocols are used for different purpose. In this thesis, our experiment is to test the 

performance of the server which can accept multiple requests that requires robust message 

delivery, big volume of data will be collected, and for ease of parsing header, so HTTP/1.1 is 

selected for later experiment. 

2.4.3 BLE communication layer protocol 

    According to Litepoint [11], “Bluetooth technology is a short-range communications 

technology whose robustness, low power, and low cost make it ideal for a wide range of devices 

ranging from mobile phones and computers to medical devices and home entertainment 

products”. Figure 2-21 shows the history of Bluetooth. 

	
Figure 2-21. Bluetooth history [11] 

    The latest version of Bluetooth is Bluetooth Low Energy (BLE) or Bluetooth 4.x. According 

to Tauchmann and Sikora [23], “Bluetooth Low Energy extends the Bluetooth standard in 

version 4.0 for ultra-low energy applications through the extensive usage of low-power sleeping 

periods, which inherently difficult in frequency hopping technologies”. Sansanayuth [59] 

indicated that “BLE came with a new design that provided energy consumption 20 times lower 

than the previous version. Due to the low energy consumption, the maximum data rate for BLE 

is 100 kbps, which is lower than the Bluetooth classic with EDR mode”. 

2.4.3.1 BLE protocol stack 

    Typically, as shown in figure 2-22, a Bluetooth protocol stack is mainly divided into 2 parts: 

host stack and controller stack. Host stack is composed of the middleware protocols. RFCOMM 

(Radio Frequency Communications) protocol is used to expose RS-232 serial port to application 

layer over L2CAP (Logical Link Control and Adaption Protocol) layer which converts data from 

upper layer into a format that controller stack can understand. SDP (Service Discovery Protocol), 

which is bound to L2CAP, is used to advertise and discover nearby Bluetooth services. 

Intermediate HCI transport layer directly accesses to Bluetooth hardware for services execution.  
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Figure 2-22. a typical Bluetooth stack [13] 

    Bluetooth specification [13] defines that “Profiles are definitions of possible applications and 

specify general behaviors that Bluetooth® enabled devices use to communicate with other 

Bluetooth devices”. However, every Bluetooth device has to implement Generic Access Profile 

(GAP) first. GAP advertises packets (mandatory) and scans response (optional) at up to 31-byte 

payload for establishing a connection between two Bluetooth devices. Bluetooth specification 

[13] also points out that “For two Bluetooth devices to be compatible, they must support the 

same profiles. For Bluetooth LE, developers have the option of using a comprehensive set of 

adopted profiles, or use the Generic Attribute Profile (GATT) to create new profiles”. For 

example, a Bluetooth Classic peripheral device can use Serial Port Profile (SPP) to be connected 

and specify RFCOMM channel number and SDP record for communication to a central device; 

similarly, a BLE peripheral device must use GATT over ATT (Attribute Protocol) who can tell 

what services and characteristics it can provide to a central device. Thus, any official and 

customized BLE services cannot be used until GATT has been enabled after the connection is set 

up by GAP. Figure 2-23 shows Bluetooth profiles and middle-layer protocols. 
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Figure 2-23. Bluetooth profiles and middle-layer protocols [14] 

2.4.3.2 GATT 

    GATT defines two roles: server and client. A server refers to a BLE peripheral device who can 

provide services, while a client refers to a BLE central device who can connect up to seven 

peripherals at a time. A GATT transaction is nested by Profiles, Services, Characteristics, as 

shown in figure 2-24. Profiles do not actually exist but include a collection of services. Each 

service includes at least one characteristic. A characteristic is the smallest unit in GATT 

transaction, it is the one who is exactly doing the work. Each characteristic consists of 

“Properties”, “Value” and “Descriptors”. “Properties” are required right before “Value” followed 

by “Descriptors” (optional) that describe “Value”. In many cases, “Properties”, “Value” and 

“Descriptors” are all called “Descriptors”. 

	
Figure 2-24. GATT profile hierarchy [12] 
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Table 2-3. A simple example of a service 

 Handle UUID Attribute value 

attribute 0x0001 00002800-0000-1000-8000-00805f9b34fb 
Generic Access Service 

(0x1800) 

attribute 0x0002 00002803-0000-1000-8000-00805f9b34fb 
Properties (Read), 

Value Handle (0x2a00) 

attribute 0x0003 00002a00-0000-1000-8000-00805f9b34fb 
Temperature 

E.g. 24 degrees 

attribute 0x0004 00002803-0000-1000-8000-00805f9b34fb 
Properties (Read), 

Value Handle (0x2a01) 

attribute 0x0005 00002a01-0000-1000-8000-00805f9b34fb 
Humidity 

E.g. 90 percent 

attribute 0x0006 00002803-0000-1000-8000-00805f9b34fb 
Properties (Read), 

Value Handle (0x2a02) 

attribute 0x0007 00002a02-0000-1000-8000-00805f9b34fb 
Clock alarm 
E.g. 10 a.m. 

attribute 0x0008 00002803-0000-1000-8000-00805f9b34fb 
Properties (Read), 

Value Handle (0x2a03) 

attribute 0x0009 00002a03-0000-1000-8000-00805f9b34fb 
Switch state 

E.g. 1 

attribute 0x000a 00002803-0000-1000-8000-00805f9b34fb 
Properties (Read), 

Value Handle 0x2a04 

attribute 0x000b 00002a04-0000-1000-8000-00805f9b34fb 
Bus arrival 
E.g. 3 min 

    Services, characteristics and anything inside characteristics are attributes that are transported 

by ATT. A GATT server stores Services, Characteristics in a simple lookup table by 16-bit 

(official) or 128-bit (customized) UUIDs (may not be unique in the profile) for identifying the 

type (service declaration, characteristic declaration, characteristic value declaration, descriptor 

declaration) in the table over ATT, and ATT can access attribute value by “Read”, “Write”, 

“Notify” and “Indicate”, and the maximum single payload size of these four operations is 20 



29 
 

bytes. Each attribute is given a numerical 16-bit handle (must be unique in the profile) for GATT 

client to access and reference. 

    Given a service attribute handle ranges from 0x0001 to 0x000b including five characteristics, 

and service UUID: 0x1800. The example in table 2-3 shows: 

• Handle 0x0001 is the service declaration that tells there is a service that starts here, where 

UUID is always 0x2800. 

• Handle 0x0002 (0x0004, 0x0006, 0x0008, 0x000a) is a characteristic declaration that 

tells there is a characteristic that starts here, where UUID is always 0x2803. Its value 

declaration is at handle 0x0003 (0x0005, 0x0007, 0x0009, 0x000b), where UUID is 

0x2a00 (0x2a01, 0x2a02, 0x2a03, 0x2a04).  

• Attribute value reveals where other attributes are. Properties tells the way to interact with 

characteristic value. (All characteristics of 0x1800 are officially read-only with no 

descriptors and security, but characteristic values here are fabricated just for a 

demonstration.) 

• The example also proves that UUIDs of services declaration and characteristics 

declaration are always the same, but attribute handles must be unique in the profile. 

Additionally, attribute handles are not necessarily consecutive. 

    The security of BLE is also important. BLE provides three basic security services [12]: 

• Authentication and authorization for establishing trusted relationships between devices. 

• Encryption and data protection are to protect data integrity and confidentiality. 

• Privacy and confidentiality are to prevent device tracking. 

2.4.4 Summary 

There is no doubt that REST takes obvious dominance for CRUD operation. URLs directly 

guide users to the target resource with POST, GET, PUT, DELETE operations. In comparison, 

XML-based SOAP increases complexity of handles with lower performance than REST. After 

comparison, REST style will be chosen in our architecture design without hesitation. With the 
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creation of CREST, computational expressions are exchanged, there would be a new evolution of 

Web services that more contributions would go toward IoT management and configuration. 

BLE is expected to be widely used in SoC because of many advantages, such as low power 

consumption with the use of a cell battery for a year, lower cost than wifi but lower bit rate. It is 

an ideal communication protocol between IoT middleware and resource highly constraint 

devices. In the future, IPv6 can be integrated on the top of 6LoWPAN (IPv6 over Low-Power 

Wireless Personal Area Network) over L2CAP, so that BLE-enabled SoCs are able to be directly 

connected to the internet without any hub (e.g. a middleware) from vendors. 

2.5 Solutions to Problems 

Based on the above reviews, we can summarize the solutions to the problems by the table below: 

Table 2-4. Solutions to problems 

 Problems Solutions 

1 
How to provide uniform web-like 

interface? 

Rykowski and Wilusz [36] announced that 

“REST-base framework appeared as better 

suited for heterogeneous and widely 

distributed IoT devices and services.” 

In Fog domain, we will virtualize resource-

rich physicals as middleware that provisions 

RESTful Web services, so that the 

embedded middleware can provide uniform 

interface for heterogeneous IoT devices and 

users. In particular, to be accessible to users, 

the interface can provide web-like 

experience for users, such as reading data. 
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2 
How can we use this interface to send 

commands to things? 

Huang and Wu [19] realized that “the 

tasking capability allows other devices or 

users to actuate devices via the Internet”, so 

users are able to remotely change state onto 

devices. 

Bjelica et al. [42] proposed Insight Device 

Cloud (IDC) that “allows automatic 

execution of Lua scripts”. At the edge of the 

network, we will port a script engine onto a 

resource highly constraint BLE-enabled 

endpoint, and send a command through this 

uniform interface that then forwards to the 

script engine for execution at run time. For 

example, a user can write a simple 

command to change the state of an LED 

through this uniform interface. 

3 
How can we change command / code to 

run new functionality? 

To send code (i.e. computational 

expression) through this uniform interface 

by using Computational REST, and to store 

or update the code into a database for 

history tracking. Finally, to push the code 

which covers the previous one and execute a 

new program to perform new functionality. 
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CHAPTER 3 

ARCHITECTURE 

There are three types of existing IoT middleware (i.e. agent) architectures [3]:  

• Service-based Architecture that allows developers to deploy heterogeneous IoT devices 

as services, such as storage, web services interfaces, query manager, etc. 

• Cloud-based Architecture that limits developers on the number and type of IoT devices 

that can be deployed. 

• Actor-based Architecture that allows IoT devices to be exposed as reuable actors and 

distributed in the network. 

According to Fersi [28], “The service in SOA is a software that hides its internal 

implementation details and provides through an invokable interface a public functionality”. Thus, 

application layer and physical layer are able to communicate with each other independently 

through SOA. Hachem et al. [55] successfully adopt SOA and provide an SOA middleware that 

supports discovery (registration) of sensing metadata, composition of discovered sensing 

metadata, and access to any sensing data. 

As mentioned in Chapter 1, building a middleware (i.e. uniform interface) that provides 

services to Clients is the main part of our research goal, so SOA approach is suitable to help 

reach our goal. To reach the goal, low latency is prerequisite, so the computation must move 

closer to the edge devices, and virtualization must be able to talk with physicals. Thus, the 

architecture we propose should only focus on Fog domain, and middleware should only be 

embedded onto resource-rich physicals. Figure 3-1 shows Fog domain SOA with application and 

physical layers. 
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Figure 3-1. Fog domain SOA with application and physical layers 

3.1 Proposed System Architecture 

    In the Fog domain, there are tons of middleware who are virtualized onto physicals, such a 

Raspberry Pi who is a resource-rich platform able to be multi-threaded. Figure 3-2 shows the 

proposed system architecture which includes middleware layer that provides services. 

 

Figure 3-2. Proposed system architecture 
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Figure 3-3. Simplified architecture 

In our case, there are wirelessly deployed flowerpots in a green house, we need middleware 

providing uniform interface to manage and configure them. To reduce energy consumption of 

physicals, we only employ BLE-enabled endpoints in physical layer; however, a BLE master can 

only connect up to seven BLE endpoints at a time, so we employ BLE masters, such as a 

Raspberry Pi, directly connect to BLE endpoints. Then, the entry point is free of BLE 

connections, and it only focuses on HTTP connections, so that scalability can be increased as 

well. Figure 3-3 shows that the entry point is a Fog server which handles all HTTP requests, and 
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BLE master takes care of BLE connections and meanwhile handles HTTP requests from the 

entry point. 

3.1.1 Work Flow 

    The work flow of sending sensor data is shown in figure 3-4 describing that all varieties of 

BLE endpoints sending sensor data to a BLE master by BLE read operation, then transmitting to 

an entry point (i.e. Fog server), and finally all sensor data is stored in a database in the Fog node. 

An BLE endpoint registers in the system since the first successful sending. If the requests failed 

to send, just sent again and the failure would be kept in log for future analysis. Finally, users can 

fetch any available data through a Web application running in the entry point. 

 

Figure 3-4. Sensing flow 
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    The work flow of triggering actuators is shown in figure 3-5 describing how users to trigger 

actuators onto BLE endpoints via Web applications. Specifically, the entry point handles HTTP 

POST requests from users and stores behaviors in the database for history review, and then 

forwards requests to BLE master. Finally, BLE master triggers BLE endpoints by BLE write 

operation. It is noted that one BLE master can only connect up to 7 BLE peripherals at a time.  

 

Figure 3-5. Actuating flow 

3.1.2 RESTful Web Services 

    To meet the goal of our research, the middleware should be able to deal with sensing sources, 

such as sensor data, gateways. Virtualized physicals are in charge of managing Web resources by 

exposing REST APIs accessible to users and edge devices.  
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    As reviewed in Chapter 2, one of the key principles of REST style is its uniform interface. The 

resource provisioning is expressed by URIs and operated by four primitives (i.e. CRUD): create, 

read, update, delete which are mapped to HTTP methods: POST, GET, PUT, DELETE. Table 3-

1 shows the mapping from CRUD to HTTP methods. 

Table 3-1. Uniform REST interface 

CRUD  HTTP methods 

Create POST 

Read GET 

Update PUT 

Delete DELETE 

     

An IoT endpoint is represented as a virtual resource exposed to externals by URIs and 

operated by CRUD uniform interface. Those virtual resources form services middleware may 

provide. Table 3-2 indicates that the location of resource can be identified by URIs, and the 

behavior of physical and application layers can be operated by CRUD. 

Table 3-2. Examples of REST APIs 

HTTP methods URIs Semantics 

POST http://192.168.0.100/IoT/{board_id} 
To create (i.e. register) a new 

board 

GET http://192.168.0.100/IoT/{board_id} 
To retrieve information from a 

specific board 

PUT http://192.168.0.100/IoT/{board_id} To update a board 

DELETE http://192.168.0.100/IoT/{board_id} To delete a board 
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Furthermore, computational REST (CREST) enhances the ability of resource provisioning by 

exchanging computational expressions, so that any code can be transmitted through RESTful 

Web services, typically POST and PUT. 

For example, a BLE-enabled endpoint sends temperature and humidity data every second to a 

BLE master, and then the BLE master sends POST requests with payloads to the entry point 

every second by URL “http://192.168.0.100/IoT/” with payloads, such “boardName”, “value”, 

“programVersion”, “location” and any other necessary information in JSON string, then the 

entry point parses JSON string and stores information into database. When users use the Web 

application and send GET requests to entry point, such URL “http://192.168.0.100/IoT/board_id”. 

Then the entry point fetches the information of “board_id” from the database and meanwhile 

inserts the behavior of GET requests into database for later history check. The same principle 

when sending commands to endpoints. Users send POST requests to the entry point with URL 

“http://192.168.0.100/IoT/board_id”. Then the entry point inserts this behavior into database for 

later history check and fetches the IP address of BLE master and MAC address of the 

corresponding endpoint. Then the entry point sends POST requests to BLE master by URL such 

“http://192.168.0.102/nRF52832_0/D9:C7:9A:5E:43:30”. Finally, BLE master parses URL and 

payload, and then connects and writes commands to the endpoint with MAC address 

“D9:C7:9A:5E:43:30”.  

Sending a computational expression is exactly the same way to do, but with setting different 

characteristic UUID. PUT and DELETE requests are similar to POST. In our case, PUT requests 

are used to update command / code, and DELETE requests are used to delete history records. 

3.1.3 Script Engine 

A script engine can help users change state of an endpoint at run-time by simply executing a 

command / code. For example, Xie et al. [48] had successfully implemented Tapper which is a 

lightweight scripting engine for highly constrained wireless sensor nodes. In our case, we will 

hire Espruino, which is compatible with Nordic nRF52832 chip, as script engine to execute 

JavaScript command / code at run-time. Consequently, Espruino can accept on-demand 

computational expressions and execute them immediately over BLE communication. 
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3.2 Summary 

In this Chapter, we proposed an architecture that is able to: 

• provide a uniform interface by RESTful Web services. 

• provide an access for sending computational expressions by CREST. 

• execute command / code in JavaScript at run-time by Espruino. 

• accept computational expressions sent from middleware by REST APIs. 
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CHAPTER 4 

IMPLEMENTATION 

    In this chapter, we will implement REST model which shows how to use GET, POST, PUT 

and DELETE to solve the problems. Also, we will implement BLE communication between a 

Nordic nRF52832 chip and a smart phone through a mobile app. 

4.1 RESTful Web services in Embedded Middleware 

A Raspberry Pi 3, which is a Linux platform, plays the role in implementing software 

components that provides RESTful Web services to externals. The entry point implements Fog 

server for requests from both application and physical layers. The BLE master implements a 

lightweight server that only handles requests forwarded by the Fog server, and also implements a 

BLE handler that operates BLE write and read with Nordic nRF52832 chip. 

The sensing data of Nordic endpoints represents virtual resources that are read by BLE master, 

and then the BLE master POST data as payload in JSON format to the entry point at every 

certain period. Finally, an end point registers in the Fog server that stores all information into 

database. The URL exposed by the entry point represents an API for a BLE master to access. 

The payload is written in JSON format as name / value pair for efficient and easy data parsing. 

Figure 4-1 is an example of a request from an endpoint, including a URL, a JSON-formatted 

payload, and an API to send a HTTP POST request. 

 

Figure 4-1. Example of a request from an endpoint 

    We use Python Flask framework to form servers in both the entry point and BLE master, and 

Werkzeug server is the base of Flask. Werkzeug is easy to parse HTTP header and payload, and 

it integrates routing system to match URLs. Additionally, Flask naturally supports multi-

threaded mode. Then, Flask is able to run concurrent Web services.  
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Figure 4-2. Example of HTTP parsing in the server 

    On the server side, as an example shown in figure 4-2, the server parses the HTTP header 

including the URL and the HTTP method, and also parses the payload. Then, data processing 

would be followed by. 

    After registration of an end point, users can look up the specific virtual resource or 

composition of several ones via a Web application. To fulfill the scalability of RESTful Web 

services, HTTP GET responses naturally support caching and parallelization on URIs. Based on 

HTTP GET, users are able to check the history of an endpoint by selecting available dates. See 

figure 4-3, figure 4-4, figure 4-5 and figure 4-6. 

 

Figure 4-3. Example of GET request on Web GUI 
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Figure 4-4. Example of GET result on Web GUI 

 

Figure 4-5. Example of GET history request on Web GUI 

 

Figure 4-6. Example of GET history result on Web GUI 
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    To exchange computational expressions between application and physical layers, POST and 

PUT are to create and update payloads that could be computational expressions, as shown in 

figure 4-7. It allows users to change the state and configure endpoints on-demand. Also, 

DELETE can remove an endpoint, but the behavior will be logged for later history check. 

 

Figure 4-7. Example of POST and PUT computational expressions 

4.2 JavaScript Execution in BLE endpoints 

    Nordic nRF52832 chip cannot be virtualized due to highly constraint resource (i.e. CPU power, 

memory, networking, etc.), but it is capable of hosting a single program that monitor inbound 

low-energy connections. Then, the third parties are allowed to push scripts onto it. To do so, we 

developed a mobile app to access low-energy connections, particularly with Nordic nRF52832 

chip. The application we use over BLE protocol stack is Espruino (i.e. JavaScript Interpreter) 

that executes JavaScript code. 
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Figure 4-8. Example of BLE scanning in a mobile app 

 

Figure 4-9. Example of BLE write in JavaScript 
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Figure 4-8 and figure 4-9 show the first activity that performs BLE scanning, and the second 

activity that performs BLE write operation once the service is discovered. 

As long as the command / code directly sent from a mobile app can be successfully executed 

at run time, then it is possible to accept computational expressions sent from application layer 

through middleware at run time, as figure 4-7 shows. Additionally, Espruino allows users to 

customize APIs exposing to JavaScript, which brings users more flexibility towards applications’ 

functionality setup. 

4.3 Summary 

This Chapter implements the proposed architecture and reaches the goal of our research. 

RESTful Web services provide uniform interface represented by CRUD pattern, such GET, 

POST, PUT, DELETE. Not only does it fulfill the requirement of retrieving, creating, updating, 

and deleting virtual resources, but computational REST can also exchange computational 

expressions with low-energy nodes. 

With Espruino (i.e. JavaScript interpreter), Nordic nRF52832 chip is not only a role of a BLE 

peripheral, but it also extends the possibility for users to access an BLE endpoint through Web 

application. By doing this, there would not be any distance limit between users and low-energy 

physicals. 
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CHAPTER 5 

EXPERIMENT 

    To know the performance of middleware (i.e. uniform interface) and script engine, in this 

chapter, as shown in Figure 5-1, there are three experiments that will be covered: the round trip 

time of: 

1. Users GET data stored from MySQL database in the entry point. 

2. BLE master POST data collected from Nordic chip to the entry point with MySQL 

database process. 

3. BLE communication between a BLE master (i.e. a central) and a Nordic chip (i.e. a 

peripheral).  

 

Figure 5-1. Experiment profile 
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    To ensure the network speed and stability, we will use Ethernet access instead of wireless 

connection. The core of this experiment is to test the performance of the RESTful Web services 

provisioning in Raspberry Pi 3 and the performance of JavaScript interpreter in Nordic chip. 

5.1 Performance of Middleware 

    Since we will test the concurrent capability of the middleware, a multi-thread simulator named 

JMeter will be hired as a load generator. 

5.1.1 Performance of GET 

    The first set of tests focuses on users as Client that retrieves the state of a device by 

implementing GET request processed with MySQL database, and the URL is 

“/IoT/nRF52832_0”. Please note that concurrent Clients are represented by threads that refer to 

different colors. Every setting runs three rounds. Every request sends 208 bytes and receives 

5183 bytes. Since GET requests are cacheable, the plots below indicate the performance of the 

cache that is hosted in the Raspberry Pi 3 entry point. The cache is updated every second by 

reads that emanate from the endpoint. Nordic nRF52832 chip is the endpoint. 

 

Figure 5-2. One thread sending 100 GET requests (1000 milliseconds delay) 
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    In figure 5-2, there are some spikes around sample #53 and #93~#100 in the first round. There 

are some spikes around sample #9, #21, #30, #42, #54 and #98 in the second round. There are 

some spikes around sample #22, #60, #75, #83 and #90 in the third round. Thus, the plot looks 

flat with few random spikes probably because of noise. The average round trip time is at around 

30 milliseconds.	

 

Figure 5-3. Two threads sending 100 GET requests (1000 milliseconds delay) 

In figure 5-3, the second thread was added. The first thread is represented by red line, and the 

second thread is represented by green line. In the first round, there are some points where one 

thread goes faster at the similar amount of time as the other thread goes slower at around sample 

#40, #53, #65, #77 and #90. In the second round, the same phenomenon happens at round sample 

#10, #22, #25, #34 and #95. In the third round, it just happens a couple times at around sample 

#41 and #78. The reason of that is not known, but it is not surprising that the plot has more 

fluctuations than single thread has because CPU must fork more power for the second thread. 

Similarly, the average round trip time is at around 30 milliseconds. 
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Figure 5-4. Five threads sending 100 GET requests (1000 milliseconds delay) 

In figure 5-4, the same phenomenon happens when the number of thread increases to five with 

sending requests at the same sending delay (i.e. arrival rate), and the performance of handling 

five threads is similar to handling two threads. 

 

Figure 5-5. Ten threads sending 100 GET requests (125 milliseconds delay) 
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In figure 5-5, when the number of thread increases to ten and the sending delay decreases to 

125 milliseconds, the average round trip time is three times higher than the one of five threads at 

1000 milliseconds. It is not surprising that the performance of a resource-constraint device 

becomes critical as the number of thread increases and the sending delay decreases. 

    In figure 5-6, when the number of thread increase to twenty, the plot of each round looks very 

chaotic, and the server becomes overloaded due to the Raspberry Pi 3 is resource-constraint in 

CPU power, memory and networking, even though it is resource-rich, compared to resource 

highly constraint devices. 

 

Figure 5-6. Twenty threads sending 100 GET requests (125 millisecond delay) 

    To sum up, from figure 5-2 to figure 5-4 show that at 1000 millisecond sending delay up to 5 

concurrent threads do not impact the middleware so much. However, from figure 5-5 to figure 5-

6, as the number of concurrent thread increases and the sending delay decreases, we can see a 

distinct decline in the middleware performance. The more the number of concurrent thread 

increases, the closer the middleware reaches the critical point. It is suggested that a load balancer 

can act as a reverse proxy and distributes network traffic loads across multiple machines. 
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5.1.2 Performance of POST 

    The second set of tests focuses on a BLE master (i.e. Raspberry Pi 3) as Client POST data 

from an endpoint to the entry point (i.e. Fog server) with MySQL database process. The URL is 

“/IoT/”. HTTP body in JSON format shows in figure 5-7. Every request sends 469 bytes and 

receives 159 bytes. It is noted that POST cannot be cached. 

 

Figure 5-7. HTTP body in JSON format 

 

Figure 5-8. One thread sending 100 POST requests (1000 millisecond delay) 

In figure 5-8, there are some spikes at around sample #35, #55, #75 and #95 in the first round. 

There are a couple of spikes at around sample #5 and #46 in the second round. There are some 

continuous spikes at the first half of the third round. Compared to figure 5-2, the plot is more 

fluctuated than the one of GET requests test as a whole. The reason of that might be because 

POST requests cannot be cached, while the GET requests in figure 6-2 retrieve caches. 
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Figure 5-9. Two threads sending 100 POST requests (1000 millisecond delay) 

    In figure 5-9, in the first round, the first thread in red looks more stable than the second thread 

in green, and the second thread has some spikes at around sample #1, #38, #42, #55 and #76. In 

the second round, there are two fluctuations for the first thread at around sample #44 and #56, 

and the second thread has some spikes at around sample #1, #5, #20, #26, #33, #35, #48, #56, 

#70, #83 and #95. In the third round, the first thread has some spikes at around sample #6, #30, 

#45, #55~#66, #82 and #93, and the second thread has some spikes at around sample #1, #32, 

#50, #55~#73. When the second thread is involved, according to the plot, there is a wake-up 

period and its sending delay is at around 140 milliseconds for the second thread at the beginning 

of each round. 
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Figure 5-10. Two threads sending 100 POST requests (125 millisecond delay) 

In figure 5-10, as the sending delay decreases to 125 milliseconds, the plot looks very different. 

In the first round, the first thread has a couple significant spikes at around sample #1 and #62, 

and the second thread has one significant spike at around sample #63. In the second round, the 

first thread has one significant spike at around sample #63, and the second thread has two 

significant spikes at around sample #1 and #63. In the third round, the phenomenon is similar to 

the first round. It is interesting that the significant spike at around sample #63 of the second 

thread is always higher than the one of the first thread in each round. Also, there is a wake-up 

period for either thread at the first request in each round. 
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Figure 5-11. Five threads sending 100 POST requests (1000 millisecond delay) 

In figure 5-11, in the first and the third round, there is a significant wake-up period for each 

thread at around sample #1~#10, except the first thread; however, in the second round, the first 

thread has a wake-up period at the first request.  

 
Figure 5-12. Five threads sending 100 POST requests (250 millisecond delay) 
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In figure 5-12, in each round, there are two significant spikes at around sample #34 and #71, 

when the sending delay decreases to 250 milliseconds. Compared to figure 5-11, the round trip 

time of the first request in both two plots are roughly at 200 milliseconds, and there are two 

critical peaks coming up when the sending delay goes down to 250 milliseconds. The reason 

might be too much memory use at transient time. 

 

Figure 5-13. Five threads sending 100 POST requests (125 millisecond delay) 

In figure 5-13, in each round, it is not surprising that there is a wake-up period at the first 

request, but there is only one significant spike at around sample #57 when the sending delay 

further goes down to 125 milliseconds. Also, the spike at around sample #57 in the third round 

shows a higher sending delay than the one in the first and the second rounds. Compared to figure 

5-12, the round trip time of the first request goes up to roughly 240 milliseconds in figure 5-13, 

and the entire curves of each round look sharper than the ones in figure 5-12. Therefore, from 

figure 5-11 to figure 5-13, it is clear that the shorter the sending delay is, the more impact the 

middleware has toward the performance. 
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Figure 5-14. Ten threads sending 100 POST requests (125 millisecond delay) 

In figure 5-14, compared to figure 5-13, when the number of thread doubles at the same 

sending delay, the performance of middleware gets pervasive impact. The average round trip 

time is at 100 milliseconds.  

In figure 5-15, when the number of thread doubles again, the performance of middleware 

becomes critical, and the plot looks chaotic. The average round trip time rises up to around 300 

milliseconds. According to the plot indication, there is no need to test more than twenty threads, 

and we believe that there will be a critical point that the middleware is out of capability to handle 

requests. 
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Figure 5-15. Twenty threads sending 100 POST requests (125 millisecond delay) 

To sum up, figure 5-10, figure 5-12 and figure 5-13 show that there are some significant 

spikes coming up when the sending delay becomes shorter at multiple threads. Given that more 

endpoints are involved in sending POST requests via BLE masters, it is not surprising that the 

round trip time significantly increases that the performance dramatically declines at higher loads. 

5.2 Performance of Script Engine 

    The third set of tests are to know the performance of Espruino (i.e. JavaScript interpreter). The 

test will be 100 writes from BLE master to a Nordic chip, and 100 reads from the Nordic chip, 

and 100 writes plus reads. In this experiment, the size of every write and read is in one packet 

(i.e. up to 20 bytes). For example, a command such as "reset();", a temperature value such as 

"24". The purpose of this experiment is to evaluate the latency caused by BLE master writes and 

reads to / from endpoints.  
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Figure 5-16. 100 sequential writes to an endpoint (1 second delay) 

    In figure 5-16, the BLE “write” operations have some spikes at around sample #13, #33, #41, 

#47, #55, #61, #75, #82 and #95 in the first round. In the second round, there are four spikes at 

around sample #5, #11, #18 and #53. In the third round, there is only one spike at around sample 

#3. The average trip time is at around 200 milliseconds. It is noted that one BLE connection can 

only be set up by one BLE master and one BLE peripheral at a time, so there is impossible for 

either of two to be multi-threaded. 
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Figure 5-17. 100 sequential reads from an endpoint (1 second delay) 

In figure 5-17, there is a wake-up period at the beginning of each round from sample #1 to 

roughly sample #5, and the trip time of wake-up period is in range of 180 to 240 milliseconds. 

The average trip time is at 130 milliseconds. The plot of BLE “read” operations looks very 

different from the one of BLE “write” operations.    

In figure 5-18, “write” plus “read” operations are tested. It is expected that the average trip 

time is at around 330 milliseconds. The plot looks like overlaying figure 5-16 and figure 5-17. 
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Figure 5-18. 100 sequential round trip to an endpoint (1 second delay) 

To sum up, as results show that it requires around 200 milliseconds to change the state of the 

endpoint, while reading the state requires only around 130 milliseconds. It is observed that there 

is a wake-up period at the beginning of each round of reads, while writes do not have. 

5.3 Summary 

Generally, the three experiments indicate the performance of middleware (i.e. uniform 

interface) and script engine. In particular, the experiments of GET and POST show how virtual 

resources are presented in the middleware and their ability of handling loads. According to the 

experiments of both GET and POST, since the number of threads increases to ten, the plots 

become chaotic, and there must be a critical point at a certain point when further increasing the 

number of threads. It is not necessary to find out where their critical points exactly are, but it is 

important to know the trend of the performance of middleware. Also, these two experiments 

show the difference of middleware performance between when the data requested is cached and 

non-cached. Even though HTTP PUT and DELETE requests are applied to our case, we do not 

have to test them due to the similarity of HTTP POST requests. 

The experiments of BLE writes and reads show the capability of handling computational 

expressions in Espruino. The experiment of BLE writes show fast trip time and stable 
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performance, whereas the experiment of BLE reads must start with a wake-up period and be 

followed by fluctuating but faster performance. The reasons of what plots look like need to be 

explored in the future. 

After doing three experiments, we can make sure that it is possible to virtualize a resource-

constraint physical device to be a middleware for providing uniform web-like interface, and a 

script engine onto a BLE-enabled endpoint works well to execute code sent through this uniform 

interface at the edge of the network. 
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CHAPTER 6 

CONCLUSION 

Centralized network can help IoT leverage data collected from heterogeneous endpoints. The 

traditional Cloud-centric system becomes hard to talk with Things because of the cost of high 

latency and high bandwidth requirement. However, Fog computing can address the problems by 

moving computational power closer to Things. IoT-Fog can provide real-time data processing 

and service provisioning, and dynamic resources management. Virtualization of resource 

constraint physicals allows Client to interact with physicals by software-defined networking. 

This research proposed an architecture based on Service-Oriented Architecture that includes 

embedded middleware and script engine for low-energy endpoints. With the help of REST model, 

the architecture effectively addressed the challenges of service provisioning in virtualization 

environment and accessibility of virtual resources in PANs, and the state exchange onto virtual 

resources (i.e. endpoints) by Web applications. Particularly, the service provisioning relies on 

RESTful Web services (i.e. REST APIs) who provide uniform interface represented by URIs and 

CRUD mapping to HTTP methods. Furthermore, the research proofs that computational 

expressions are transferable to BLE-enabled virtual resources free of distance limitation via 

uniform web-like interface. 

The experiments indicate that there is a decent concurrent performance in embedded 

middleware when handling HTTP requests from application and physical layers, which means 

that real-time REST Web services provisioning is not a problem in IoT-Fog when the number of 

thread is less than the critical point, and users can dynamically manage resources by using HTTP 

GET, POST, PUT, DELETE without significant network latency. The experiments also indicate 

that Espruino has a low interpretation latency at every single packet, which means that it 

enhances the capability of real-time processing in middleware, facilitates users’ convenience for 

the ease of configurations, and working with BLE protocol stack reduces overhead of endpoint 

deployment in energy-saving manner. Additionally, Espruino is portable to other compatible 

resource constraint endpoints with small footprint. By our research, proposed architecture, 

implementation and experiment, we believe that a resource constraint physical is able to have 

required computing power at lower cost and / or lower energy to work in IoT environment. 
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CHAPTER 7 

FUTURE WORK 

    The proposed architecture can be improved in the following aspects. 

7.1 Decentralization with Access Control 

Fog-centralized network is controlled by a single entity no matter how many proxy layers it 

involves. The most advantage of Fog-centralized network is service provisioning by its uniform 

interface under the control of a central. However, if the central server stops working, tracking 

will stop immediately that may cost some losses. Therefore, a distributed peer-to-peer network is 

a solution to avoid single point of failure. IBM and Samsung have unveiled proof-of-concept 

(PoC) for ADEPT (Autonomous Decentralized Peer-to-Peer Telemetry) fully distributed. 

According to IBM Blockchain [31], “Blockchain is a shared, immutable ledger for recording the 

history of transactions. It fosters a new generation of transactional applications that establish 

trust, accountability and transparency”. However, Blockchain has underlying security and 

privacy issues. Access Control allows only eligible users can access resources by their roles and 

attributes.  

A future work in middleware layer will employ Blockchain with Access Control to manage 

virtual resources in embedded Fog. In particular, if a user created, read, updated and deleted 

some data, Blockchain can help track who behaved what at when and where because Blockchain 

keeps the entire ledger that is shared to eligible nodes, which means that Blockchain never loses 

a chain of records because any other nodes are informed a copy of a transaction after validation. 

Eventually, Blockchain creates a ledger which only allows to append new records and track IoT 

devices through such manufacturing, transporting, deploying, and any other steps involved. 

Based on Blockchain, decentralized transaction processing among IoT devices will bring IoT 

management and configuration to a new world. In the future, we will work on building 

Blockchain-based decentralized solution in middleware layer, including peer-to-peer connection 

between nodes, efficient transaction processing, and the security of access, and finally we will 

need to know the performance of the middleware. 
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7.2 NFC (Near Field Communication) 

A future work in physical layer focuses on a new communication protocol named NFC. 

According to Saeed et al. [30], “NFC is becoming widely more popular due to its ease of use, 

affordability, and extremely power efficient data communication”. Nowadays, most mobile 

phones are equipped with NFC technology. It is possible to tap onto an NFC tag to read sensor 

data and request to a central middleware. Fortunately, NFC can also work with IP networking in 

physical layer. Choi et al. [60] realize that NFC-based devices should use TCP/IP network for 

communication with BLE-enabled devices by adaptation layer and also for secure data 

transferring instead of by directly tapping on tags. 

For example, there could be an IPv6 adaptation layer for NFC over NFC protocol stack as the 

same as an IPv6 adaptation layer for BLE over BLE protocol stack, and then network layer could 

be over IPv6 adaptation layer for internet connection. This approach could also be applied to 

application layer where users can use a mobile device to tap a tag and actuate IoT devices. In the 

future, we will need to know the performance of NFC communication, and we will compare the 

result to BLE communication performance. Finally, we can know which protocol is more 

efficient, secure and universal at cost-saving and energy-saving manner. 
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