

IoT DEVICE MANAGEMENT AND CONFIGURATION

A Thesis Submitted to the College of

Graduate and Postdoctoral Studies

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

YUNXIAO WANG

©YUNXIAO WANG, 11/2017. All rights reserved.

i

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make it

freely available for inspection. I further agree that permission for copying of this thesis in any

manner, in whole or in part, for scholarly purposes may be granted by the professor or professors

who supervised my thesis work or, in their absence, by the Head of the Department or the Dean

of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my

thesis.

Requests for permission to copy or to make other uses of materials in this thesis in whole or

part should be addressed to:

 Head of the Department of Computer Science

 176 Thorvaldson Building

 110 Science Place

 University of Saskatchewan

 Saskatoon, Saskatchewan

 Canada

 S7N 5C9

ii

ABSTRACT

As the number of IoT devices grows, the management and configuration of IoT devices

becomes crucial in resource constraint networks. It is hard to manage and configure a large

amount of heterogeneous resource constraint IoT devices because people need to know how they

connect to each other, what internet-enabled services are available to provide, and how people

interact with things through the internet.

The thing-centric approach focuses on user experience when engaging things, but the cloud-

centric approach switch the focus to IoT services that can process data streams collected from

things and applications that help get people joined in the IoT world. To manage IoT populations

effectively in a centralized manner, not only does it mean that moving computational power

closer to the edge is a way to reduce bandwidth and latency, but it also implies that it is

necessary to build an architecture which can scale and manage tons of connected devices by a

uniform interface. In particular, RESTful Web services can provide a uniform interface that

operates resources by HTTP methods. For example, users can read and write data by a uniform

interface, and a flowerpot can write data and be triggered to water plants by a uniform interface.

Thus, in the scope of IoT, embedded middleware can implement uniform interface by REST

model.

Virtualizing physical things has emerged as a design pattern to build IoT systems. Resource

less constraint devices are capable of being virtualized with enough CPU power, memory,

networking, but they are more expensive and power consuming. However, resource highly

constraint devices take advantage of low energy consumption and cheaper price, but they cannot

be virtualized because they do not have ability to even run a single multi-threaded program.

Therefore, it is very important to select the right platforms for the right roles. In our case, we use

Raspberry Pi 3 as a middleware and Nordic nRF52832 as a BLE endpoint.

In this thesis, a REST-based IoT management system based on Service-Oriented Architecture

is built, and the performance of the system has been tested, including the response time of HTTP

GET and POST requests of the centralized server in a Fog domain and a script engine onto a

BLE-enabled endpoint.

iii

ACKNOWLEDGEMENTS

 Hereby, I would like to thank for my family to support my study towards the Master of

Science degree in the University of Saskatchewan.

Also, I would like to thank for my supervisor Professor Ralph Deters. Under his supervision,

not only did I have a chance of academic review, but I also learnt lots of cutting-edge concepts in

the field of Cyber Network and extended practical skills in programming. He is more like a life

advisor than a knowledge giver.

Last but not least, I would like to appreciate any help from my MADMUC lab members who

shared their experience and the view of problem solving. With the help of the above, I enjoyed

my study through this unforgettable period in my life.

iv

CONTENTS

PERMISSION TO USE ... i	
ABSTRACT ... ii	
ACKNOWLEDGEMENTS .. iii	
CONTENTS ... iv	
LIST OF TABLES ... vi	
LIST OF FIGURES .. vii	
LIST OF ABBREVIATIONS ...x	
INTRODUCTION ...1	

1.1 Problem Definition ..2	
1.1.1	 How to provide uniform web-like interface? ...3	
1.1.2 	 How can we use this interface to send commands to things? ..3	
1.1.3 	 How can we change code to run new functionality? ...4	
1.1.4 	 Research Goal ..4	

LITERATURE REVIEW ...5	
2.1	 IoT ..5	
2.2	 Hardware Platforms ...7	

2.2.1	 The Concept of SoC ...7	
2.2.2	 Introduction of SoCs ..9	
2.2.3	 Summary ...17	

2.3	 IoT Model ..18	
2.3.1	 IoT Fog ..18	
2.3.2	 SDN ..19	
2.3.3	 Virtualization of IoT Fog ...19	
2.3.4	 Restful Model ..20	
2.3.5	 CREST ..21	
2.3.6	 Summary ...21	

2.4	 Protocols ..22	
2.4.1	 Transport Layer Protocols ..22	
2.4.2	 Application Layer Protocols ...22	
2.4.3	 BLE communication layer protocol ...25	

2.4.3.1	 BLE protocol stack	...	25	
2.4.3.2	 GATT	..	27	

2.4.4	 Summary ...29	
2.5	 Solutions to Problems ...30	

ARCHITECTURE ...32	
3.1	 Proposed System Architecture ..33	

3.1.1	 Work Flow ..35	
3.1.2	 RESTful Web Services ...36	
3.1.3	 Script Engine ..38	

3.2	 Summary ...39	
IMPLEMENTATION ...40	

4.1	 RESTful Web services in Embedded Middleware ..40	

v

4.2	 JavaScript Execution in BLE endpoints ..43	
4.3	 Summary ...45	

EXPERIMENT ..46	
5.1	 Performance of Middleware ..47	

5.1.1	 Performance of GET ..47	
5.1.2	 Performance of POST ..51	

5.2	 Performance of Script Engine ...57	
5.3	 Summary ...60	

CONCLUSION ..62	
FUTURE WORK ...63	

7.1	 Decentralization with Access Control ...63	
7.2	 NFC (Near Field Communication) ...64	

REFERENCES ...65	

vi

LIST OF TABLES

	

Table 2-1. IoT Units Installed Base by Category (Millions of Units) 7

Table 2-2. IoT Endpoint Spending by Category (Billions of Dollars) 7

Table 2-3. A simple example of a service 28

Table 2-4. Solutions to problems 30

Table 3-1. Uniform REST interface 37

Table 3-2. Examples of REST APIs 37

vii

LIST OF FIGURES

	

Figure 1-1. Computational power level comparison 2

Figure 2-1. The deployment map of IoT 5

Figure 2-2. Typical components of SoC 8

Figure 2-3. Arduino Yun layout 9

Figure 2-4. Arduino Yun AVR microcontroller specifications 9

Figure 2-5. Arduino Yun microprocessor specifications 10

Figure 2-6. Arduino Yun Bridge 11

Figure 2-7. Raspberry Pi 3 layout 11

Figure 2-8. Raspberry Pi 3 specifications 12

Figure 2-9. Raspberry Pi 3 CPU profile 12

Figure 2-10. Raspberry Pi 3 CPU test at 4 threads 13

Figure 2-11. Esp8266-12E parameters 14

Figure 2-12. Arduino 101 specifications 15

Figure 2-13. BotSpine profile 16

Figure 2-14. Nordic nRF52832 development board 16

Figure 2-15. Integrated Fog Cloud IoT Architecture 18

Figure 2-16. SOAP message format 20

Figure 2-17. SOAP and REST wireless response time 21

Figure 2-18. CoAP architecture 23

Figure 2-19. CoAP message format 23

Figure 2-20. HTTP message format 24

Figure 2-21. Bluetooth history 25

viii

Figure 2-22. a typical Bluetooth stack 26

Figure 2-23. Bluetooth profiles and middle-layer protocols 27

Figure 2-24. GATT profile hierarchy 27

Figure 3-1. Fog domain SOA with application and physical layers 33

Figure 3-2. Proposed system architecture 33

Figure 3-3. Simplified architecture 34

Figure 3-4. Sensing flow 35

Figure 3-5. Actuating flow 36

Figure 4-1. Example of a request from an endpoint 40

Figure 4-2. Example of HTTP parsing in the server 41

Figure 4-3. Example of GET request on Web GUI 41

Figure 4-4. Example of GET result on Web GUI 42

Figure 4-5. Example of GET history request on Web GUI 42

Figure 4-6. Example of GET history result on Web GUI 42

Figure 4-7. Example of POST and PUT computational expressions 43

Figure 4-8. Example of BLE scanning in a mobile app 44

Figure 4-9. Example of BLE write in JavaScript 44

Figure 5-1. Experiment profile 46

Figure 5-2. One thread sending 100 GET requests (1000 millisecond delay) 47

Figure 5-3. Two threads sending 100 GET requests (1000 millisecond delay) 48

Figure 5-4. Five threads sending 100 GET requests (1000 millisecond delay) 49

Figure 5-5. Ten threads sending 100 GET requests (125 millisecond delay) 49

Figure 5-6. Twenty threads sending 100 GET requests (125 millisecond delay) 50

Figure 5-7. HTTP body in JSON format 51

ix

Figure 5-8. One thread sending 100 POST requests (1000 millisecond delay) 51

Figure 5-9. Two threads sending 100 POST requests (1000 millisecond delay) 52

Figure 5-10. Two threads sending 100 POST requests (125 millisecond delay) 53

Figure 5-11. Five threads sending 100 POST requests (1000 millisecond delay) 54

Figure 5-12. Five threads sending 100 POST requests (250 millisecond delay) 54

Figure 5-13. Five threads sending 100 POST requests (125 millisecond delay) 55

Figure 5-14. Ten threads sending 100 POST requests (125 millisecond delay) 56

Figure 5-15. Twenty threads sending 100 POST requests (125 millisecond delay) 57

Figure 5-16. 100 sequential writes to an endpoint (1 second delay) 58

Figure 5-17. 100 sequential reads from an endpoint (1 second delay) 59

Figure 5-18. 100 sequential round trip to an endpoint (1 second delay) 60

x

LIST OF ABBREVIATIONS

	

ADEPT Autonomous Decentralized Peer-to-Peer Telemetry

BLE Bluetooth Low Energy

CoAP Constraint Application Protocol

CREST Computational Representational State Transfer

CRUD Create Read Update Delete

GATT Generic Attribute

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

NFC Near Field Communication

PAN Personal Area Network

PoC Proof of Concept

REST Representational State Transfer

RTOS Real Time Operation System

SDN Software Defined Network

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SoC System on a Chip

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Universal Resource Identifier

URL Universal Resource Locator

xi

XML eXtensible Markup Language

6LoWPAN IPv6 over Low-Power Wireless Personal Area Network

1

CHAPTER 1

INTRODUCTION

Rykowski and Wilusz [36] state that “as IoT is very dynamic and heterogeneous, efficient

management system for IoT environment should address these features”. Gubbi et al. [32]

identify Object-centric architecture and Internet-centric architecture in the vision of IoT and “see

Cloud-centric architecture to be the best where cost based services are required”. Kantarci and

Mouftah [10] believe that “Cloud-centric IoT can leverage the efficiency of several applications

including but not limited to pervasive healthcare, future transportation systems, smart city, and

public safety which is a featured application area of the smart city”. However, convergence of

IoT and Cloud can foresee new challenges. Biswas and Giaffreda [6] announce that “IoT-Cloud

has to provide real-time data processing and service provisioning techniques considering such

Big Data. Another issues are to provide more dynamic resources management and orchestration

techniques, dynamically offloading from clients / hosts to cloud”.

IoT can be seen as a collection of various protocols and Web services [63]. Ashraf et al. [47]

further explore that seamless communication can be achieved by middleware interfaces serving a

batch of connected IoT edge devices who are able to run customized applications, so that the

status on edge devices can be dynamically controlled. Chowdhury et al. [53] specify that “the

data retrieved from the device can be applied to several processes in the network, such as

aggregation and abstraction, and the result of these procedures is transmitted to other entities”.

Finally, users are able to read processed data, write command to devices, and change code onto

devices through RESTful Web services. Meanwhile, HTTP is a Web application protocol that is

perfect to work with REST model. In resource constraint environment, REST model can provide

a Web-like uniform interface for devices and users, and it effectively shifts the computational

power from Cloud to Fog closer to IoT endpoints with the same user experience.

 In this thesis, an architecture based on Service-Oriented Architecture to manage and configure

IoT devices will be proposed. A Raspberry Pi 3 will be used as Middleware to provide REST

Web services and as BLE master to establish BLE connection. A Nordic nRF52832 will be used

as a BLE peripheral that provides BLE services to BLE masters. Later, the experiments will

evaluate the performance of REST model on a Raspberry Pi 3 and the performance of script

engine on Nordic nRF52832.

2

1.1 Problem Definition

 The goal of this research is to propose an architecture that can enable IoT device management.

There is a case that lots of flowerpots need to be watered every certain period in a greenhouse. If

there is a system that can tell the soil moisture of each flowerpot, what software version is

running on it, and can upload new versions at run-time through applications, that would be a

great help to water flowers in a timely manner, and that is able to track all behaviors on each

flowerpot. Not only can it reduce labor work, but it also boosts the ability of managing and

configuring edge things.

Figure 1-1. Computational power level comparison

3

 In the scope of IoT, figure 1-1 shows that Cloud computing can cause high latency and high

bandwidth, whereas Fog (i.e. Micro-Cloud) computing can optimize those important features.

However, rather than using traditionally centralized computation (e.g. Cloud), effectively

managing IoT devices in Fog domain, as Cherrier et al. [54] identify control flow and different

settings for actuators, becomes key challenges as the number of devices increases. Thus, my

problems break down to the followings:

1. How to provide uniform web-like interface?

2. How can we use this interface to send command to things?

3. How can we change command / code to run new functionality?

1.1.1 How to provide uniform web-like interface?

 It is easy to imagine that there will be tons of IoT devices working at the edge of the network

in the near future. However, it is not easy to manage them. For example, users may want to know

the latest status of some devices and the configurations those devices are running on. According

to Farahzadi et al. [2], “Middleware is a solution for implementing different services in a

heterogeneous environment”. Therefore, in the context of IoT, a concept of virtualization

management system can help. A direct way is to develop a centralized system embedded onto a

physical one with a uniform interface supplied to heterogeneous IoT endpoints and users, and

Web is the most scalable thing we have.

1.1.2 How can we use this interface to send commands to things?

It is easy to send a complete program to an edge device through an IDE. For example, Kolias

et al. [21] relies on a single-board computer programmed in C / C++ to execute sensing and

actuating. Typically, an Arduino sketch programmed in C / C++ is compiled by built-in gcc

compiler in Arduino IDE, then the hex code is uploaded to an Arduino device by wire or wireless.

Therefore, we need a way to send commands that it can support real-time wireless status change

and deliver better user experience instead of using an IDE.

However, what if a user just wants to send a simple command to blink an LED at run-time in a

low energy device through a pervasive Web-like interface? Kohler et al. [39] have realized that

an agent which can be implemented on a physical product can manage the connection to the Web

4

platform via RESTful or SOAP Web services. Therefore, a script engine mounted onto a

physical one is supposed to work in PAN-based low energy environment which is in the

coverage of Web services. In particular, sending a command at run-time via Web GUI to change

an actuator’s status on a BLE-enabled device with a script engine installed for command

execution is one of the ways to do so. In spite of 20 bytes of single BLE packet size limit, it is

possible to break up a command or a program into up to 20 bytes per packet.

1.1.3 How can we change code to run new functionality?

A mobile app can help directly send a single command in PAN, but it is complicated for users

to type code, and also it requires users to be in the range of PAN. However, it is easy for users to

type code on a Web GUI and send through a Web application to BLE endpoints wherever they

are. Then, the corresponding Web services able to change code are needed. In particular, given

the code written in JavaScript, pushing the JavaScript code through Web interface and executing

the code by script engine to have new functionality run on the expected device.

1.1.4 Research Goal

The goal of this research is to propose an architecture that includes a middleware embedded

onto a resource-rich physical device and a script engine onto a resource highly constraint device,

in order to make IoT device management and configuration more functional, accessible, flexible

and scalable. To achieve the goal, we will do the followings:

• To provide uniform web-like interface.

• To use this interface to send commands to things.

• To change command / code to run new functionality.

	

5

CHAPTER 2

LITERATURE REVIEW

 In this Chapter, there are the following areas reviewed. In the first section, we started with the

concept of Internet of Things (IoT). In the second section, we compared some typical resource

constraint devices to demonstrate what the roles of these hardware is playing in IoT world. In the

third section, a REST-based IoT model was introduced. In the fourth section, we introduced

underlying protocols, such as HTTP and CoAP, TCP and UDP, and BLE to see where they are a

good fit in connectivity. In the fifth section, we proposed solutions to the problems.

2.1 IoT

 The term of IoT is coined by Kevin Ashton [37] in 1999, but it was used in supply chain

management. As figure 2-1 shows, IoT describes a system where items in the physical world,

and sensors within or attached to these items, are connected to the Internet via wireless and wired

Internet connections [20]. Basically, there are three things that the Internet of Things will [20]:

Figure 2-1. The deployment map of IoT [58]

• Connect both inanimate and living things. IoT is a relatively new concept since Industrial

4.0 was presented, but the things (objects) in IoT were widely deployed in industrial

6

equipment for many years. Today, the things are ubiquitous. It appears and ranges from

smart cities to anything micro.	

• Use sensors for data collection. RFID and sensor technology enable computers to observe,

identify and understand the world—without the limitations of human-entered data [1].

The physical objects are just like human beings who need to have some senses to tell

what they feel like. Generally, sensors are functionally designed for different scenarios,

such as temperature sensors, humidity sensors, fire alarm sensors, push buttons, buzzers,

rotary encoders, etc. Then, the objects hooked up with sensors connect to each other

and/or to systems so that desired data can be collected.

• Change what types of item communicate over IP Network. Every physical object cannot

be wirelessly accessed unless they are assigned unique identities, and IPv4 and IPv6 are

such identities. IPv4 is the most widely deployed Internet protocol used to connect

devices to the Internet, whereas IPv6 that provides 128-bit space is the successor to IPv4.

With this digital identity, every object can be tracked then.

 Once the above three are ready, a centralized interface is required to process the data collected,

and this kind of interface could be in large scale or even as small as in the object itself. In the rest

of this chapter, we will review the heterogeneity of objects, the necessity of common interface

and the connectivity between objects and interface.

 Considering heterogeneous IoT devices operating in various solutions, Morabito [51] realizes

that the virtualization of physical devices is another important challenge. Such an idea that the

capabilities of physical devices could be enhanced by connecting them to remote software

components who monitor the status of physical things.

 Kim et al. [33] highlight that “The devices in IoT often compose Personal Area Networks

(PANs)”, and “it is possible to track locations and states of IoT devices”. Kranz et al. [40] point

out that “middleware can be used with embedded interaction to help integrate physical

interaction, communication, and data exchange, enabling a holistic approach toward interaction

with the Internet of Things”.

7

2.2 Hardware Platforms

 Gartner, Inc. forecasts [22] that up to 8.4 billion of connected things will be in use worldwide

in 2017, 31 percent higher than 2016, and will reach to around 20.4 billion by 2020 (see Table 2-

1). Total spending on endpoints and services will reach to around $2 trillion in 2018 (see Table

2-2). Obviously, connected IoT devices will be wherever you are, and the economic profit of that

will be such huge amount.

Table 2-1. IoT Units Installed Base by Category (Millions of Units) [22]

	
Table 2-2. IoT Endpoint Spending by Category (Billions of Dollars) [22]

	
 IoT devices are also called edge devices which are located at the edge of the network, and they

are the necessity of Edge (Fog) Computing that could work independently as a tiny Cloud or

work with Cloud service. Choosing proper edge devices is the entry of IoT, and we have to know

where each device should be placed.

2.2.1 The Concept of SoC

 First of all, let’s simply clear up the concept of microprocessor and microcontroller. A

microprocessor is a CPU (Central Processing Unit) that is compacted into a chip semiconductor

device, whereas a microcontroller (or MCU for microcontroller unit) typically includes small

amounts of RAM and ROM, and I/O ports and timers [56]. Microprocessors are used to execute

big and generic applications, while a microcontroller will only be used to execute a single task

within one application. Some of the benefits of microcontrollers include the following [50]: (1)

lower cost due to the relationship between input and output is defined to perform specific tasks;

(2) less power consumption due to microcontrollers are generally built using a technology known

8

as Complementary Metal Oxide Semiconductor (CMOS). This technology is a competent

fabrication system that uses less power and is more immune to power spikes than other

techniques; (3) All-in-one due to a microcontroller usually comprises of a CPU, ROM, RAM and

I/O ports, built within it to execute a single and dedicated task, while a microprocessor needs a

lot of peripherals to match. Today different manufacturers produce microcontrollers with a wide

range of features available in different versions. Some manufacturers are ATMEL, Microchip, TI,

Freescale, Philips, Motorola, etc [50].

 There are tons of microcontrollers available in the market, and they are typically categorized

by single chips and SoC (System on the Chip) based on capabilities. In our early research, single

chips such Arduino Uno equipped with ATmega328P was used. The ATmega328P is a low-

power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture [7].

 However, if there is a system running on the chip, there would be more possibilities coming up.

A system-on-a-chip, or SoC, is a computer system that all of whose components are integrated

onto a single chip [18]. The components of an SoC are called intellectual property blocks, or IPs

in brief. As figure 2-2 shows, IPs of an SoC include one or more processors (called cores) and

several peripheral devices [52].

	
Figure 2-2. Typical components of SoC [15]

9

2.2.2 Introduction of SoCs

 The SoCs involved in our research are Arduino Yun, Raspberry Pi 3, Wemos D1, Arduino 101,

BotSpine (TI CC2541), Nordic (nRF52832):

(1) Arduino Yun has one single microcontroller named ATmega32u4 plus one microprocessor

named Atheros AR9331 with peripherals externally connected. The Atheros processor supports a

Linux distribution based on OpenWrt (a version dedicated for embedded system) named Linino

OS [4]. AR9331 chip is widely used in routers, such as TP-Link TL-WR703N [4].

	
Figure 2-3. Arduino Yun layout [4]

	
Figure 2-4. Arduino Yun AVR microcontroller specifications [4]

10

	
Figure 2-5. Arduino Yun microprocessor specifications [4]

 Figure 2-3 shows the main components of Arduino YUN. Figure 2-4 shows the specifications

of Arduino side, and figure 2-5 shows the specifications of Linux side.

 There are a few features worth pointing out:

• The Linino OS installation occupies around 9 MB of the 16 MB available of the internal

flash memory [4], and you are discouraged from using the Yún's built-in non-volatile

memory, because it has a limited number of writes [4], so Arduino Yun can support

microSD card extension if more disk space is needed.

• OpenWRT provides Advanced Configuration Panel (GUI) powered by Luci web

interface, where allows users to manage any information on Arduino Yun, including

network status, software installation and uninstallation, real-time graphs, CPU power

consumption, etc.

• The communication between both two environments is enabled by the Bridge library that

provides some classes for variant communication.

11

	
Figure 2-6. Arduino Yun Bridge [27]

 Figure 2-6 shows the bridging connection between Arduino side and Linux side through

UART series.

(2) Raspberry Pi 3 is the third generation Raspberry Pi. Raspberry Pi 3 is a 64-bit mini Linux

computer that can do most tasks as the same as on a Linux desktop. Figure 2-7 shows the

components of a Raspberry Pi 3, and figure 2-8 shows the specifications of a Raspberry Pi 3.

	
Figure 2-7. Raspberry Pi 3 layout [34]

12

	
Figure 2-8. Raspberry Pi 3 specifications [49]

 Let’s have a direct understanding of Raspberry Pi 3 performance by using sysbench software.

However, it is no meaningful to test Arduino Yun for a comparison because of obviously distinct

CPU architecture.

	
Figure 2-9. Raspberry Pi 3 CPU profile

13

	
Figure 2-10. Raspberry Pi 3 CPU test at 4 threads

 Figure 2-9 shows CPU profile of a Raspberry Pi 3, and figure 2-10 shows a CPU test of a

Raspberry Pi 3 at 4 threads by sysbench.

(4) Wemos D1 is equipped with a wifi module on the 32-bit Esp8266 chip running RTOS named

FreeRTOS utilized in RTOS SDK that features multi-tasking operations. Considering network

connectivity, FreeRTOS includes network lwip API (sockets, IPv4, TCP/UDP, etc) and JSON

library. It supports Arduino libraries, where "setup()" and "loop()" are called in

"core_esp8266_main.cpp" by "#include <Arduino.h>", which makes Wemos become a wifi

version Arduino Uno. As our later research indicates, some other RTOS such as Espruino can

also be applied to Esp8266 chip. Figure 2-11 shows the specifications of an Esp8266-12E.

14

	
Figure 2-11. Esp8266-12E parameters [24]

There are a few features worth pointing out:

• Esp8266 supports UART (CH340G USB-serial converter chip) -wifi pass-through that

the remote server receives exactly what the serial input is, through wifi module. It is fast

and easy to set up a peer-to-peer TCP/UDP communication through a common server in

the internet. After connecting a nearby access point, use AT command "AT+CIFSR" to

get IP address of Esp8266, then start a UDP connection by "AT+CIPSTART="UDP",

"server IP address or DNS", port", followed by "AT+CIPMODE=1" to start pass-through

mode, finally send message by "AT+CIPSEND" to the common server. If the connection

is successful, then you can start pass-through to a receiver via the internet. NAT traversal

is automatically executed in the router.

15

• Esp8266 supports light sleep mode that the CPU may be suspended in application like

wifi switch. Without data transmission, the Wi-Fi Modem circuit can be turned off and

CPU suspended to save power according to the 802.11 standard (U-APSD). The power

<0.9mA. Modem sleep mode that requires CPU to be working. According to 802.11

standards (like U-APSD), it saves power to shut down the Wi-Fi Modem circuit while

maintaining a Wi-Fi connection with no data transmission. The power <15mA. Deep

sleep mode that does not require wifi connection to be maintained. The power <10uA

[23].

(5) Arduino 101 is equipped with Intel Curie module chip, which features a dual-core

architecture, includes a BLE module on the 32-bit Intel Quark SE core and a sensor subsystem (a

6-axis accelerometer and a gyroscope) on 32-bit RISC (reduced instruction set computer) ARC

EM4 core with FPU (floating point unit). Intel Quark SE core runs IoT-oriented Zephyr RTOS

hosted by the Linux foundation. Figure 2-12 shows the specifications of an Arduino 101.

	
Figure 2-12. Arduino 101 specifications [26]

(6) BotSpine, which was developed by a local company named EIC (Environmental Instruments

Canada Inc.) located in Saskatoon, is equipped with TI CC2541 (8051 MCU) BLE-enabled SoC.

The language it uses is Basic interpreted by an interpreter named BlueBasic. The convenience of

using BotSpine is that programs can be directly flashed from a mobile app into the chip through

BLE, and it provides easier way to prototype in Basic rather than C. However, there are some

drawbacks that unfortunately it does not support FPU, BlueBasic only defines 26 variables from

A to Z, and currently it can only be a BLE peripheral. However, the existence of those so-called

drawbacks is to make it easier for developers. Figure 2-13 shows the profile of a BotSpine.

16

	
Figure 2-13. BotSpine profile

(7) nRF52832 is a 32-bit ARM Cortex-M4F SoC from Nordic, and it supports BLE and ANT

protocol stacks depending on different SoftDevices. Due to its small size, it can be easily

embedded into wearables. Figure 2-14 shows the profile of a Nordic nRF52832 development

board.

Figure 2-14. Nordic nRF52832 development board

17

There are a few features worth pointing out:

• nRF52832 is RTOS-independent, so developers can build their customized firmware in

64KB RAM, 512KB flash footprint, such as Zephyr OS, JavaScript engine.

• nRF52 DK includes wireless protocol stack libraries called SoftDevices that are

precompiled and linked binary image implementing BLE protocol stack on SoC. The

protocol stack and application are independently separated, which means they do not

compile and link together. It simplifies application development in a stand-alone manner.

The SoftDevice enables the application developers to develop their code as a standard

ARM Cortex® -M4 project without having the need to integrate with proprietary IC

vendor software frameworks [46]. This means that any ARM Cortex® -M4-compatible

toolchain can be used to develop Bluetooth Low Energy applications with the SoftDevice

[46]. In comparison, TI CC2541 BLE stack is precompiled to object files, and it requires

to be joined with application code at link stage, which means it requires developers to use

the same tool-chain to develop application.

2.2.3 Summary

 Apparently, compared with single chip, SoC has an inherent dominance that SoC can connect

wirelessly while single chip can only do through wire. Deeply, with SoC, the development

difficulty can be reduced. For example, an OS coordinates different function programs to do the

same work, meanwhile, it isolates each function programs to reduce their coupling. It is

convenient for programmers to program each module, and the system architecture is logically

clear, especially for complex logic system. Furthermore, with SoC, code readability can be

improved for maintenance convenience. For example, developers can manage their codes

hierarchically, from driver layer to application layer. The priority of every task and the period of

execution are expectable. Moreover, with SoC, code portability can be increased. For example,

most logics are already set up in OS, so only porting OS is needed. Due to the above distinctions,

only SoC devices are employed for our research. Due to different SoCs offer different interfaces,

so a common interface accessible to heterogeneous SoCs is required in the context of IoT.

18

2.3 IoT Model

 Atzoria et al. [38] present that IoT relies on heterogeneous set of objects accessed by its own

dialect, so “there is the need for an abstraction layer capable of harmonizing the access to the

different devices with a common language and procedure”. Yannuzzi et al. [41] assert that

“Unfortunately, the requirements and design space of IoT make Cloud Computing unfeasible in

numerous scenarios, especially, when the goal is to build a general and multipurpose platform

that can serve a wide variety of IoT applications”.

2.3.1 IoT Fog

 According to Vermesan and Friess [43], “Many Internet of Things applications require

mobility support and geo-distribution in addition to location awareness and low latency, while

the data need to be processed in “real-time” in micro clouds or fog”. A Fog is a Micro-Cloud

working closer to the edge of the network. As shown in section 2.2, 20 billion “things” are

estimated to be connected to the internet by 2020, and a huge amount of bandwidth is required if

the data generated is directly moved to the Cloud. Additionally, Xu and Helal [62] discover that

scalability significantly challenges interactions between services and physicals. To be closer to

the device, Fog computing plays an important role in helping speed up outputs, boost service

quality and increase scalability.

	
Figure 2-15. Integrated Fog Cloud IoT Architecture [5]

19

 According to Munir et al. [5] who proposed IFCIoT (Integrated Fog Cloud IoT Architecture

Paradigm), as depicted in Figure 2-15, a Fog node represents an edge server, and much

processing takes place in a fog node. Every Fog node can be deployed locally close to the edge

devices, and each one transmits information to a centralized cloud service. “In IFCIoT

architecture, each operational Fog node is autonomous to ensure uninterrupted operations of the

facility / service it provides” [5]. A Fog node can be connected to other Fog nodes through radio

networks (e.g. routers). One of the practical application scenarios is to set up a smart farm. Tons

of IoT devices send data to edge servers locally distributed, and edge servers process data and

determine the behaviours to IoT devices instead of going to the Cloud. The work in the Cloud is

to analyze the data sent from Fog servers for specific applications, then Cloud is able to optimize

farming system.

 From the above architecture, obviously, Fog computing effectively reduces bandwidth and

latency, and increases scalability. A further question may come up: where to place a Fog?

2.3.2 SDN

 As Liu et al. [61] state that “Software-Defined Networking (SDN), a novel solution to network

configuration and management, has shown great potential to simplify the existing complex and

inflexible network infrastructure”. Oliveira et al. [17] further identify that “this emerging

paradigm uses a logically centralized software to control the behavior of a network”. Moreover,

Julia and Skarmeta [45] believe that SDN is able to help solve the challenges raised by

heterogeneous entities. Rahman [29] proposes an approach of logical clustering against physical

clustering where SDN approach is utilized for clustering identifications and managements.

2.3.3 Virtualization of IoT Fog

The virtualization of physical things has emerged in recent years. “Virtualization refers to

abstraction of logical resources from their underlying physical characteristics in order to improve

agility, enhance flexibility and reduce cost” [9]. As Nastic et al. state [57] that Software-defined

IoT (SD-IoT) uses abstraction to simplify provisioning and customization of its components.

This approach allows that virtual networks are set up onto a physical device. Even though this

approach does not define IoT physicals due to the recognition of costs and processing power of

them, we could try to recognize them by their different capabilities for specific roles.

20

2.3.4 Restful Model

 Restful model is the key to connect virtualized IoT Fog node and physicals. All web

applications can be developed by provisioning web service, either SOAP (Simple Object Access

Protocol) or RESTful (Representational state transfer) web service. SOAP is a protocol, and

REST is a style. Both two are not comparable, but it is important to know who they are.

 A SOAP message is made by standardized XML document [25]. As shown in figure 2-16, a

SOAP envelope contains SOAP header and SOAP body filled with XML messages, and it can be

packed in HTTP body and transmitted by HTTP. SOAP and REST are both protocol-

independent.

	
Figure 2-16. SOAP message format [16]

 REST is not a standard but a set of constraints that describe three principles [44]:

• Addressability. REST operates data on resources that are identified by URI (Universal

Resource Identifier). The resources can be named in any form.

• Uniform interface. The resources are accessible over HTTP standard. Four main REST

operations: create, read, update and delete (CRUD) are supported, and they can be

implemented by four corresponding HTTP (POST, GET, PUT, DELETE) methods.

Uniform interface tells how to operate resources.

• Statelessness. Each request contains all the information that a server needs. The server

responds to a new request without referencing any of previous requests.

21

 The most advantage of using REST web service is that you can encode representations in

JSON rather than XML the only choice in SOAP, so that you save many bytes, and JSON is

easier and faster to parse. According to Potti’s experiment [44], “REST wireless response times

are comparatively better than SOAP, as the number of simultaneous clients increased”, shown in

figure 2-17. Therefore, REST would be a better fit in our architecture and experiment.

	
Figure 2-17. SOAP and REST wireless response time [44]

2.3.5 CREST

 Furthermore, CREST (Computational REST), which “CREST’s framing by explicitly

emphasizing computation over information makes it far clearer that these are active resources

intended to be discoverable and composable” [35], is “a computation-centric successor to the

REST architectural style” [35]. “This style recasts the web from a model where content is the

fundamental measure of exchange to a model where computational exchange is the primary

mechanism” [35]. For example, a client wants to execute a program and sends a request to a

server, and then the server executes the program and return the result. Briefly, a service behavior

changes with client conditions.

2.3.6 Summary

In the heterogeneous context, Fog computing allows virtualization network to be feasible in

logical cluster against physical cluster by Restful model. The proper management of the

virtualized system must be along with proper communication protocols.

22

2.4 Protocols

 Fog environment is comprised of many nodes, so the computation is horizontally distributed,

but it can be less energy efficient than in centralized cloud systems [8]. According to Dastjerdi

and Buyya [8], “using efficient communications protocols such as CoAP, effective filtering and

sampling techniques, and joint computing and network resource optimization can minimize

energy consumption in fog environments”. On the other hand, according to Chowdhury et al.

[53], “Does HTTP/2 save energy? Yes, when round trip times are above 30ms and when TLS is

being used, our tests indicate that HTTP/2 outperforms HTTP/1.1 with TLS in most scenarios”.

For example, in the Chowdhury’s tests [53], the Mozilla Firefox Nightly implementation of

HTTP/2 consumes less energy than HTTP/1.1 implementation at doing the same work regardless

of the webserver used in the tests. Thus, it is hard to compare HTTP and CoAP in the case of

energy consumption.

2.4.1 Transport Layer Protocols

 In the transport layer, TCP (Transmission Control Protocol) and UDP (User Datagram

Protocol) are mainly employed over the network layer. The main comparison of TCP and UDP is

listed as follows:

• TCP is connection-oriented and reliable (guaranteed delivery), whereas UDP is not. Thus,

important packets use TCP because UDP does not react on packet loss.

• TCP establishes a connection before actual data transmission takes place, whereas UDP

does not, and also UDP does not do error checking for packets, so UDP is faster than

TCP.

• TCP re-arranges packets in an specific order, whereas UDP does not because every

packet of UDP is independent of each other. However, application layer can manage the

order if required.

2.4.2 Application Layer Protocols

 The corresponding Client-Server model based application layer protocols of TCP and UDP are

typically HTTP and CoAP in the scope of IoT paradigm.

23

 CoAP is a simplified version of HTTP. It is typically designed for the communication between

resource constrained devices, as shown in figure 2-18. Constrained environment and internet

environment are bridged through proxy devices.

	
Figure 2-18. CoAP architecture [64]

 Figure 2-19 depicts what CoAP message format looks like. CoAP message is written in

binary, and it must be initialized with 4 bytes formatted headers. In the message:

	
Figure 2-19. CoAP message format [64]

• “Ver” is a 2-bit unsigned integer. It mentions CoAP version number. “T” is a 2-bit

unsigned integer. It indicates message types: CON (0), NON (1), ACK (2), RST (3).

“TKL” is a 4-bit unsigned integer. It indicates the length of token (0-8 bytes). “Code” is

an 8-bit unsigned integer. It is combined with 3-bit class representing a request (0), a

successful response (2), an error response from client (4), or an error response from

server (5), and 5-bit detail. The last two bytes are network byte order according to big-

endian order.

• Followed by “Token” that associate a request and a response. Then there is 0 option or

multi-options. There could be no payload after options.

24

• If there is a payload, and its length is not 0, there must be a payload identifier 0xFF

before payload. 0xFF only happens after the end of an option.

	
Figure 2-20. HTTP message format [1]

 While HTTP message format is depicted in figure 2-20:

• The start line indicates an HTTP method (GET, PUT, POST, DELETE, HEAD,

OPTIONS, TRACE, CONNECT where CoAP shrinks it to GET, PUT, POST, DELETE

in “Code”), URL, HTTP version.

• HTTP headers are name-value pairs separated by a colon similar to JSON format that is

easy to parse.

• Followed by one blank line, then body starts if it is available.

 From the above comparison, CoAP has some advantages in the view of application:

• UDP is lightweight (fixed 8-byte header) while TCP has a bigger header (at least 20-byte).

• CoAP supports IP multi-cast and uni-cast communication while TCP only supports point-

to-point that is not suitable for notification services.

 While HTTP has also some advantages:

• TCP is stream-oriented that is used to transmit a continuous data flow, and all bytes are

guaranteed to be received identical as sent, and in a correct order.

• HTTP header and body are plain text that is friendly to programmers, while CoAP header

and body are binary that only machine is able to read it.

25

Both two protocols are used for different purpose. In this thesis, our experiment is to test the

performance of the server which can accept multiple requests that requires robust message

delivery, big volume of data will be collected, and for ease of parsing header, so HTTP/1.1 is

selected for later experiment.

2.4.3 BLE communication layer protocol

 According to Litepoint [11], “Bluetooth technology is a short-range communications

technology whose robustness, low power, and low cost make it ideal for a wide range of devices

ranging from mobile phones and computers to medical devices and home entertainment

products”. Figure 2-21 shows the history of Bluetooth.

	
Figure 2-21. Bluetooth history [11]

 The latest version of Bluetooth is Bluetooth Low Energy (BLE) or Bluetooth 4.x. According

to Tauchmann and Sikora [23], “Bluetooth Low Energy extends the Bluetooth standard in

version 4.0 for ultra-low energy applications through the extensive usage of low-power sleeping

periods, which inherently difficult in frequency hopping technologies”. Sansanayuth [59]

indicated that “BLE came with a new design that provided energy consumption 20 times lower

than the previous version. Due to the low energy consumption, the maximum data rate for BLE

is 100 kbps, which is lower than the Bluetooth classic with EDR mode”.

2.4.3.1 BLE protocol stack

 Typically, as shown in figure 2-22, a Bluetooth protocol stack is mainly divided into 2 parts:

host stack and controller stack. Host stack is composed of the middleware protocols. RFCOMM

(Radio Frequency Communications) protocol is used to expose RS-232 serial port to application

layer over L2CAP (Logical Link Control and Adaption Protocol) layer which converts data from

upper layer into a format that controller stack can understand. SDP (Service Discovery Protocol),

which is bound to L2CAP, is used to advertise and discover nearby Bluetooth services.

Intermediate HCI transport layer directly accesses to Bluetooth hardware for services execution.

26

	
Figure 2-22. a typical Bluetooth stack [13]

 Bluetooth specification [13] defines that “Profiles are definitions of possible applications and

specify general behaviors that Bluetooth® enabled devices use to communicate with other

Bluetooth devices”. However, every Bluetooth device has to implement Generic Access Profile

(GAP) first. GAP advertises packets (mandatory) and scans response (optional) at up to 31-byte

payload for establishing a connection between two Bluetooth devices. Bluetooth specification

[13] also points out that “For two Bluetooth devices to be compatible, they must support the

same profiles. For Bluetooth LE, developers have the option of using a comprehensive set of

adopted profiles, or use the Generic Attribute Profile (GATT) to create new profiles”. For

example, a Bluetooth Classic peripheral device can use Serial Port Profile (SPP) to be connected

and specify RFCOMM channel number and SDP record for communication to a central device;

similarly, a BLE peripheral device must use GATT over ATT (Attribute Protocol) who can tell

what services and characteristics it can provide to a central device. Thus, any official and

customized BLE services cannot be used until GATT has been enabled after the connection is set

up by GAP. Figure 2-23 shows Bluetooth profiles and middle-layer protocols.

27

	
Figure 2-23. Bluetooth profiles and middle-layer protocols [14]

2.4.3.2 GATT

 GATT defines two roles: server and client. A server refers to a BLE peripheral device who can

provide services, while a client refers to a BLE central device who can connect up to seven

peripherals at a time. A GATT transaction is nested by Profiles, Services, Characteristics, as

shown in figure 2-24. Profiles do not actually exist but include a collection of services. Each

service includes at least one characteristic. A characteristic is the smallest unit in GATT

transaction, it is the one who is exactly doing the work. Each characteristic consists of

“Properties”, “Value” and “Descriptors”. “Properties” are required right before “Value” followed

by “Descriptors” (optional) that describe “Value”. In many cases, “Properties”, “Value” and

“Descriptors” are all called “Descriptors”.

	
Figure 2-24. GATT profile hierarchy [12]

28

Table 2-3. A simple example of a service

 Handle UUID Attribute value

attribute 0x0001 00002800-0000-1000-8000-00805f9b34fb
Generic Access Service

(0x1800)

attribute 0x0002 00002803-0000-1000-8000-00805f9b34fb
Properties (Read),

Value Handle (0x2a00)

attribute 0x0003 00002a00-0000-1000-8000-00805f9b34fb
Temperature

E.g. 24 degrees

attribute 0x0004 00002803-0000-1000-8000-00805f9b34fb
Properties (Read),

Value Handle (0x2a01)

attribute 0x0005 00002a01-0000-1000-8000-00805f9b34fb
Humidity

E.g. 90 percent

attribute 0x0006 00002803-0000-1000-8000-00805f9b34fb
Properties (Read),

Value Handle (0x2a02)

attribute 0x0007 00002a02-0000-1000-8000-00805f9b34fb
Clock alarm
E.g. 10 a.m.

attribute 0x0008 00002803-0000-1000-8000-00805f9b34fb
Properties (Read),

Value Handle (0x2a03)

attribute 0x0009 00002a03-0000-1000-8000-00805f9b34fb
Switch state

E.g. 1

attribute 0x000a 00002803-0000-1000-8000-00805f9b34fb
Properties (Read),

Value Handle 0x2a04

attribute 0x000b 00002a04-0000-1000-8000-00805f9b34fb
Bus arrival
E.g. 3 min

 Services, characteristics and anything inside characteristics are attributes that are transported

by ATT. A GATT server stores Services, Characteristics in a simple lookup table by 16-bit

(official) or 128-bit (customized) UUIDs (may not be unique in the profile) for identifying the

type (service declaration, characteristic declaration, characteristic value declaration, descriptor

declaration) in the table over ATT, and ATT can access attribute value by “Read”, “Write”,

“Notify” and “Indicate”, and the maximum single payload size of these four operations is 20

29

bytes. Each attribute is given a numerical 16-bit handle (must be unique in the profile) for GATT

client to access and reference.

 Given a service attribute handle ranges from 0x0001 to 0x000b including five characteristics,

and service UUID: 0x1800. The example in table 2-3 shows:

• Handle 0x0001 is the service declaration that tells there is a service that starts here, where

UUID is always 0x2800.

• Handle 0x0002 (0x0004, 0x0006, 0x0008, 0x000a) is a characteristic declaration that

tells there is a characteristic that starts here, where UUID is always 0x2803. Its value

declaration is at handle 0x0003 (0x0005, 0x0007, 0x0009, 0x000b), where UUID is

0x2a00 (0x2a01, 0x2a02, 0x2a03, 0x2a04).

• Attribute value reveals where other attributes are. Properties tells the way to interact with

characteristic value. (All characteristics of 0x1800 are officially read-only with no

descriptors and security, but characteristic values here are fabricated just for a

demonstration.)

• The example also proves that UUIDs of services declaration and characteristics

declaration are always the same, but attribute handles must be unique in the profile.

Additionally, attribute handles are not necessarily consecutive.

 The security of BLE is also important. BLE provides three basic security services [12]:

• Authentication and authorization for establishing trusted relationships between devices.

• Encryption and data protection are to protect data integrity and confidentiality.

• Privacy and confidentiality are to prevent device tracking.

2.4.4 Summary

There is no doubt that REST takes obvious dominance for CRUD operation. URLs directly

guide users to the target resource with POST, GET, PUT, DELETE operations. In comparison,

XML-based SOAP increases complexity of handles with lower performance than REST. After

comparison, REST style will be chosen in our architecture design without hesitation. With the

30

creation of CREST, computational expressions are exchanged, there would be a new evolution of

Web services that more contributions would go toward IoT management and configuration.

BLE is expected to be widely used in SoC because of many advantages, such as low power

consumption with the use of a cell battery for a year, lower cost than wifi but lower bit rate. It is

an ideal communication protocol between IoT middleware and resource highly constraint

devices. In the future, IPv6 can be integrated on the top of 6LoWPAN (IPv6 over Low-Power

Wireless Personal Area Network) over L2CAP, so that BLE-enabled SoCs are able to be directly

connected to the internet without any hub (e.g. a middleware) from vendors.

2.5 Solutions to Problems

Based on the above reviews, we can summarize the solutions to the problems by the table below:

Table 2-4. Solutions to problems

 Problems Solutions

1
How to provide uniform web-like

interface?

Rykowski and Wilusz [36] announced that

“REST-base framework appeared as better

suited for heterogeneous and widely

distributed IoT devices and services.”

In Fog domain, we will virtualize resource-

rich physicals as middleware that provisions

RESTful Web services, so that the

embedded middleware can provide uniform

interface for heterogeneous IoT devices and

users. In particular, to be accessible to users,

the interface can provide web-like

experience for users, such as reading data.

31

2
How can we use this interface to send

commands to things?

Huang and Wu [19] realized that “the

tasking capability allows other devices or

users to actuate devices via the Internet”, so

users are able to remotely change state onto

devices.

Bjelica et al. [42] proposed Insight Device

Cloud (IDC) that “allows automatic

execution of Lua scripts”. At the edge of the

network, we will port a script engine onto a

resource highly constraint BLE-enabled

endpoint, and send a command through this

uniform interface that then forwards to the

script engine for execution at run time. For

example, a user can write a simple

command to change the state of an LED

through this uniform interface.

3
How can we change command / code to

run new functionality?

To send code (i.e. computational

expression) through this uniform interface

by using Computational REST, and to store

or update the code into a database for

history tracking. Finally, to push the code

which covers the previous one and execute a

new program to perform new functionality.

32

CHAPTER 3

ARCHITECTURE

There are three types of existing IoT middleware (i.e. agent) architectures [3]:

• Service-based Architecture that allows developers to deploy heterogeneous IoT devices

as services, such as storage, web services interfaces, query manager, etc.

• Cloud-based Architecture that limits developers on the number and type of IoT devices

that can be deployed.

• Actor-based Architecture that allows IoT devices to be exposed as reuable actors and

distributed in the network.

According to Fersi [28], “The service in SOA is a software that hides its internal

implementation details and provides through an invokable interface a public functionality”. Thus,

application layer and physical layer are able to communicate with each other independently

through SOA. Hachem et al. [55] successfully adopt SOA and provide an SOA middleware that

supports discovery (registration) of sensing metadata, composition of discovered sensing

metadata, and access to any sensing data.

As mentioned in Chapter 1, building a middleware (i.e. uniform interface) that provides

services to Clients is the main part of our research goal, so SOA approach is suitable to help

reach our goal. To reach the goal, low latency is prerequisite, so the computation must move

closer to the edge devices, and virtualization must be able to talk with physicals. Thus, the

architecture we propose should only focus on Fog domain, and middleware should only be

embedded onto resource-rich physicals. Figure 3-1 shows Fog domain SOA with application and

physical layers.

33

Figure 3-1. Fog domain SOA with application and physical layers

3.1 Proposed System Architecture

 In the Fog domain, there are tons of middleware who are virtualized onto physicals, such a

Raspberry Pi who is a resource-rich platform able to be multi-threaded. Figure 3-2 shows the

proposed system architecture which includes middleware layer that provides services.

Figure 3-2. Proposed system architecture

34

Figure 3-3. Simplified architecture

In our case, there are wirelessly deployed flowerpots in a green house, we need middleware

providing uniform interface to manage and configure them. To reduce energy consumption of

physicals, we only employ BLE-enabled endpoints in physical layer; however, a BLE master can

only connect up to seven BLE endpoints at a time, so we employ BLE masters, such as a

Raspberry Pi, directly connect to BLE endpoints. Then, the entry point is free of BLE

connections, and it only focuses on HTTP connections, so that scalability can be increased as

well. Figure 3-3 shows that the entry point is a Fog server which handles all HTTP requests, and

35

BLE master takes care of BLE connections and meanwhile handles HTTP requests from the

entry point.

3.1.1 Work Flow

 The work flow of sending sensor data is shown in figure 3-4 describing that all varieties of

BLE endpoints sending sensor data to a BLE master by BLE read operation, then transmitting to

an entry point (i.e. Fog server), and finally all sensor data is stored in a database in the Fog node.

An BLE endpoint registers in the system since the first successful sending. If the requests failed

to send, just sent again and the failure would be kept in log for future analysis. Finally, users can

fetch any available data through a Web application running in the entry point.

Figure 3-4. Sensing flow

36

 The work flow of triggering actuators is shown in figure 3-5 describing how users to trigger

actuators onto BLE endpoints via Web applications. Specifically, the entry point handles HTTP

POST requests from users and stores behaviors in the database for history review, and then

forwards requests to BLE master. Finally, BLE master triggers BLE endpoints by BLE write

operation. It is noted that one BLE master can only connect up to 7 BLE peripherals at a time.

Figure 3-5. Actuating flow

3.1.2 RESTful Web Services

 To meet the goal of our research, the middleware should be able to deal with sensing sources,

such as sensor data, gateways. Virtualized physicals are in charge of managing Web resources by

exposing REST APIs accessible to users and edge devices.

37

 As reviewed in Chapter 2, one of the key principles of REST style is its uniform interface. The

resource provisioning is expressed by URIs and operated by four primitives (i.e. CRUD): create,

read, update, delete which are mapped to HTTP methods: POST, GET, PUT, DELETE. Table 3-

1 shows the mapping from CRUD to HTTP methods.

Table 3-1. Uniform REST interface

CRUD HTTP methods

Create POST

Read GET

Update PUT

Delete DELETE

An IoT endpoint is represented as a virtual resource exposed to externals by URIs and

operated by CRUD uniform interface. Those virtual resources form services middleware may

provide. Table 3-2 indicates that the location of resource can be identified by URIs, and the

behavior of physical and application layers can be operated by CRUD.

Table 3-2. Examples of REST APIs

HTTP methods URIs Semantics

POST http://192.168.0.100/IoT/{board_id}
To create (i.e. register) a new

board

GET http://192.168.0.100/IoT/{board_id}
To retrieve information from a

specific board

PUT http://192.168.0.100/IoT/{board_id} To update a board

DELETE http://192.168.0.100/IoT/{board_id} To delete a board

38

Furthermore, computational REST (CREST) enhances the ability of resource provisioning by

exchanging computational expressions, so that any code can be transmitted through RESTful

Web services, typically POST and PUT.

For example, a BLE-enabled endpoint sends temperature and humidity data every second to a

BLE master, and then the BLE master sends POST requests with payloads to the entry point

every second by URL “http://192.168.0.100/IoT/” with payloads, such “boardName”, “value”,

“programVersion”, “location” and any other necessary information in JSON string, then the

entry point parses JSON string and stores information into database. When users use the Web

application and send GET requests to entry point, such URL “http://192.168.0.100/IoT/board_id”.

Then the entry point fetches the information of “board_id” from the database and meanwhile

inserts the behavior of GET requests into database for later history check. The same principle

when sending commands to endpoints. Users send POST requests to the entry point with URL

“http://192.168.0.100/IoT/board_id”. Then the entry point inserts this behavior into database for

later history check and fetches the IP address of BLE master and MAC address of the

corresponding endpoint. Then the entry point sends POST requests to BLE master by URL such

“http://192.168.0.102/nRF52832_0/D9:C7:9A:5E:43:30”. Finally, BLE master parses URL and

payload, and then connects and writes commands to the endpoint with MAC address

“D9:C7:9A:5E:43:30”.

Sending a computational expression is exactly the same way to do, but with setting different

characteristic UUID. PUT and DELETE requests are similar to POST. In our case, PUT requests

are used to update command / code, and DELETE requests are used to delete history records.

3.1.3 Script Engine

A script engine can help users change state of an endpoint at run-time by simply executing a

command / code. For example, Xie et al. [48] had successfully implemented Tapper which is a

lightweight scripting engine for highly constrained wireless sensor nodes. In our case, we will

hire Espruino, which is compatible with Nordic nRF52832 chip, as script engine to execute

JavaScript command / code at run-time. Consequently, Espruino can accept on-demand

computational expressions and execute them immediately over BLE communication.

39

3.2 Summary

In this Chapter, we proposed an architecture that is able to:

• provide a uniform interface by RESTful Web services.

• provide an access for sending computational expressions by CREST.

• execute command / code in JavaScript at run-time by Espruino.

• accept computational expressions sent from middleware by REST APIs.

40

CHAPTER 4

IMPLEMENTATION

 In this chapter, we will implement REST model which shows how to use GET, POST, PUT

and DELETE to solve the problems. Also, we will implement BLE communication between a

Nordic nRF52832 chip and a smart phone through a mobile app.

4.1 RESTful Web services in Embedded Middleware

A Raspberry Pi 3, which is a Linux platform, plays the role in implementing software

components that provides RESTful Web services to externals. The entry point implements Fog

server for requests from both application and physical layers. The BLE master implements a

lightweight server that only handles requests forwarded by the Fog server, and also implements a

BLE handler that operates BLE write and read with Nordic nRF52832 chip.

The sensing data of Nordic endpoints represents virtual resources that are read by BLE master,

and then the BLE master POST data as payload in JSON format to the entry point at every

certain period. Finally, an end point registers in the Fog server that stores all information into

database. The URL exposed by the entry point represents an API for a BLE master to access.

The payload is written in JSON format as name / value pair for efficient and easy data parsing.

Figure 4-1 is an example of a request from an endpoint, including a URL, a JSON-formatted

payload, and an API to send a HTTP POST request.

Figure 4-1. Example of a request from an endpoint

 We use Python Flask framework to form servers in both the entry point and BLE master, and

Werkzeug server is the base of Flask. Werkzeug is easy to parse HTTP header and payload, and

it integrates routing system to match URLs. Additionally, Flask naturally supports multi-

threaded mode. Then, Flask is able to run concurrent Web services.

41

Figure 4-2. Example of HTTP parsing in the server

 On the server side, as an example shown in figure 4-2, the server parses the HTTP header

including the URL and the HTTP method, and also parses the payload. Then, data processing

would be followed by.

 After registration of an end point, users can look up the specific virtual resource or

composition of several ones via a Web application. To fulfill the scalability of RESTful Web

services, HTTP GET responses naturally support caching and parallelization on URIs. Based on

HTTP GET, users are able to check the history of an endpoint by selecting available dates. See

figure 4-3, figure 4-4, figure 4-5 and figure 4-6.

Figure 4-3. Example of GET request on Web GUI

42

Figure 4-4. Example of GET result on Web GUI

Figure 4-5. Example of GET history request on Web GUI

Figure 4-6. Example of GET history result on Web GUI

43

 To exchange computational expressions between application and physical layers, POST and

PUT are to create and update payloads that could be computational expressions, as shown in

figure 4-7. It allows users to change the state and configure endpoints on-demand. Also,

DELETE can remove an endpoint, but the behavior will be logged for later history check.

Figure 4-7. Example of POST and PUT computational expressions

4.2 JavaScript Execution in BLE endpoints

 Nordic nRF52832 chip cannot be virtualized due to highly constraint resource (i.e. CPU power,

memory, networking, etc.), but it is capable of hosting a single program that monitor inbound

low-energy connections. Then, the third parties are allowed to push scripts onto it. To do so, we

developed a mobile app to access low-energy connections, particularly with Nordic nRF52832

chip. The application we use over BLE protocol stack is Espruino (i.e. JavaScript Interpreter)

that executes JavaScript code.

44

Figure 4-8. Example of BLE scanning in a mobile app

Figure 4-9. Example of BLE write in JavaScript

45

Figure 4-8 and figure 4-9 show the first activity that performs BLE scanning, and the second

activity that performs BLE write operation once the service is discovered.

As long as the command / code directly sent from a mobile app can be successfully executed

at run time, then it is possible to accept computational expressions sent from application layer

through middleware at run time, as figure 4-7 shows. Additionally, Espruino allows users to

customize APIs exposing to JavaScript, which brings users more flexibility towards applications’

functionality setup.

4.3 Summary

This Chapter implements the proposed architecture and reaches the goal of our research.

RESTful Web services provide uniform interface represented by CRUD pattern, such GET,

POST, PUT, DELETE. Not only does it fulfill the requirement of retrieving, creating, updating,

and deleting virtual resources, but computational REST can also exchange computational

expressions with low-energy nodes.

With Espruino (i.e. JavaScript interpreter), Nordic nRF52832 chip is not only a role of a BLE

peripheral, but it also extends the possibility for users to access an BLE endpoint through Web

application. By doing this, there would not be any distance limit between users and low-energy

physicals.

46

CHAPTER 5

EXPERIMENT

 To know the performance of middleware (i.e. uniform interface) and script engine, in this

chapter, as shown in Figure 5-1, there are three experiments that will be covered: the round trip

time of:

1. Users GET data stored from MySQL database in the entry point.

2. BLE master POST data collected from Nordic chip to the entry point with MySQL

database process.

3. BLE communication between a BLE master (i.e. a central) and a Nordic chip (i.e. a

peripheral).

Figure 5-1. Experiment profile

47

 To ensure the network speed and stability, we will use Ethernet access instead of wireless

connection. The core of this experiment is to test the performance of the RESTful Web services

provisioning in Raspberry Pi 3 and the performance of JavaScript interpreter in Nordic chip.

5.1 Performance of Middleware

 Since we will test the concurrent capability of the middleware, a multi-thread simulator named

JMeter will be hired as a load generator.

5.1.1 Performance of GET

 The first set of tests focuses on users as Client that retrieves the state of a device by

implementing GET request processed with MySQL database, and the URL is

“/IoT/nRF52832_0”. Please note that concurrent Clients are represented by threads that refer to

different colors. Every setting runs three rounds. Every request sends 208 bytes and receives

5183 bytes. Since GET requests are cacheable, the plots below indicate the performance of the

cache that is hosted in the Raspberry Pi 3 entry point. The cache is updated every second by

reads that emanate from the endpoint. Nordic nRF52832 chip is the endpoint.

Figure 5-2. One thread sending 100 GET requests (1000 milliseconds delay)

48

 In figure 5-2, there are some spikes around sample #53 and #93~#100 in the first round. There

are some spikes around sample #9, #21, #30, #42, #54 and #98 in the second round. There are

some spikes around sample #22, #60, #75, #83 and #90 in the third round. Thus, the plot looks

flat with few random spikes probably because of noise. The average round trip time is at around

30 milliseconds.	

Figure 5-3. Two threads sending 100 GET requests (1000 milliseconds delay)

In figure 5-3, the second thread was added. The first thread is represented by red line, and the

second thread is represented by green line. In the first round, there are some points where one

thread goes faster at the similar amount of time as the other thread goes slower at around sample

#40, #53, #65, #77 and #90. In the second round, the same phenomenon happens at round sample

#10, #22, #25, #34 and #95. In the third round, it just happens a couple times at around sample

#41 and #78. The reason of that is not known, but it is not surprising that the plot has more

fluctuations than single thread has because CPU must fork more power for the second thread.

Similarly, the average round trip time is at around 30 milliseconds.

49

Figure 5-4. Five threads sending 100 GET requests (1000 milliseconds delay)

In figure 5-4, the same phenomenon happens when the number of thread increases to five with

sending requests at the same sending delay (i.e. arrival rate), and the performance of handling

five threads is similar to handling two threads.

Figure 5-5. Ten threads sending 100 GET requests (125 milliseconds delay)

50

In figure 5-5, when the number of thread increases to ten and the sending delay decreases to

125 milliseconds, the average round trip time is three times higher than the one of five threads at

1000 milliseconds. It is not surprising that the performance of a resource-constraint device

becomes critical as the number of thread increases and the sending delay decreases.

 In figure 5-6, when the number of thread increase to twenty, the plot of each round looks very

chaotic, and the server becomes overloaded due to the Raspberry Pi 3 is resource-constraint in

CPU power, memory and networking, even though it is resource-rich, compared to resource

highly constraint devices.

Figure 5-6. Twenty threads sending 100 GET requests (125 millisecond delay)

 To sum up, from figure 5-2 to figure 5-4 show that at 1000 millisecond sending delay up to 5

concurrent threads do not impact the middleware so much. However, from figure 5-5 to figure 5-

6, as the number of concurrent thread increases and the sending delay decreases, we can see a

distinct decline in the middleware performance. The more the number of concurrent thread

increases, the closer the middleware reaches the critical point. It is suggested that a load balancer

can act as a reverse proxy and distributes network traffic loads across multiple machines.

51

5.1.2 Performance of POST

 The second set of tests focuses on a BLE master (i.e. Raspberry Pi 3) as Client POST data

from an endpoint to the entry point (i.e. Fog server) with MySQL database process. The URL is

“/IoT/”. HTTP body in JSON format shows in figure 5-7. Every request sends 469 bytes and

receives 159 bytes. It is noted that POST cannot be cached.

Figure 5-7. HTTP body in JSON format

Figure 5-8. One thread sending 100 POST requests (1000 millisecond delay)

In figure 5-8, there are some spikes at around sample #35, #55, #75 and #95 in the first round.

There are a couple of spikes at around sample #5 and #46 in the second round. There are some

continuous spikes at the first half of the third round. Compared to figure 5-2, the plot is more

fluctuated than the one of GET requests test as a whole. The reason of that might be because

POST requests cannot be cached, while the GET requests in figure 6-2 retrieve caches.

52

Figure 5-9. Two threads sending 100 POST requests (1000 millisecond delay)

 In figure 5-9, in the first round, the first thread in red looks more stable than the second thread

in green, and the second thread has some spikes at around sample #1, #38, #42, #55 and #76. In

the second round, there are two fluctuations for the first thread at around sample #44 and #56,

and the second thread has some spikes at around sample #1, #5, #20, #26, #33, #35, #48, #56,

#70, #83 and #95. In the third round, the first thread has some spikes at around sample #6, #30,

#45, #55~#66, #82 and #93, and the second thread has some spikes at around sample #1, #32,

#50, #55~#73. When the second thread is involved, according to the plot, there is a wake-up

period and its sending delay is at around 140 milliseconds for the second thread at the beginning

of each round.

53

Figure 5-10. Two threads sending 100 POST requests (125 millisecond delay)

In figure 5-10, as the sending delay decreases to 125 milliseconds, the plot looks very different.

In the first round, the first thread has a couple significant spikes at around sample #1 and #62,

and the second thread has one significant spike at around sample #63. In the second round, the

first thread has one significant spike at around sample #63, and the second thread has two

significant spikes at around sample #1 and #63. In the third round, the phenomenon is similar to

the first round. It is interesting that the significant spike at around sample #63 of the second

thread is always higher than the one of the first thread in each round. Also, there is a wake-up

period for either thread at the first request in each round.

54

Figure 5-11. Five threads sending 100 POST requests (1000 millisecond delay)

In figure 5-11, in the first and the third round, there is a significant wake-up period for each

thread at around sample #1~#10, except the first thread; however, in the second round, the first

thread has a wake-up period at the first request.

Figure 5-12. Five threads sending 100 POST requests (250 millisecond delay)

55

In figure 5-12, in each round, there are two significant spikes at around sample #34 and #71,

when the sending delay decreases to 250 milliseconds. Compared to figure 5-11, the round trip

time of the first request in both two plots are roughly at 200 milliseconds, and there are two

critical peaks coming up when the sending delay goes down to 250 milliseconds. The reason

might be too much memory use at transient time.

Figure 5-13. Five threads sending 100 POST requests (125 millisecond delay)

In figure 5-13, in each round, it is not surprising that there is a wake-up period at the first

request, but there is only one significant spike at around sample #57 when the sending delay

further goes down to 125 milliseconds. Also, the spike at around sample #57 in the third round

shows a higher sending delay than the one in the first and the second rounds. Compared to figure

5-12, the round trip time of the first request goes up to roughly 240 milliseconds in figure 5-13,

and the entire curves of each round look sharper than the ones in figure 5-12. Therefore, from

figure 5-11 to figure 5-13, it is clear that the shorter the sending delay is, the more impact the

middleware has toward the performance.

56

Figure 5-14. Ten threads sending 100 POST requests (125 millisecond delay)

In figure 5-14, compared to figure 5-13, when the number of thread doubles at the same

sending delay, the performance of middleware gets pervasive impact. The average round trip

time is at 100 milliseconds.

In figure 5-15, when the number of thread doubles again, the performance of middleware

becomes critical, and the plot looks chaotic. The average round trip time rises up to around 300

milliseconds. According to the plot indication, there is no need to test more than twenty threads,

and we believe that there will be a critical point that the middleware is out of capability to handle

requests.

57

Figure 5-15. Twenty threads sending 100 POST requests (125 millisecond delay)

To sum up, figure 5-10, figure 5-12 and figure 5-13 show that there are some significant

spikes coming up when the sending delay becomes shorter at multiple threads. Given that more

endpoints are involved in sending POST requests via BLE masters, it is not surprising that the

round trip time significantly increases that the performance dramatically declines at higher loads.

5.2 Performance of Script Engine

 The third set of tests are to know the performance of Espruino (i.e. JavaScript interpreter). The

test will be 100 writes from BLE master to a Nordic chip, and 100 reads from the Nordic chip,

and 100 writes plus reads. In this experiment, the size of every write and read is in one packet

(i.e. up to 20 bytes). For example, a command such as "reset();", a temperature value such as

"24". The purpose of this experiment is to evaluate the latency caused by BLE master writes and

reads to / from endpoints.

58

Figure 5-16. 100 sequential writes to an endpoint (1 second delay)

 In figure 5-16, the BLE “write” operations have some spikes at around sample #13, #33, #41,

#47, #55, #61, #75, #82 and #95 in the first round. In the second round, there are four spikes at

around sample #5, #11, #18 and #53. In the third round, there is only one spike at around sample

#3. The average trip time is at around 200 milliseconds. It is noted that one BLE connection can

only be set up by one BLE master and one BLE peripheral at a time, so there is impossible for

either of two to be multi-threaded.

59

Figure 5-17. 100 sequential reads from an endpoint (1 second delay)

In figure 5-17, there is a wake-up period at the beginning of each round from sample #1 to

roughly sample #5, and the trip time of wake-up period is in range of 180 to 240 milliseconds.

The average trip time is at 130 milliseconds. The plot of BLE “read” operations looks very

different from the one of BLE “write” operations.

In figure 5-18, “write” plus “read” operations are tested. It is expected that the average trip

time is at around 330 milliseconds. The plot looks like overlaying figure 5-16 and figure 5-17.

60

Figure 5-18. 100 sequential round trip to an endpoint (1 second delay)

To sum up, as results show that it requires around 200 milliseconds to change the state of the

endpoint, while reading the state requires only around 130 milliseconds. It is observed that there

is a wake-up period at the beginning of each round of reads, while writes do not have.

5.3 Summary

Generally, the three experiments indicate the performance of middleware (i.e. uniform

interface) and script engine. In particular, the experiments of GET and POST show how virtual

resources are presented in the middleware and their ability of handling loads. According to the

experiments of both GET and POST, since the number of threads increases to ten, the plots

become chaotic, and there must be a critical point at a certain point when further increasing the

number of threads. It is not necessary to find out where their critical points exactly are, but it is

important to know the trend of the performance of middleware. Also, these two experiments

show the difference of middleware performance between when the data requested is cached and

non-cached. Even though HTTP PUT and DELETE requests are applied to our case, we do not

have to test them due to the similarity of HTTP POST requests.

The experiments of BLE writes and reads show the capability of handling computational

expressions in Espruino. The experiment of BLE writes show fast trip time and stable

61

performance, whereas the experiment of BLE reads must start with a wake-up period and be

followed by fluctuating but faster performance. The reasons of what plots look like need to be

explored in the future.

After doing three experiments, we can make sure that it is possible to virtualize a resource-

constraint physical device to be a middleware for providing uniform web-like interface, and a

script engine onto a BLE-enabled endpoint works well to execute code sent through this uniform

interface at the edge of the network.

62

CHAPTER 6

CONCLUSION

Centralized network can help IoT leverage data collected from heterogeneous endpoints. The

traditional Cloud-centric system becomes hard to talk with Things because of the cost of high

latency and high bandwidth requirement. However, Fog computing can address the problems by

moving computational power closer to Things. IoT-Fog can provide real-time data processing

and service provisioning, and dynamic resources management. Virtualization of resource

constraint physicals allows Client to interact with physicals by software-defined networking.

This research proposed an architecture based on Service-Oriented Architecture that includes

embedded middleware and script engine for low-energy endpoints. With the help of REST model,

the architecture effectively addressed the challenges of service provisioning in virtualization

environment and accessibility of virtual resources in PANs, and the state exchange onto virtual

resources (i.e. endpoints) by Web applications. Particularly, the service provisioning relies on

RESTful Web services (i.e. REST APIs) who provide uniform interface represented by URIs and

CRUD mapping to HTTP methods. Furthermore, the research proofs that computational

expressions are transferable to BLE-enabled virtual resources free of distance limitation via

uniform web-like interface.

The experiments indicate that there is a decent concurrent performance in embedded

middleware when handling HTTP requests from application and physical layers, which means

that real-time REST Web services provisioning is not a problem in IoT-Fog when the number of

thread is less than the critical point, and users can dynamically manage resources by using HTTP

GET, POST, PUT, DELETE without significant network latency. The experiments also indicate

that Espruino has a low interpretation latency at every single packet, which means that it

enhances the capability of real-time processing in middleware, facilitates users’ convenience for

the ease of configurations, and working with BLE protocol stack reduces overhead of endpoint

deployment in energy-saving manner. Additionally, Espruino is portable to other compatible

resource constraint endpoints with small footprint. By our research, proposed architecture,

implementation and experiment, we believe that a resource constraint physical is able to have

required computing power at lower cost and / or lower energy to work in IoT environment.

63

CHAPTER 7

FUTURE WORK

 The proposed architecture can be improved in the following aspects.

7.1 Decentralization with Access Control

Fog-centralized network is controlled by a single entity no matter how many proxy layers it

involves. The most advantage of Fog-centralized network is service provisioning by its uniform

interface under the control of a central. However, if the central server stops working, tracking

will stop immediately that may cost some losses. Therefore, a distributed peer-to-peer network is

a solution to avoid single point of failure. IBM and Samsung have unveiled proof-of-concept

(PoC) for ADEPT (Autonomous Decentralized Peer-to-Peer Telemetry) fully distributed.

According to IBM Blockchain [31], “Blockchain is a shared, immutable ledger for recording the

history of transactions. It fosters a new generation of transactional applications that establish

trust, accountability and transparency”. However, Blockchain has underlying security and

privacy issues. Access Control allows only eligible users can access resources by their roles and

attributes.

A future work in middleware layer will employ Blockchain with Access Control to manage

virtual resources in embedded Fog. In particular, if a user created, read, updated and deleted

some data, Blockchain can help track who behaved what at when and where because Blockchain

keeps the entire ledger that is shared to eligible nodes, which means that Blockchain never loses

a chain of records because any other nodes are informed a copy of a transaction after validation.

Eventually, Blockchain creates a ledger which only allows to append new records and track IoT

devices through such manufacturing, transporting, deploying, and any other steps involved.

Based on Blockchain, decentralized transaction processing among IoT devices will bring IoT

management and configuration to a new world. In the future, we will work on building

Blockchain-based decentralized solution in middleware layer, including peer-to-peer connection

between nodes, efficient transaction processing, and the security of access, and finally we will

need to know the performance of the middleware.

64

7.2 NFC (Near Field Communication)

A future work in physical layer focuses on a new communication protocol named NFC.

According to Saeed et al. [30], “NFC is becoming widely more popular due to its ease of use,

affordability, and extremely power efficient data communication”. Nowadays, most mobile

phones are equipped with NFC technology. It is possible to tap onto an NFC tag to read sensor

data and request to a central middleware. Fortunately, NFC can also work with IP networking in

physical layer. Choi et al. [60] realize that NFC-based devices should use TCP/IP network for

communication with BLE-enabled devices by adaptation layer and also for secure data

transferring instead of by directly tapping on tags.

For example, there could be an IPv6 adaptation layer for NFC over NFC protocol stack as the

same as an IPv6 adaptation layer for BLE over BLE protocol stack, and then network layer could

be over IPv6 adaptation layer for internet connection. This approach could also be applied to

application layer where users can use a mobile device to tap a tag and actuate IoT devices. In the

future, we will need to know the performance of NFC communication, and we will compare the

result to BLE communication performance. Finally, we can know which protocol is more

efficient, secure and universal at cost-saving and energy-saving manner.

	 	

65

REFERENCES

[1] A. Arkatkar, K. Kudchadkar, H. Vaghela, K. Nawal, P. Gandhi, S. Gavali, . . . Y. Chen. (2016).
Communication Networks. Retrieved from
https://en.wikibooks.org/wiki/Communication_Networks/HTTP_Protocol

[2] A. Farahzadi, P. Shams, J. Rezazadeh and R. Farahbakhsh, "Middleware Technologies for Cloud of
Things-a survey", Digital Communications and Networks, University of Technology Sydney, April
2017. doi: 10.1016/j.dcan.2017.04.005.

[3] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal and Q. Z. Sheng, "IoT Middleware: A Survey on Issues
and Enabling Technologies," in IEEE Internet of Things Journal, vol. 4, no. 1, pp. 1-20, Feb. 2017.
doi: 10.1109/JIOT.2016.2615180.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7582463&isnumber=7847463

[4] "Arduino Yún LininoOS." Arduino Yún LininoOS. N.p., 2016. Web.
https://www.arduino.cc/en/Main/ArduinoBoardYun.

[5] A. Munir, P. Kansakar and S. U. Khan, "IFCIoT: Integrated Fog Cloud IoT: A novel architectural
paradigm for the future Internet of Things.," in IEEE Consumer Electronics Magazine, vol. 6, no. 3,
pp. 74-82, July 2017. doi: 10.1109/MCE.2017.2684981.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7948854&isnumber=7948824

[6] A. R. Biswas and R. Giaffreda, "IoT and cloud convergence: Opportunities and challenges," 2014
IEEE World Forum on Internet of Things (WF-IoT), Seoul, 2014, pp. 375-376.
doi: 10.1109/WF-IoT.2014.6803194.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6803194&isnumber=6803102

[7] ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES IN-SYSTEM
PROGRAMMABLE FLASH DATASHEET. (2015). Retrieved from
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-
88PA-168A-168PA-328-328P_datasheet_Complete.pdf

[8] A. V. Dastjerdi and R. Buyya, "Fog Computing: Helping the Internet of Things Realize Its Potential,"
in Computer, vol. 49, no. 8, pp. 112-116, Aug. 2016. doi: 10.1109/MC.2016.245.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7543455&isnumber=7543413

[9] B. Golden. (2008). Virtualization for dummies. Hoboken, NJ: Wiley Publishing, Inc.

[10] B. Kantarci and H. T. Mouftah, "Sensing services in cloud-centric Internet of Things: A survey,
taxonomy and challenges," 2015 IEEE International Conference on Communication Workshop
(ICCW), London, 2015, pp. 1865-1870. doi: 10.1109/ICCW.2015.7247452.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7247452&isnumber=7247062

[11] Bluetooth Low Energy. (2012). Retrieved from
http://litepoint.com/whitepaper/Bluetooth%20Low%20Energy_WhitePaper.pdf

[12] Bluetooth SIG Generic Attributes (GATT) and the Generic Attribute Profile. (2017). Retrieved
April, 2017, from https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

[13] Bluetooth SIG Profile Overview. (2017). Retrieved April, 2017, from
https://www.bluetooth.com/specifications/profiles-overview

66

[14] BTstack Protocols. (n.d.). Retrieved from https://bluekitchen-gmbh.com/btstack/protocols/

[15] B. Sirpatil. "Software Synthesis of SystemC Models." Thesis. Virginia Polytechnic Institute and
State University, 2002. Print.

[16] B. Suda. (2003). SOAP Web Services. University of Edinburgh. Retrieved from
http://suda.co.uk/publications/MSc/brian.suda.thesis.pdf

[17] B. T. de Oliveira, C. B. Margi and L. B. Gabriel, “TinySDN: Enabling Multiple Controllers for
Software-Defined Wireless Sensor Networks”, 2014 IEEE Latin-America Conference on
Communications (LATINCOM), p 1-6, Nov 2014

[18] C. A. M. Duenas. Verification and test challenges in SoC designs. In SBCCI ’04: Proceedings of
the 17th symposium on Integrated circuits and system design, pages 9–9, New York, NY, USA, 2004.
ACM.

[19] C. Huang and C. Wu, "A Web Service Protocol Realizing Interoperable Internet of Things
Tasking Capability," Sensors. 2016; 16:1395. doi: 10.3390/s16091395.

[20] Cisco (2013). “An Introduction to the Internet of Things (IoT)”. Retrieved from
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf

[21] C. Kolias, A. Stavrou, J. Voas, I. Bojanova and R. Kuhn, "Learning Internet-of-Things Security
Hands-on," in IEEE Computer and Reliability Societies, January/February 2016. URL:
https://iot.ieee.org/images/files/pdf/LearningIoTSecurityJan2016.pdf

[22] Consumer Applications to Represent 63 Percent of Total IoT Applications in 2017. (2017).
Retrieved from http://www.gartner.com/newsroom/id/3598917

[23] D. Tauchmann & A. Sikora. (2015). Experiences and Measurements with Bluetooth Low Energy
(BLE) Enabled and Smartphone Controlled Embedded Applications. International Journal of
Electronics and Electrical Engineering, 3, 4th ser., 292-296. doi:10.12720/ijeee.3.4.292-296.

[24] "ESP-12E WiFi Module." Shenzhen Anxinke Technology Co.,LTD, 2015. Web.
https://mintbox.in/media/esp-12e.pdf.

[25] F. Belqasmi, J. Singh, S. B. Melhem & R. H. Glitho. (2012). SOAP-Based Web Services vs.
RESTful Web Services for Multimedia Conferencing Applications: A Case Study. Retrieved from
http://spectrum.library.concordia.ca/980040/1/PersonalCopy-SOAPvsREST.pdf

[26] "Genuino* 101 with Intel® CurieTM Module." N.p., 2016. Web. http://docs-
europe.electrocomponents.com/webdocs/149d/0900766b8149d34c.pdf.

[27] "Getting Started with the Arduino Yún LininoOS." Arduino Yún LininoOS. N.p., 2016. Web.
https://www.arduino.cc/en/Guide/ArduinoYunLin.

[28] G. Fersi, "Middleware for Internet of Things: A Study," 2015 International Conference on
Distributed Computing in Sensor Systems, Fortaleza, 2015, pp. 230-235. doi:
10.1109/DCOSS.2015.43.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7165049&isnumber=7164869

[29] H. Rahman. “Self-Organizing Logical-Clustering Topology for Managing Distributed Context
Information.” Stockholm University, 2015.

67

[30] H. Saeed, A. Shouman, M. Elfar, M. Shabka, S. Majumdar and C. Horng-Lung, "Near-field
communication sensors and cloud-based smart restaurant management system," 2016 IEEE 3rd
World Forum on Internet of Things (WF-IoT), Reston, VA, 2016, pp. 686-691. doi: 10.1109/WF-
IoT.2016.7845440.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7845440&isnumber=7845389

[31] IBM and Samsung unveil ADEPT blockchain proof of concept for IoT. (January 23, 2015). April,
2017. Retrieved from http://rethinkresearch.biz/articles/ibm-samsung-unveil-adept-blockchain-proof-
concept-iot-security/

[32] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami. “Internet of Things (IoT): A vision,
architectural elements, and future directions.” Future Generation Computer Systems 29, no. 7 (2013):
1645-1660.

[33] J. Kim, J. J. Jang and I. Y. Jung, "Near Real-Time Tracking of IoT Device Users," 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL,
2016, pp. 1085-1088. doi: 10.1109/IPDPSW.2016.218.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7529985&isnumber=7529833

[34] J. Man. "Raspberry Pi 3 Model B Technical Specifications." Element14Community, 2016. Web.
https://www.element14.com/community/docs/DOC-80899/l/raspberry-pi-3-model-b-technical-
specifications.

[35] J. R. Erenkrantz. (2009). Computational REST: A new model for decentralized, internet-scale
applications (Order No. 3372349). Available from ProQuest Dissertations & Theses Global.
(304850580). Retrieved from https://search.proquest.com/docview/304850580?accountid=14739

[36] J. Rykowski and D. Wilusz, "Comparison of architectures for service management in IoT and
sensor networks by means of OSGi and REST services," 2014 Federated Conference on Computer
Science and Information Systems, Warsaw, 2014, pp. 1207-1214. doi: 10.15439/2014F324.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6933156&isnumber=6932982

[37] K. Ashton, “That ‘Internet of Things’ thing,” RFiD J., vol. 22, pp. 97–114, 2009.

[38] L. Atzoria, A. Ierab and G. Morabito. The Internet of Things: A survey. Computer Networks, 54
(15): 2787–2805, Oct. 2010. doi:10.1016/j.comnet.2010.05.010.

[39] M. Köhler, D. Wörner and F. Wortmann. (2014). Platforms for the internet of things–an analysis
of existing solutions. In 5th Bosch Conference on Systems and Software Engineering (BoCSE).
Retrieved from http://cocoa.ethz.ch/downloads/2014/02/1682_20140212%20-%20Bocse.pdf

[40] M. Kranz, P. Holleis and A. Schmidt, "Embedded Interaction: Interacting with the Internet of
Things," in IEEE Internet Computing, vol. 14, no. 2, pp. 46-53, March-April 2010. doi:
10.1109/MIC.2009.141.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5342400&isnumber=5427387

[41] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero and M. Nemirovsky, "Key ingredients in
an IoT recipe: Fog Computing, Cloud computing, and more Fog Computing," 2014 IEEE 19th
International Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), Athens, 2014, pp. 325-329. doi: 10.1109/CAMAD.2014.7033259.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7033259&isnumber=7033190

[42] M. Z. Bjelica, N. Ignjatov, I. Papp and N. Teslic, "Device cloud platform with script based agents

68

for “anywhere access” applications development," 2014 37th International Convention on
Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
2014, pp. 1061-1065. doi: 10.1109/MIPRO.2014.6859726.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6859726&isnumber=6859515

[43] O. Vermesan and P. Friess. Internet of Things – From Research and Innovation to Market
Deployment. Denmark: River Publishers, 2014. Print.

[44] P. K. Potti. (2011). On the Design of Web Service: SOAP vs. REST. UNIVERSITY OF NORTH
FLORIDA. Retrieved from http://digitalcommons.unf.edu/etd/138

[45] P. M. Julia and A. F. Skarmeta. White paper on “Extending the Internet of Things to IPv6 with
Software Defined Net- working”

[46] "Product overview" N.p., 2016. Web.
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.s130.sds%2Fdita%2Fsof
tdevices%2Fs130%2Fs130sds.html

[47] Q. M. Ashraf, M. H. Habaebi, M. R. Islam and S. Khan, "Device discovery and configuration
scheme for Internet of Things," 2016 International Conference on Intelligent Systems Engineering
(ICISE), Islamabad, 2016, pp. 38-43. doi: 10.1109/INTELSE.2016.7475159.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7475159&isnumber=7475106

[48] Q. Xie, J. Liu and P. H. Chou, "Tapper: a lightweight scripting engine for highly constrained
wireless sensor nodes," 2006 5th International Conference on Information Processing in Sensor
Networks, Nashville, TN, 2006, pp. 342-349. doi: 10.1145/1127777.1127829.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1662476&isnumber=34795

[49] "Raspberry Pi 3 Model B Technical Specifications." N.p., 2016. Web. http://docs-
europe.electrocomponents.com/webdocs/14ba/0900766b814ba5fd.pdf.

[50] R. Mary. "Microcontrollers." N.p., 2010. Web.

[51] R. Morabito, "Virtualization on Internet of Things Edge Devices With Container Technologies: A
Performance Evaluation," in IEEE Access, vol. 5, no. , pp. 8835-8850, 2017. doi:
10.1109/ACCESS.2017.2704444.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7930383&isnumber=7859429

[52] R. Sinha. Automated Techniques for Formal Verification of SoCs. Thesis. The University of
Auckland, 2009. Auckland: ResearchSpace@Auckland, 2009. Print.

[53] S. A. Chowdhury, V. Sapra and A. Hindle (2015) Is HTTP/2 more energy efficient than
HTTP/1.1 for mobile users? PeerJ PrePrints 3:e1280v1 https://doi.org/10.7287/peerj.preprints.1280v1

[54] S. Cherrier, Z. Movahedi and Y. M. Ghamri-Doudane, "Multi-tenancy in decentralised IoT,"
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, 2015, pp. 256-261. doi:
10.1109/WF-IoT.2015.7389062.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7389062&isnumber=7389012

[55] S. Hachem, A. Pathak and V. Issarny. (2014). Service-oriented middleware for large-scale mobile
participatory sensing, Pervasive and Mobile Computing, Volume 10, Pages 66-82, ISSN 1574-1192,
doi: 10.1016/j.pmcj.2013.10.010.

[56] Single chip microcontroller. (n.d.) McGraw-Hill Dictionary of Scientific & Technical Terms, 6E.

69

(2003). Retrieved April 2 2017 from
http://encyclopedia2.thefreedictionary.com/Single+chip+microcontroller

[57] S. Nastic, S. Sehic, D. H. Le, H. L. Truong and S. Dustdar, "Provisioning Software-Defined IoT
Cloud Systems," 2014 International Conference on Future Internet of Things and Cloud, Barcelona,
2014, pp. 288-295. doi: 10.1109/FiCloud.2014.52.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6984208&isnumber=6984143

[58] S. Perera (2015). Taxonomy of IoT Usecases: Seeing IoT Forest from the Trees. Retrieved from
https://iwringer.wordpress.com/2015/10/08/taxonomy-of-iot-usecases-seeing-iot-forest-from-the-trees.

[59] T. Sansanayuth. (2015). Development of a Wireless Interface for Fitting, Training, and
Monitoring of Advanced Prosthetic Limbs. CHALMERS UNIVERSITY OF TECHNOLOGY.
Retrieved April, 2017, from http://publications.lib.chalmers.se/records/fulltext/219124/219124.pdf

[60] Y. Choi, Y. Choi, D. Kim and J. Park, "Scheme to guarantee IP continuity for NFC-based IoT
networking," 2017 19th International Conference on Advanced Communication Technology (ICACT),
Bongpyeong, 2017, pp. 695-698. doi: 10.23919/ICACT.2017.7890182.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7890182&isnumber=7890033

[61] Y. Liu, A.Y. Ding and S. Tarkoma, “Software-Defined Networking in Mobile Access Networks”,
Department of Computer Science, Series of Publications C, no. C-2013-1, University of Helsinki,
Department of Computer Science, Helsinki

[62] Y. Xu and A. Helal, "Scalable Cloud–Sensor Architecture for the Internet of Things," in IEEE
Internet of Things Journal, vol. 3, no. 3, pp. 285-298, June 2016. doi: 10.1109/JIOT.2015.2455555.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7155463&isnumber=7467596

[63] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet, John Wiley & Sons,
2011.

[64] Z. Shelby, K. Hartke and C. Bormann. The constrained application protocol (coap). Technical
report, 2014.

