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Abstract

The use of low-power wireless sensors and actuators with networking support in in-
dustry has increased over the past decade. New generations of microcontrollers, new
hardware for communication, and the use of standardized protocols such as the Internet
Protocol have resulted in more possibilities for interoperability than ever before. This in-
creasing interoperability allows sensors and actuator nodes to exchange information with
large numbers of peers, which is beneficial for creating advanced, flexible and reusable
systems.

The increase in interoperability has resulted in an increase in the number of possible
attacks from malicious devices or users. For this reason, the use of encryption techniques
to protect client and server communications has become mandatory. However, even with
state-of-the-art encryption mechanisms, there is no protection that can control access
to each particular service with fine-grained precision. The nodes within an industrial
network of wireless sensors and actuators are resource-constrained embedded devices,
and increasing interoperability therefore requires a higher level of computation capabil-
ities. The nodes’ intrinsic limitations of memory and processing exert an adverse effect
on power consumption and communication delays, resulting in a shorter battery life-
time. Therefore, the standard computing solutions for Internet communications are not
directly applicable, and new mechanisms to achieve security, scalability, dependability,
interoperability and energy efficiency are needed.

Sensor and actuator networks can transmit sensed data, but they also offer access
to the actuators. Such accesses, presumably provided via services, require an access
protection scheme. For this reason, the use of access control mechanisms is mandatory.
Access control assists in the creation of customized services and access policies. These
access policies can isolate access permissions to devices with different roles, such as
production and maintenance.

The main contribution of this thesis is a novel, efficient IoT framework for industrial
applications, including design, implementation, and experimental validation. The frame-
work includes features for communication protection, authentication, fine-grained access
control, zero-configuration networking, and run-time reconfiguration. These technologies
and their corresponding energy consumption data clearly demonstrate the feasibility of
integrating a battery-operated IoT concept into a functional System of Systems. The
provided data also pinpoint the most critical areas for improvement.
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Chapter 1

Introduction

“Never send a human to do a machine’s job.”

- Agent Smith

Analyzing the physical environment is something that humanity has been doing for
thousands of years, including measuring distance, time, temperature, etc. At first, rudi-
mentary methods based on references such as the sizes of body parts or the positions of
the Sun were used. However, with the standardization of measurement units, the first me-
chanical systems capable of measuring certain physical variables began to appear; these
were the first sensors. At present, humanity is in what is known as the Silicon Age, and
thanks to the electronic revolution, we can measure any physical variable using electronic
sensors. In 1950, the United States Army introduced the capability of communication
with a group of sensors as part of the Sound Surveillance System (SOSUS) project, as de-
scribed by Silverstein [1], which was a network of submerged microphones (hydrophones)
for detecting Soviet submarines in the Atlantic and Pacific Oceans. Thirty years later,
in 1980, the United States Defense Advanced Research Projects Agency (DARPA), also
under the umbrella of the United States Army, developed the Distributed Sensor Network
(DSN), as described by Chong et al. in [2]. The DSN project explored the implemen-
tation of distributed wireless sensor networks, as the predecessor to the Wireless Sensor
Network (WSN).

An actuator is an artifact that is able to modify a physical variable, such as an LED,
motor, heater, or valve. The incorporation of actuators and sophisticated mechanisms
into a WSN turns it into a Wireless Sensor and Actuator Network (WSAN). Today, with
the use of the Internet Protocol (IP), each node in a WSAN can be transformed into
an Internet of Things (IoT) device. IoT technology maximizes interoperability, which
enables the possibility of connecting any device at any time to another device somewhere
in the world. IoT technology for computers and big data centers is not new, but when the
area of application is a Wireless Sensor and Actuator Network (WSAN), the scope of the
problem changes. The definition of an IoT device used in this thesis is as follows: “An
IoT device is a resource-constrained embedded system with the capability to perform
a number of well-defined tasks, such as sensing, signal processing, and networking. It

3



4 Introduction

usually has wireless communication capabilities and is powered by batteries.” Therefore,
according to this definition, an IoT device must be energy efficient.

Currently, the IoT concept is applied not only for industrial usage but also in many
examples of domestic applications, such as smartwatches and GPS-based pet trackers.
This thesis focuses on the growing area of the Industrial IoT (IIoT), which has many
potential applications; however, the complexity of and the requirements for industrial
applications are greater than in the case of domestic applications. Therefore, research in
this field requires deeper knowledge and the development of more sophisticated technol-
ogy to achieve these requirements. The IIoT requires communication among hundreds
of devices on the same wireless network, creating issues of scalability, and the trans-
ferred data require a higher level of security to prevent data leaks and data injection.
Interoperability requires appropriate control of the access to IoT devices. Therefore, a
fine-grained access control mechanism is needed. Other requirements include robustness
and stability.

The use of the IoT concept for industrial applications increases the complexity of the
problem, and at first glance, the efficiency of this approach may be questionable. The
goal of this thesis is to design and analyze an efficient framework for the Industrial IoT,
providing a state-of-the-art approach for industrial applications.

1.1 Problem formulation

The use of IoT technologies in industrial Wireless Sensor and Actuator Networks en-
ables a high level of interoperability, maybe the highest possible level if the network is
connected to the Internet. According to statistics from Cisco [3] and Gartner [4], there
are approximately 6 billion connected IoT devices in the world today (2016). Therefore,
this level of interoperability enhances the ultimate utility of a WSAN; the possibility to
consume data produced by a sensor using a mobile phone on the other side of the world
was unthinkable only a few years ago. The IoT for industrial applications offers great
potential for research over the coming decades, as shown by Khan et al. [5].

However, IoT devices are subject to resource constraints regarding their memory and
processing capabilities. Hence, the use of standard protocols leads to increased overheads
for delay and energy consumption, and in some cases, these overheads are a technological
barrier. Delays can break communications connectivity, and energy overheads can dras-
tically reduce battery life, making a given application impossible in a realistic scenario.
This problematic situation gives rise to the first research question addressed in this thesis:

1. Is it feasible to use IoT-SOA technology in WSANs for industrial applications?

The answer to this question is not simple, and it encompasses two further questions:

1.1. What are the benefits of adding IoT technology to industrial WSANs?

1.2. Is it possible to increase interoperability while mitigating performance impact?
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Interoperability is an obvious benefit, but an increase in the number of possible
connections also increases the number of possible malicious users. Thus, the second
research question arises:

2. How can access to exposed IoT nodes be protected and controlled while maintaining
performance?

The goal is to analyze the feasibility of using IoT technology in industrial applica-
tions, in which the need to manually configure each device should be avoided. This
requirement leads to the third research question:

3. How can zero-configuration operation be achieved for an IoT node?

To answer all these questions requires a complete analysis of time and energy con-
sumption in industrial WSANs as well as a study of the communication overheads and
memory footprints. The answers to questions two and three can be obtained through
two independent analyses, but answering question one requires a more detailed analysis
of a complete IoT framework. Such an analysis should highlight all factors that create
larger overheads in the framework, either to solve them directly or to recommend them
as topics for future work.

1.2 Methodology
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Figure 1.1: Research methodology

Experimental science is “a science that requires the use of tests or prototypes under
controlled conditions to demonstrate a known truth, examine the validity of a hypothesis,
or determine the efficacy of something previously untried”. In 1991, at the Workshop
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on Research in Experimental Computer Science (Palo Alto, California), Bob Taylor pre-
sented the following principle for a good experimental study: “you should build what
you design and use what you build, as only through the extensive use of an artifact do
you truly understand the implications of your work” [6].

The methodology used in the work described in this thesis is based on the iterative
process illustrated in Figure 1.1. This iterative process begins with a real-world problem
to be solved, for which a set of premises is provided that enables the formulation of the
initial research questions (research question 1 in this thesis). After a few iterations, with
deeper knowledge of the problem, additional research questions can emerge (research
questions 1.1, 1.2, 2 and 3). Iteration continues until the evaluation step is successful.

1.3 Thesis scope

The Internet of Things is a research area that has undergone two decades of constant
evolution. It is, therefore, a broad area of study that involves a combination of many disci-
plines, such as wireless communications, networking protocols, machine learning, sensors,
actuators, hardware design, information security, cloud computing, and big data. The
multi-disciplinary nature of IoT requires collaborative efforts from people with different
backgrounds; such collaboration also contributed to the work described in this thesis,
which is the fruitful result of a collaboration with many other researchers and industry
partners.

This thesis focuses on a feasibility study of IoT technologies for industrial applica-
tions. In greater detail, the thesis investigates, proposes, and analyzes an efficient IoT
framework that enables the use of cutting-edge IoT technology for industrial applica-
tions, thereby updating the previous prevailing design for industrial Wireless Sensor and
Actuator Networks. The aspects of the research that are focused on the application layer
also overlap with other research areas that are not considered in this thesis, such as
encryption and link-layer protocols.

This thesis represents improvements in the IoT field in aspects such as scalability,
dependability, security, interoperability, and energy efficiency. This thesis offers two
relevant contributions. The first involves research on novel mechanisms for the control of
access to IoT resource-constrained devices, resulting in the proposal of an energy-efficient
access control scheme that enables fine-grained access control for CoAP-based networks.
The second relevant contribution involves research and analysis on all of the mechanisms
involved in the efficiency of an IoT network with regard to energy and delays.

1.4 Thesis outline

This is a compilation thesis that consists of two parts. Part I serves as an introduction
to the research area, research methodology, and research questions. It also includes
descriptions of the solutions proposed to answer the research questions, the experimental
evaluation of the proposed solutions, and a discussion of and conclusions obtained from
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the experimental results. Part II consists of four peer-reviewed papers that have been
published in the proceedings of various conferences, one published journal paper, and two
submitted journal papers. All articles fall under the umbrella of the research performed
as part of this thesis work; they have been reformatted to follow the thesis layout, but
their contents have not been modified.

The remaining chapters in Part I are organized as follows. Chapter 2 offers a brief
introduction to the Internet of Things and its historical evolution up through its integra-
tion with Wireless Sensor and Actuator Networks. It discusses the benefits and provides
examples of the application of this technology; it also describes the new issues that must
be addressed for IoT technology to be applicable in industry. Chapters 3 and 4 attempt
to solve these problems to make IoT technology feasible for industrial application, fo-
cusing on issues of security and efficiency, respectively. Chapter 5 describes the research
contributions of this thesis and explains the evolution of how the research questions were
addressed during the thesis work. Chapter 6 summarizes the results presented in this
thesis, answers the research questions, and describe newly identified issues and directions
for future studies.





Chapter 2

Internet of Things

Defining the concept of the ‘Internet of Things’ is a difficult task, considering that
this concept varies from one research area to other. The IEEE Internet of Things group
compiled definitions from various Internet associations and research groups in the publi-
cation “Towards a definition of the Internet of Things.” [7]. The following are the most
relevant definitions for this thesis:

“The basic idea is that IoT will connect objects around us (electronic, elec-
trical, non-electrical) to provide seamless communication and contextual ser-
vices provided by them. Development of RFID tags, sensors, actuators, mo-
bile phones make it possible to materialize IoT which interact and co-operate
each other to make the service better and accessible anytime, from anywhere.”

– Internet Engineering Task Force (IETF), 2010

“A network of items—each embedded with sensors—which are connected to
the Internet.”

– Institute of Electrical and Electronics Engineers (IEEE), 2014

“The Internet of Things refers to the unique identification and ‘Internetiza-
tion’ of everyday objects. This allows for human interaction and control of
these ‘things’ from anywhere in the world, as well as device-to-device inter-
action without the need for human involvement.”

– HP, 2014

In this thesis, the following definition of the IoT concept is adopted: “An IoT device
is a resource-constrained embedded system with the capability to perform a number of
well-defined tasks, such as sensing, signal processing, and networking. It usually has
wireless communication capabilities and is powered by batteries.”

9



10 Internet of Things

The IoT concept, by definition, changes with the evolution of hardware and software
(as do many other concepts related to electronics and/or computation). For this reason,
this chapter provides a brief introduction to the historical development of IoT devices.
It also presents a description of Wireless Sensor Networks and an overview of possible
application areas.

2.1 Historical (r)evolution

With the creation of the Internet Protocol regarded as the beginning of the evolution of
the IoT concept, this section analyzes the evolution of all technologies involved in IoT
hardware and software up to the present time, 2016.

Internet of Things has been a hot research topic and a number of projects like
SOCRADES, IoT-A, SODA, and IMC-AESOP were all addressing a more industrial
usage of IoT.

2.1.1 Software

The IoT concept involves several software components, but some of the most important
progress has been made in application and link-layer protocols and in operating systems
(OSs). This section presents an overview of a few of the most relevant advances.

Application protocols

In the OSI model, the application layer is the abstraction layer responsible for interfacing
between communications and the application running on the host. The following is a
chronological list of the most representative application protocols for IoT technology:

1996 RESTful HTTP The first acknowledged IoT protocol was the Hypertext Transfer
Protocol [8], which is a Request/Response protocol for a client-server model and
is mainly used to deploy web-based services. The transport layer used is TCP.
The general usage of XML makes it overly complex and inefficient for low-power
purposes. The recent changes made in HTTP/2 [9] enable header compression to
improve the performance of the HTTP protocol, but it is still not suitably efficient
for a resource-constrained device.

1999 MQTT IBM created the MQ Telemetry Transport protocol based on a client-
broker-server architecture, with two types of communication procedures: Request/Re-
sponse, as in HTTP, and Publish/Subscribe. This protocol is more efficient than
HTTP but still uses TCP as the transport layer.

1999 Jabber An open-source community developed this protocol for real-time instant
messaging (IM). Communication is based on XML, and similarly to MQTT, it
supports both Publish/Subscribe and Request/Response communications over a
client-server model. This protocol also uses TCP as the transport layer.
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2004 XMPP The IETF decided to modify the Jabber project by adding TLS for com-
munication encryption and SASL for authentication, renaming the protocol to the
Extensible Messaging and Presence Protocol (XMPP) [10].

2007 MQTT-SN IBM created a new, more efficient UDP-based version of MQTT
named MQTT for Sensor Networks (MQTT-SN) [11].

2011 WebSockets This protocol was designed to improve communications between web
browsers and web servers, but it can also be used as an independent client-server
application protocol. It also uses TCP as the transport layer [12].

2014 CoAP The Constrained Application Protocol [13] was created to optimize the
efficiency of communications in Wireless Sensor Networks. This RESTful-based
protocol is allowed to deploy services (resources) directly on the network nodes.
Based on a client-server model, it allows the use of Request/Response and Observe
methods. In contrast with previous protocols, CoAP was designed to use a UDP
transport layer.

Link-layer protocols

The use of wireless technologies such as Bluetooth and WiFi is quite common for the
creation of Wireless Local Area Networks and may be the best solution for mobile sensing
platforms because any smartphone can serve as an Internet gateway for both technologies.
The barrier hindering the use of both Bluetooth and WiFi is their power consumption. At
present, hardware implementations are available that can reduce this power consumption,
such as the CC3000 from Texas Instruments [14], which has a transmission consumption
of 936 mW and a reception consumption of 331 mW, or the ESP8266 from Adafruit [15],
which consumes 561 mW for transmission and 185 mW for reception. Wireless commu-
nications represent a large percentage of the total power consumption of an IoT device,
meaning that its battery life will directly depend on the selected wireless technology.

In 2007, the IETF created 6LoWPAN, a link-layer protocol with encapsulation and
header compression, to allow the use of IPv6 networks over IEEE 802.15.4 [16]. This
improvement was probably the greatest step forward for IoT implementation in WSNs,
enabling the creation of IP wireless networks for low-power devices (Section 4.4 presents
an empirical analysis of the power consumption for this protocol).

Operating systems

An IoT device can function without an operating system; it requires only a functional
IP stack. However, to create smart and sophisticated IoT devices, the usage of operating
systems is highly recommended. The following is a chronological list of the most common
open-source operating systems for resource-constrained devices:

2000 TinyOS [17] Not considered an OS in the traditional sense, it used to be defined as
a framework for embedded systems with a set of components to enable the deploy-
ment of IoT applications, as shown by Levis et al. [18]. It is programmed in NesC
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and is widely used for scheduled applications for extremely resource-constrained
devices. It requires less than 1 kB of RAM and less than 15 kB of ROM.

2002 FreeRTOS [19] Its name stands for Free Real-Time Operating System; this OS,
with only 3 C files, is extremely easy to port, read and maintain. FreeRTOS
provides a full set of tools for the creation of complex applications with multiple
threads, semaphores, and timers. It is supported for more than forty different
microcontrollers. A simple application requires less than 2 kB of RAM and less
than 12 kB of ROM.

2003 Contiki [20] This OS allows multitasking with the use of protothreads, and it is
officially supported for more than fifty different microcontrollers. Contiki includes
a built-in full IP stack with UDP and TCP support, and it is able to use wireless
low-power communications by means of ContikiMAC and 6TiSCH. The OS includes
several applications for easily creating servers and clients. Contiki can run in Cooja,
a simulation environment, for the easy testing and debugging of applications and
communications. A simple application requires less than 2 kB of RAM and less
than 30 kB of ROM. The programming language is C. The feasibility of Contiki
was presented by Dunkels et. al [21].

2006 Embedded Linux [22] This OS is a lightweight version of the Linux kernel that
is intended for use on hardware with clear limitations; however, it is not suitable
for use on resource-constrained devices because it requires approximately 1 MB
of RAM and 1 MB of ROM, specifications that a low-power resource-constrained
device cannot meet. It can run any programming language, including Java and
Python. Moreover, it can use most of the available programs for desktop versions
of Linux.

2011 OpenWSN [23] It is not an OS by itself, but it must be included on this list.
OpenWSN is an open-source implementation that provides a complete protocol
stack based on IoT standards, supporting both UDP and TCP connections. It
runs on top of OpenOS, FreeRTOS, and RIOT. A simple application requires ap-
proximately 14 kB of RAM and 50 kB of ROM. The programming language is
C.

2013 RIOT [24] The newest OS on this list, it was designed to improve real-time oper-
ation, modularity, and multithreading. It focuses on the use of CoAP and CBOR,
thereby reducing memory usage and allowing simple applications to require less
than 2 kB of RAM and less than 6 kB of ROM. RIOT supports the C and C++
programming languages.
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2.1.2 Hardware

Over the past decade, the explosion in the use of embedded devices for industrial pur-
poses and in many commercial products, such as mobile phones, smartwatches, and
miniaturized computers, has motivated the development of many different types of mi-
crocontrollers, sensors, radio modules, systems-on-a-chip, etc. This section describes the
evolution of some of these hardware technologies.

Microcontrollers and microprocessors

The technological development of both microcontrollers and microprocessors is the same;
their evolution involves improving their computational power while expending less energy
and reducing their size. The differences between microprocessors and microcontrollers
are not clear-cut. Usually, a microprocessor is an integrated circuit that includes only a
processing unit, whereas a microcontroller also incorporates RAM and ROM memories
and many input/output interfaces.

IoT devices have historically used microcontrollers because their power consumption
is lower than that of microprocessors and their computing capabilities have been sufficient
for the intended applications. Companies such as Atmel, Microchip Technology, Texas
Instruments, ARM and Intel produce some of the most widely used microcontrollers for
IoT applications, namely, the AVR32, PIC32, MSP430, Cortex-M7, and Quark, respec-
tively. Figure 2.1 shows the historical and forecasted market for microcontrollers, which
shows a continuous increase over the coming years.

Figure 2.1: Evolution of demand for MCUs based on IC insights

Recent improvements in energy consumption reduction have led to the introduction
of microprocessors with low power consumption and high performance, such as the Intel
Atom and the ARM Cortex-M73. More powerful devices are suitable for use in applica-
tions in which the nodes require a high level of processing power, mitigating the overhead
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for communications.

Wireless technologies

Communication in wireless environments requires more energy than in wired environ-
ments; in other words, the use of wireless communications increases the power consump-
tion of a system. This limitation has motivated extensive research in this area, leading to
the creation of several different wireless communication technologies. The selection of one
of these technologies usually depends on the bandwidth, range and power consumption
requirements, of which power consumption is typically the most critical factor.

Sensors

Sensor technologies have been under constant development in recent years, and at present,
sensors are available for almost every conceivable purpose, such as temperature, proxim-
ity, acoustic, chemical, position, and optical measurements, among many others. How-
ever, the feasibility of these sensors for IoT applications depends on their power con-
sumption, and currently, some of the greatest improvements are primarily motivated by
smartphones. Smartphones are embedded platforms that require energy efficiency, and
they include many sensors, such as GPS units, microphones, accelerometers, gyroscopes,
and magnetometers. Moreover, with the emergence of smartwatches, this application
area is witnessing even greater expansion.

2.2 Wireless Sensor and Actuator Networks

Since the first Wireless Sensor Network was developed in 1950, a WSN has been under-
stood to consist of a group of embedded nodes with connected sensors that are able to
measure physical variables, perform data analysis, and communicate with a centralized
data collector, or server, for data transmission (see Figure 2.2). The benefit of this archi-
tecture is that the nodes do not require a high level of complexity to function; generally,
data are communicated from the nodes to the data collector. Implicit acknowledgment
mechanisms are not suitably energy efficient for battery-powered devices; the use of an
explicit acknowledgment mechanism instead can solve this problem, as shown by Blago-
jevic et al. [25] and Gonzalez et al. [26]. To simplify the tasks performed by the nodes,
WSNs are pulling-based systems, which means that the measurement and transmission
processes run periodically, usually with static timeouts.

The term Wireless Sensor and Actuator Network (WSAN) was born with the incor-
poration of actuators into industrial and domestic WSNs. However, the introduction
of actuators requires significant structural changes to a WSN. An actuator requires in-
formation about the action to be performed. Therefore, an actuator node needs to be
able to receive that information, and to implement this feature, the architecture must
be able to communicate in both directions (node to server and server to node). To in-
crease the benefits of using actuators, a WSAN node can use sensor information from
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Figure 2.2: Comparison between the WSN and WSAN architectures

one or multiple nodes to specify actions for its actuator; thus, a WSAN also requires the
implementation of a Machine-to-Machine (M2M) communication capability.

The incorporation of the Internet Protocol into a WSAN turns each node into an IoT
device; however, according to some researchers, even without the Internet Protocol, a
WSAN node can be regarded as an IoT device.

2.3 Constrained Application Protocol

The IETF Constrained Application Protocol (CoAP) [13] is an application-layer proto-
col designed to provide web services that work with resource-constrained devices. It is
efficient for devices with microcontrollers with small amounts of ROM and RAM and can
run over 6LoWPAN network stacks (see Figure 2.3) with high packet error rates. The
protocol is designed for low-power networking, allowing nodes to switch into sleep mode
to extend their battery life.

CoAP provides a Request/Response interaction model between application endpoints.
It supports the built-in discovery of services (resources) and includes key Web concepts
such as URIs [27], RESTful interactions [28], and extensible header options. CoAP can
easily interface with HTTP for integration with the Web while meeting specialized re-
quirements for constrained environments, such as multicast support, very low overhead
and simplicity. CoAP runs over UDP (see Figure 2.3), unlike HTTP, which uses TCP.
Currently, there are several groups of researchers porting CoAP to run over TCP, includ-
ing Bormann et al. [29].

Several relevant features of CoAP are as follows:

• Two types of request messages. A Confirmable Message (CON) is retransmitted
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Figure 2.3: OSI model for a CoAP-based application

(a maximum of four times) with an exponential timeout while waiting for an Ac-
knowledged Message (ACK) or the correct response from the server. By contrast,
a Non-confirmable Message (NON) is sent without any expected response.

• The URI format allows the use of both standard and specialized service endpoints.
One example is the resource discovery scheme defined in RFC 5785 [30], which uses
the /.well-known/core path and the CoRE Link Format.

• CoAP also allows the sending of large messages with a stop-and-wait mechanism
called “blockwise transfers”.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
V T TKL Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ...
1 1 1 1 1 1 1 1 Payload (if any) ...

Figure 2.4: CoAP packet format

The packet format of CoAP (see Figure 2.4) includes several parameters that are
relevant for the understanding of Chapter 3. These parameters are as follows:

• Version: Indicates the CoAP version number.

• Type: Indicates whether the message is of the Confirmable, Non-confirmable, Ac-
knowledgment or Reset type.
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Option Number Policy [31]
0...255 IETF Review or IESG Approval

256...2047 Specification Required
2048...64999 Expert Review
65000...65535 Experimental use (no operational use)

Table 2.1: CoAP option policy

• Token length (TKL): Indicates the length of the variable-length Token field.

• Code: Indicates the Request Method or the Response Code.

• Message-ID: Unique ID to prevent duplication.

• Option: Indicates the options declared in the message.

The option field allows more information to be included in each CoAP communication,
such as a Max-Age for Observe, Uri-Host, or Content-Type. The value of the option
field can be empty, an opaque group of bytes, unsigned integers or strings. There are
many possible option numbers, as specified in the CoAP option policy (see Table 2.1).
Currently, only fewer than twenty option numbers are standardized.

Resources

CoAP allows each device to consume and provide resources. A resource is defined as a
simple service that requires the resource provider to perform simple tasks, e.g., transmit
a sensor value or turn on an LED. This method of using CoAP resources is supplemented
by the IPSO Alliance and its Smart Object Guidelines [32], in which a resource’s URI is
used as a tag to identify the type, instance, and value of a sensor or actuator.

In this thesis, the terms resource and service have the same meaning given above. A
CoAP resource that requires processing or other external resources to provide a response
can be considered a service.

2.4 Service Oriented Architecture (SOA)

A Service Oriented Architecture (SOA) is a design architecture for the creation and
development of a system based on distributed subsystems. Each system can offer and
consume one or more services to perform its tasks. The main benefits of this design are
scalability, reusability, and flexibility. A complex system can be divided into many simple
subsystems, thus making development and testing faster and easier because each sub-
system can be developed individually. Expanding or updating a system simply requires
increasing the number of subsystems.

A Service Oriented Architecture for the Industrial IoT makes the best possible use of
interoperability and scalability. Industrial monitoring and control is a complex task that
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can be divided into simple subsystems (IoT devices), with each IoT device performing a
simple task, such as measuring a variable or offering a service to an actuator. Critical
components for an industrial application can be duplicated or, in case of failure, replaced.

A Service Oriented Architecture requires many complex mechanisms to function, in-
cluding Quality of Service (QoS), orchestration, and configuration. The work reported
in this thesis was conducted under the auspices of the Arrowhead project, a European
project responsible for researching, developing and improving interoperability in complex
industrial environments.



Chapter 3

Security

In industrial applications, interoperability is an advantage. Interoperability reduces
the costs of operation and maintenance because upgrading a framework with a high level
of interoperability requires less investment and effort than upgrading a non-interoperable
framework. Two different yet interoperable platforms can be integrated; they can share
resources, data, and services without the need for duplication. An interoperable frame-
work that supports various device types can exploit the best features of each device
for each situation, e.g., collecting data from a resource-constrained device and process-
ing it on a high-performance server. All these beneficial characteristics are useful in
industry, but in environments in which the devices are transmitting sensitive data or
offering access to actuators, interoperability poses increased risk. Security is therefore a
key concern when deploying an IoT framework in industry. It is especially critical for
resource-constrained devices, particularly battery-powered devices. Implementing a se-
curity mechanism will inevitably increase power consumption; therefore, for applications
in which the battery life is a concern, the design must strike a suitable balance between
security and power consumption. In an SOA architecture, each node acts as a service
provider, and services are accessible to anyone on the network. To protect these services
against malicious access, certain mechanisms are needed. For these reasons, security
issues can be divided into two different areas: secure communication and access control.

This chapter presents an overview of current methods of securing communications
between IoT devices and proposes a new mechanism to enable efficient, fine-grained
access control.

3.1 Secure communications

All computer communications require protection against many different types of attacks,
such as packet injection, eavesdropping, replay attacks, and DoS attacks. The framework
presented in this thesis is based on CoAP as the application protocol and is especially
suitable for 6LoWPAN networks (see Figure 4.2). To maintain interoperability, the se-
curity mechanisms must be standardized; otherwise, interoperability will be reduced.

19
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An analysis of the possible standard technologies that can be used over a 6LoWPAN-
CoAP stack is therefore needed; such an analysis performed by Hennebert et al. [33] is
summarized in Table 3.1.

Layer
Security mecha-
nism

Header
overhead

Requirement achieved Attack

Physical CSMA-CA None Availability
Jamming / collision /
flooding

Secure firmware None Node tampering

Secure element None Cloning

Link MIC 6-26 bytes
Authentication and in-
tegrity

Packet injection

AES encryption
only

7-15 bytes Confidentiality Eavesdropping

AES-CCM
Nonce

11-29 bytes
Authentication, in-
tegrity, confidentiality
and freshness

Replay attack

Address filtering None Energy efficient
DoS / battery exhaus-
tion

Adaptation Hash chain 8 bytes Integrity Fragmentation attack

Split buffer None Availability
DoS / buffer satura-
tion

Network IPsec AH 16 bytes

Authentication of the
emitter and network
integrity, resiliency, ro-
bustness, and resis-
tance

Packet injection, re-
play attacks

IPsec ESP 28 bytes
Confidentiality be-
tween two peers

Eavesdropping, replay
attacks

Secure routing - Availability Routing attacks

Secure neighbor
discovery

-
Protection of network
services

Intrusion

Application
Compressed
DTLS ciphered
layer

16 bytes

Authorization through
a token and authenti-
cation of the emitter
and integrity and con-
fidentiality between
two peers using a given
application network,
resiliency, robustness,
and resistance

Aggregation, data
peeking, packet injec-
tion

IDS - Network services Every intrusion

Table 3.1: Security mechanisms for 6LoWPAN networks
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3.1.1 Standard end-to-end security mechanisms

Interoperability enables communication among many devices. Usually, such communica-
tion requires the use of other intermediary devices, such as routers, switches, and servers.
Therefore, the priority is to ensure end-to-end communications, and according to Table
3.1, the main families of mechanisms that are able to provide end-to-end protection are
IPsec and DTLS.

Internet Protocol security (IPsec)

Internet Protocol security (IPsec) [34] is the secure evolution of the Internet Protocol
(IP). It consists of a collaboration among several different protocols and supports various
types of encryption [35]. IPsec includes two mechanisms, Authentication Header (AH)
and Encapsulating Security Payloads (ESP). AH provides data origin authentication,
protection against replay attacks and connectionless data integrity, whereas ESP provides
confidentiality. If guaranteeing confidentiality is a priority, then IPsec-ESP is a reasonable
choice. ESP encrypts the original IP packet into the payload of a new IPsec packet,
which can be decrypted only using the correct previously deployed or negotiated keys.
To negotiate these keys, IPsec supports the Internet Key Exchange protocol, version 2
(IKEv2) [36]. This protocol is useful for avoiding the use of static and long-term keys,
thereby increasing security.

Datagram Transport Layer Security (DTLS)

Datagram Transport Layer Security (DTLS) is primarily a UDP evolution of Transport
Layer Security (TLS), which runs over TCP. It provides data origin authentication, au-
thorization, data integrity and confidentiality. This protocol initially consisted of two
phases, the first being a handshake between the two communicating machines, during
which both must authenticate themselves and validate the other using certificates, and
the second phase being the transmission of the encrypted information. However, the use
of the default version of DTLS is not efficient for resource-constrained devices because
the overhead and the use of certificates degrade low-power performance. These problems
motivated the development of compressed DTLS, as reported by Raza et al. [37], and
the replacement of the certificates with keys, as proposed by Fossati et al. [38], to create
a standard and efficient version of DTLS.

3.1.2 Access control analysis

The standard mechanisms described above for securing (end-to-end) communication pro-
vide several features for controlling access to each device. The problem is the lack of
granularity of these mechanisms. Access can be achieved at several different levels: ad-
dress (IP address), ID, service, and method. Table 3.2 summarizes which types of access
control are provided by IP, IPsec, Black Lists, IKEv2, DTLS, and CoAP. All of these
technologies enable control at the service and method levels.
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Access control
Address ID Service MethodTechnology
coarse-grained fine-grained

IP � � � �

Black Lists � � � �

IPsec � � � �

IPsec+IKEv2 � � � �

DTLS � � � �

CoAP � � � �

Table 3.2: Access control comparison for different security technologies

The ability to control access by address and ID also provides control over who can
communicate with the service provider. Access control at the service level also provides
the ability to create custom services for each user and user type. Finally, control over
access based on method enables the provision of services with different functionalities
depending on user type, e.g., a time service that a regular user can access to obtain the
time, whereas the same service can be accessed to update the time only by administrators.
Therefore, the use of fine-grained access control mechanisms is required.

3.2 Access control

Access control is a mechanism for monitoring service requests issued to a service provider
and managing when a communication must or must not be approved. Access control can
also enable the identification of a consumer of a service and the provision of relevant
information about that consumer to the service, enabling the possibility of providing
customized services.

As in the previous section, the use of standard mechanisms in recommended to main-
tain interoperability. However, an exception arises in this case because the standard
solutions have shortcomings that require the implementation of a new, more efficient
access control mechanism for IoT applications. This section describes the most common
access control standards and their shortcomings and proposes such an efficient access
control mechanism.

3.2.1 Standard solutions

The two most popular standard protocols that provide access control functionality are
Kerberos and RADIUS. The working principles of the two are different, each offering
certain benefits and disadvantages, which will be used as the basis for the creation of an
efficient access control method in the following sections.
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Kerberos

Kerberos is an access control mechanism that runs over UDP; it uses ticket granting to
validate a service consumer to a service provider. The access control process requires a
service provider (SP), a service consumer (SC), and a Key Distribution Center (KDC).
Each entity has its own key, with the exception of the KDC, which possesses all keys. The
process begins with the SC requesting a ticket. To do so, it sends a partially encrypted
message with accessible information regarding ID, time and other parameters. The KDC
can use the SC’s key to decrypt the message; if decryption is successful, the KDC trusts
the SC and sends back a packet with timeouts and other parameters that is completely
encrypted using the SC’s key. The KDC must store that packet and use it again to
request a valid ticket to contact the SP. In such a request, the SC generates the ticket
that will be utilized by the KDC to access the SP; the content of this ticket includes
information about the SC, timeouts, etc., and it is completely encrypted using the SP’s
key. Then, the SC uses this ticket to request access, and the SP can use its key to decrypt
it and extract all information about the SC and the access control policies.

Kerberos provides password protection. There is no password communication, which
protects each particular SC and the SPs accessible by that SC. In other access control
mechanisms, each SC must have a database of credentials or passwords for its accessible
SPs. Kerberos requires the use of a centralized KDC, which provides the convenience of
database maintenance. For an IoT device, however, Kerberos is not optimal. Kerberos
does not require communication between an SP and the KDC, which is a clear advantage
for reducing power consumption, but Kerberos tickets contain all access control infor-
mation in an encrypted form, which poses in a limitation because of the ticket size and
processing complexity.

Remote Authentication Dial-In User Service (RADIUS)

The Remote Authentication Dial-In User Service (RADIUS) is a UDP-based centralized
Authentication, Authorization and Accounting (AAA) protocol for the management of
users that connect to and use a particular service. The access control process requires
a service provider (SP), a service consumer (SC), and a RADIUS server (RS). The SC
requests a service from the SP, the SP claims an exchange of authentication information,
and this information is then used by the SP to check the access status with the RS
through an access request. There are three possible responses from the RS: access-
accept, access-reject, and access-challenge. In the case of the third response, a challenge
request response from the SC is required to provide more information to the RS via the
SP.

RADIUS authentication and authorization processes do not require complex crypto-
graphic operations, and the communications require the transfer of a negligible amount
of data; the RADIUS packet size is 20 bytes plus the attributes (see Figure 3.1). For an
IoT device, this mechanism is suitably efficient with regard to processing and complex-
ity, but it requires the exchange of several communications, especially for the SP, which
consequently compromises the low-power criterion.
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Code Identifier Length

Authenticator

Attributes (if any) ...

Figure 3.1: RADIUS packet format

Lack of efficient standard solutions for IoT devices

IoT devices are resource-constrained embedded devices, and their processing capability
is limited. An increase in processing results in an increase in power consumption, and for
battery-powered devices, this is a critical limitation. Moreover, the use of wireless com-
munications further increases the power consumption, which means that if a mechanism
requires additional communications, it will represent additional power consumption.

Kerberos requires the use of large encrypted tickets (containing information about
the client, time, services, etc.). The transmission and processing of such a ticket requires
a large amount of energy, and in a framework with a low rate of data transmission, this
type of solution is not efficient. On the other hand, RADIUS requires the exchange
of many messages, especially on the service provider’s side, also increasing the power
consumption of the device.

Thus, neither standard solution is suitably efficient for deployment in an IoT frame-
work. Therefore, a new, more efficient access control mechanism is required to provide
energy-efficient and fine-grained access control.

3.2.2 Ticket-based access control

The granularity of an access control mechanism depends on the level(s) at which it is
capable of controlling access. In this thesis, the application protocol used is CoAP, which
offers services (resources) that can be accessed using a variety of possible methods, such
as GET, POST, PUT, and DELETE (see Section 2.3). Therefore, in this context, a
fine-grained access control scheme must allow accesses to be controlled by user, service
and method. As shown in Table 3.2, this level of control is not possible with current
technology. To address this issue, I started working on a new solution [39], which is also
described in the Arrowhead book [40] and summarized in this section.

The goal of this access control scheme is to limit the additional communication over-
heads of the original CoAP protocol, which degrade low-power performance or increase
communication delays. To this end, the ticket design of Kerberos and the authentica-
tion/authorization mechanisms of RADIUS together are the keys to designing a new
mechanism for access control over CoAP. CoAP supports many packet options; the idea
is to use one of these options to send the ticket information. The ticket, unlike in Ker-
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beros, does not include any additional information; it consists of a group of bytes to
identify each identity in the network (clients and servers). The size of the ticket depends
on the final application and represents a compromise between the level of security and
the power consumption performance.

The use of tickets over CoAP allows the framework to centralize authentication and
ticket verification for distributed services. This implementation allows either multiple
access control mechanisms for individual systems or a centralized mechanism to prevent
inconsistencies, thereby improving its scalability. The authentication and authorization
processes are implemented specifically as CoAP services to reduce the overheads on the
IoT devices.

Requirements

The proposed access control method assumes the existence of the following information
for the IoT devices and the AAA server:

• Secret key (SK): a group of 16 bytes that both an IoT device and the AAA server
know.

• ID: the ID of the IoT device.

• Password: the password must be a shared property of the IoT device and the AAA
server, and it is never sent during either the Authentication or the Authorization
process.

Description

The proposed access control mechanism consists of two different steps, namely, Authen-
tication and Authorization, and each step is implemented via a different service on the
AAA server. The Accounting function can characterize access to a service in terms of
time duration or number of accesses; this Accounting mechanism is described in this
section as an attractive feature for business models, but it has not been implemented
or evaluated. All data are presented in JSON [41] format for human readability during
development, but for enhanced performance, they can also be encoded in CBOR [42].

Authentication The Authentication process must be performed for every IoT device
that must be managed by the access control mechanism, including both service
(resource) providers and consumers. This step must guarantee the identification
of each IoT device by the AAA server. The server must provide a single ticket
to the IoT device, which will be used as an identification tag in all subsequent
communications between other entities and the AAA server.

As Figure 3.2 shows, the IoT device acting as a client starts the process with a GET
request to the AAA server; then, the server possesses the necessary IP and MAC
addresses, and the Challenge Request/Response process begins. The AAA server
sends back an authenticator generated specifically for those parameters (a group of
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Figure 3.2: Authentication process

16 bytes), expecting a response in the next 15 seconds; otherwise, the authenticator
is not valid (see Code 3.1). When the client receives the authenticator, it must
encrypt the password using the same Challenge Request/Response process used in
RADIUS (described below).

Code 3.1: GET response to initiate the Challenge Request/Response process

1 {
2 "version": 1,

3 "timeout": 15000,

4 "authenticator": "00112233445566778899AABBCCEEDDFF"

5 }

JSON: 93 bytes - CBOR: 69 bytes

The secret key (SK) and the authenticator (A) must each have 16 bytes; if the length
of the SK is smaller, then the remaining variable values must be filled with zeros. The
password must be split into 16-byte chunks, p1, p2, etc., with the last one filled with
zeros to maintain the chunk size.
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b1 = MD5(SK + A)

b2 = MD5(SK + c1)

·
·
·

bn = MD5(SK + cn−1)

c1 = p1 ⊕ b1

c2 = p2 ⊕ b2

·
·
·

cn = pn ⊕ bn

The encrypted password can then be expressed as c1+c2+...+cn, where + denotes con-
catenation. It is sent back to the AAA server together with the entity ID (see Code 3.2);
then, the AAA server repeats the process and compares the two results.

Code 3.2: Response with the encrypted password

1 {
2 "name": "example name",

3 "password": "00112233445566778899AABBCCEEDDFF"

4 }
JSON: 78 bytes - CBOR: 62 bytes

If the encrypted passwords are the same, then the AAA server creates a ticket with a
timeout and sends it back to the entity, completing the Authentication process (see Code
3.3).

Code 3.3: AAA server response with the ticket in a successful authentication

1 {
2 "name": "example name",

3 "password": "00112233445566778899AABBCCEEDDFF"

4 }
JSON: 56 bytes - CBOR: 38 bytes

Authorization Authorization is a process that must be implemented for a service provider
to recognize a service consumer as a valid entity or to perform double authentication, in
which a consumer also uses this process to verify that the provider is valid and trustwor-
thy.

Before beginning to process a request or response, entity A must ask the AAA server
about the validity of the ticket from entity B. This request includes the IP address and
the ticket from B in the payload and the ticket from A in the CoAP options (see Figure
2.4). An Authorization request is illustrated in Code 3.4.
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Client AAA Server

Authorization Request

Check Ticket and Policies

Authorization ProcessAuthorization Process

Figure 3.3: Authorization process

Code 3.4: Authorization request

1 {
2 "remote_address": "fdfd::AB",

3 "remote_ticket": "0011223344556677"

4 }
JSON: 73 bytes - CBOR: 56 bytes

If the request succeeds, then the AAA server will send back a validity confirmation along
with B’s name, last login, timeout, protocol and ticket expiration time, as shown in Code
3.5. At this point, there are two possible means of addressing the permissions: different
types of users with different privileges may be defined, or the relevant policies may be
included in the Authentication request.

Code 3.5: Authorization response

1 {
2 "valid": true,

3 "name": "example_name",

4 "login": 1468521292,

5 "expire": 1468522292,

6 "protocols": "CoAP",

7 "timeout": 60000

8 }
JSON: 135 bytes - CBOR: 75 bytes

An implementation based on the definition of users with different privileges has been
tested, as discussed in the results section (Section 3.2.2 - Figure 3.8). This solution is
more efficient but less flexible than a policy-based implementation. An example of the
use of policies is provided in Code 3.6.
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Code 3.6: Authorization response with policies

1 {
2 "valid": true,

3 "name": "example_name",

4 "login": 1468521292,

5 "expire": 1468522292,

6 "protocols": "CoAP",

7 "timeout": 60000,

8 "policies": [

9 {
10 "service": "service_name1",

11 "allow": [

12 "GET",

13 "POST",

14 "PUT",

15 "DELETE"

16 ]

17 },
18 {
19 "service": "service_name2",

20 "allow": [

21 "GET"

22 ]

23 },
24 {
25 "service": "service_name3",

26 "allow": [

27 "GET",

28 "POST",

29 "PUT"

30 ]

31 }
32 ]

33 }
JSON: 480 bytes - CBOR: 212 bytes

Accounting The Accounting mechanism operates in two different modes: accounting by time
and accounting by access instances. Accounting by time allows the service provider to
provide services to a consumer for a certain amount of time, after which the access autho-
rization expires and the service provider must notify the AAA server. An example of the
transferral of such accounting information from the AAA server during the authorization
process is shown in Code 3.7.
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Code 3.7: Accounting by time

1 {
2 "accounting": {
3 "type": "time",

4 "timeout": 60000}
5 }

JSON: 57 bytes - CBOR: 34 bytes

Accounting by access instances limits the number of accesses to a service that can be
made during a particular time window, e.g., access to a service may be allowed forty
times in one hour. This accounting method requires a report to the AAA server either
when the number of accesses reaches the limit or when the timeout window expires. An
example of the transferral of such accounting information from the AAA server during
the authorization process is shown in Code 3.8.

Code 3.8: Accounting by access instances

1 {
2 "accounting": {
3 "type": "access",

4 "timeout": 6000000,

5 "accesses": 40}
6 }

JSON: 79 bytes - CBOR: 49 bytes

Ticket information

The purpose of using tickets is to reduce the communication overhead and power con-
sumption as much as possible by using non-complex processing methods. For this reason,
the current implementation of a ticket is essentially a randomized 64-bit number provided
by the AAA server. Each ticket must be unique; a duplication (two clients with the same
ticket) on the network could compromise the authorization process. Each entity in the
network can be identified by the information on its ticket. In this thesis, the ticket con-
tent is represented as a hexadecimal number to make it human readable. Every time that
an entity requests a new ticket from the AAA server, if the Challenge Request/Response
process succeeds, the server responds with the ticket and a timeout. This timeout rep-
resents the valid lifetime of the ticket; in other words, it describes for how long all other
devices will provide services to the ticketed device or regard it as a trusted entity in the
network.

The Authentication mechanism requires the use of an encrypted channel (IPsec,
DTLS, TLS, etc.). Thus, the use of a static ticket is not a problem; moreover, the
reduced number of communication messages and the timeout related to the ticket help
to protect it. However, if the final application were to require increased security, then
the ticket could be dynamic. This means that in each communication between a ser-
vice consumer and the provider, the ticket would need to consist of the hashed data of
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the original ticket and another variable parameter, such as the CoAP message ID; see
Figure 2.4. All applications considered for the work reported in this thesis assume trust
of the confidentiality at the IPsec level; for this reason, dynamic tickets have not been
implemented.

Distributed access control

The simplest scenario for the access control mechanism is a network with a service
provider (CoAP Server), a service consumer (CoAP Client) and the AAA Server.

CoAP Client CoAP Server AAA Server

CoAP Request

Standard Request without Access ControlStandard Request without Access Control

CoAP Request

Get Ticket

Check Ticket

Valid Ticket

Access Control - Access Allowed - First RequestAccess Control - Access Allowed - First Request

CoAP Request

Get Ticket and check

Access Control - Access Allowed - Non-First RequestAccess Control - Access Allowed - Non-First Request

Figure 3.4: All possible access control scenarios
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Figure 3.4 shows the three possible scenarios for a successfully requested service. The
first case is a service request for a service without access control, in which the service
provider provides the service without any other additional process.

The second case represents a situation in which the service consumer has never at-
tempted to consume the service before or its ticket has expired. Then, the service provider
must validate the consumer’s ticket with the AAA Server before providing the service.

The third case is similar to the first one and corresponds to a service request in which
the provider already holds the consumer’s ticket and that ticket is still valid. Then, the
provider needs only to check the ticket’s timeout and provide the service.

Compatibility with existing standardized access control solutions

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
V T TKL Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ... 1 1 1 1 1 1 1 1

Code Identifier Length

Authenticator

Attributes (if any) ...

(a) Without compression

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
V T TKL Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ... 1 1 1 1 1 1 1 1

Authenticator

Attributes (if any) ...

(b) With compression

Figure 3.5: Proposed packet solutions for the integration of the RADIUS protocol with
CoAP

The possibility of integrating the RADIUS protocol with the CoAP protocol gives the
proposed framework a flexible authentication method that can be used with a standard
RADIUS server. This approach requires no support for the RADIUS protocol on the
client. The overhead and the required resources are smaller compared with the use of
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both protocols at the same time. This is especially important for resource-constrained
sensor nodes. In fact, conversion between a RADIUS packet and a CoAP-RADIUS packet
is possible. In this thesis, two solutions are proposed: a CoAP packet with a RADIUS
payload (see Figure 3.5(a)) and a compressed CoAP-RADIUS packet. The compression
omits redundant information such as the Code, Identifier and Length fields, which can
be integrated directly into the CoAP ID and Code fields (see Figure 3.5(b)).

Multi-protocol support

The research presented in this thesis was motivated primarily by the Arrowhead project
[43], a project focused on maximizing interoperability for industrial applications. The
goal is to offer a smart approach to exchanging services between devices with differ-
ent characteristics, communication protocols, semantics, etc. in a transparent way. For
example, in the case of a high-performance machine consuming services from a resource-
constrained device, one may communicate with MQTT, whereas the other may commu-
nicate with CoAP. Using current standards, communication between these two devices is
not possible, and the available access control mechanisms are not effective for both tech-
nologies. The problem of translation between protocols or semantics is not addressed in
this thesis, and it is not relevant to the results presented herein. Therefore, a translator
is treated as a black box that is able to translate from one protocol to another. See the
appended paper D [44] for more information.

RADIUS

Server

CoAP

MQTT

XMPP

HTTP

...

RADIUS

Client

Ticket

Generation

Ticket

Validation

Per

Access

Per

Time

Accepted Protocols

AAA Server

Accounting

Figure 3.6: Authentication, Authorization, and Accounting server architecture for multi-
protocol communications

The access control mechanism presented in this thesis is suitable for application in
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multi-protocol communication with the use of a translator, where the translator is a
trusted third party. The proposed AAA server is designed to be able to handle requests
from different protocols, as shown in Figure 3.6. In an instance of communication be-
tween two entities, one using protocol A (in blue color) and the other using protocol B
(in red), the access control mechanism functions as in the case of single-protocol commu-
nication, as explained in the previous sections, but with the additional use of a translator
in direct communications between the two entities, as shown in Figure 3.7. The imple-
mentation and development of multi-protocol communications will be addressed in future
work, along with research on mechanisms for preventing man-in-the-middle attacks when
translators are used.
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Service Consumer Translator Service Provider AAA Server

Request

Request

Standard Request without Access ControlStandard Request without Access Control

Request

Request

Get Ticket

Check Ticket

Valid Ticket

Access Control - Access Allowed - First RequestAccess Control - Access Allowed - First Request

Request

Request

Get Ticket and check

Access Control - Access Allowed - Non-First RequestAccess Control - Access Allowed - Non-First Request

Figure 3.7: All possible access control scenarios for multi-protocol communication
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Results

Implementations of this access control mechanism have been proven and tested in many
different scenarios and for various purposes, such as mobile machine monitoring (Arrow-
head), smart rock bolts (IPSO Challenge), and mining conveyor belts.

The code developed for this access control mechanism includes versions for libcoap
4.1.1 [45], Copper 1.0.0 [46], Erbium [47] and Californium 1.0.4 [48]. All of these are
implementations of CoAP RFC 7252 [13] for servers and clients except for Copper, which
is only a client implementation.

To demonstrate this fine-grained access control mechanism, the test setup included a
resource-constrained device and a laptop. The selected IoT platform for the experiment
was a Mulle mk4 from Eistec AB, which is equipped with a 100 Hz ARM Cortex-M4
microcontroller and an IEEE 802.15.4 module capable of communicating via 6LoWPAN.
It has 2 MB of flash memory onboard and runs Contiki OS. The Mulle was config-
ured to offer various services subject to access control, including public services (“Pub-
lic Service”), services for non-authorized users (“NoAuth Service”), services by user type
(“Group Name”), services for specific users (“User Name”) and services for administra-
tors (“Admin”). The laptop used a Copper client to display the results via an intuitive
GUI. During the tests, various user types were tested, as shown in Figure 3.8. In all
cases, a “.well-known/core” request was made, which returned different lists of services
for different types of users, namely, for (a) a user requesting access without authorization,
(b) a normal user, and (c) an administrator.

(a) Non-authorized
user

(b) Authorized user (c) Administrator

Figure 3.8: Screenshots of the services available to different types of users, taken during
an experiment when performing a CoAP Discovery process

The use of the proposed access control method produces only a small overhead on the
message size because of the use of tickets (T). This size can be modified, but during the
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work conducted for this thesis, it was fixed at 64 bits. Table 3.3 shows the overheads for
each CoAP message type in two scenarios: simple access control and access control with
dual authentication. For example, in a GET request process with a confirmable response,
three messages are exchanged, namely, the request, the response and the acknowledgment.
The overhead size for all messages in the proposed access control mechanism is 64 bits
(a single ticket), whereas that for dual authentication is 192 bits (three tickets).

RFC 7252 Access Control Dual Auth
request response request response request response

GET N N+T N N+T

POST N N+T N N+T

PUT N N+T N N+T

DELETE N N+T N N+T

OBSERVE N N+T N N+T

ACK N N N+T

RST N N+T N N+T

.well-known/core N N+T N N+T

N: Normal size

T: Ticket size (64-bits)

Table 3.3: Message sizes for normal CoAP vs. CoAP with access control vs. CoAP with
access control and dual authentication

3.2.3 Alternatives under development

The IETF Authentication and Authorization for Constrained Environments (ACE) group
is an active group that is developing access control solutions for resource-constrained de-
vices. This group is responsible for the development of OAuth 2.0, an access control
solution, and OSCOAP, an end-to-end security mechanism. To reduce the size of mes-
sages, ACE uses CBOR as a semantic protocol. Both solutions are based on CBOR
Object Signing and Encryption (COSE) [49], a specification for creating and process-
ing signatures, message authentication codes, and encryption. COSE also specifies how
cryptographic keys must be represented in CBOR format.

OAuth 2.0

OAuth 2.0 [50] is an Authentication and Authorization framework that allows a client
to obtain restricted access to a particular resource offered by a resource provider. The
framework requires a trusted third-party server that provides two resources, “token” and
“intraspect”. These have many similarities to the “authentication” and “authorization”
resources for ticket-based access control. One notable difference is the ticket concept
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itself; OAuth 2.0 uses access tokens instead of tickets. An access token contains encrypted
data that are readable only by the resource provider and the AA server; for this reason,
is also called a Proof-of-Possession (PoP) token. Another significant difference is that
no communication between the resource provider and the AA server is needed because
the permissions are encoded in the token. The client requests an access token for the
particular resource to be accessed and the access type; if the access is valid, the AA
server generates the access token, which is encrypted using a key known by the resource
provider. Code 3.9 shows an example of the information encoded in such an access token
request.

Code 3.9: Example request for an access token bound to an asymmetric key

1 Header: POST (Code=0.02)

2 Uri -Host: "server.example.com"

3 Uri -Path: "token"

4 Content -Type: "application/cbor"

5 Payload:

6 {
7 "grant_type" : "token",

8 "aud" : "lockOfDoor0815",

9 "client_id" : "myclient",

10 "token_type" : "pop",

11 "alg" : "ES256",

12 "profile" : "coap_oscoap"

13 "cnf" : {
14 "COSE_Key" : {
15 "kty" : "EC",

16 "kid" : h‘11’,

17 "crv" : "P-256",

18 "x" : b64‘usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8’,

19 "y" : b64‘IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4’

20 }
21 }
22 }

Object Security of CoAP (OSCOAP)

Object Security of CoAP (OSCOAP) [51] is a mechanism that adds and an additional
layer of protection to CoAP communications. It provides end-to-end security, encryption,
and replay protection and also checks the integrity of messages.

The idea of OSCOAP is to encapsulate the CoAP payload, header, and various options
into a COSE object. This COSE object corresponds to the payload of a new CoAP packet,
all content of which is encrypted.



Chapter 4

Efficient Industrial IoT Framework

Industrial applications of IoT technology usually require long battery lifetime, in
many cases as long as years. These low-power requirements are especially stringent for
wireless devices. Battery replacement is usually not easy in the industrial environment.
To reduce the number of replacements or to avoid them entirely, the IoT devices must be
efficient. Domestic IoT applications do not have the same high requirements as industrial
IoT applications; the key differences are the following:

• Scalability - Industrial applications can include tens of thousands of entities.

• Security - A security breach in a factory can result in damage to the environment
and/or human personnel as well as enormous costs.

• Interoperability - Industrial applications most often use multiple different systems
and technologies, which complicates information exchange and necessitates the use
of mediators or translators.

Today, there is no common, widely used standardized solution for networks of this type
that require low-power mechanisms. The Arrowhead project, which provided funding for
this thesis, is focused on improving the use of IoT for industrial applications. Other
organizations, including OMA, IPSO, the IETF (T2TRG, ACE, etc), and the ZigBee
Alliance, are also investigating some of these issues. Some companies also focused on
the creation of IoT cloud-based platforms like Cumulocity, Xively, ThingWorx, Microsoft
Azure Cloud or VxWorks (Intel). Other companies chose a peer-to-peer approach like
IPSO, Thingsquare, IzoT, AllJoyn, or IoTivity. A good comparison of these platforms is
presented by Derhamy et al. [52]. This thesis addresses this technological gap to make IoT
SOA-based technologies feasible for industrial applications. This chapter presents new
results in the following areas: a) device life-cycle management, including bootstrapping
and configuration; b) efficiency of security mechanisms; and c) a feasibility of the use of
standard IoT technologies in industrial applications.

39
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4.1 Network architecture

The proposed framework was designed for resource-constrained IoT Wireless Sensor and
Actuator Networks (see Figure 4.1). The communication between each gateway and its
node is described by a tree with the minimal number of hops. This limitation is imposed
because sometimes the wireless range between a gateway and a node is insufficient and
it is better to have an additional hop between them. Each hop-node increases the power
consumption because it must handle its own traffic and the traffic of other dependent
nodes.

Industrial Network

Area to cover

G1

N1

N2

N3

G2

N5

N4

N6

G3

N7N8

Internal Servers

Clients External Servers

Figure 4.1: Network architecture

The communication between gateways and nodes is achieved through a wireless net-
work based on the network stack shown in Figure 4.2. It consists of a 6LoWPAN layer
over IEEE 802.15.4 to enable the IPv6 protocol; it supports IPsec to protect commu-
nications, but it may also include other security mechanisms such as TLS, DTLS, or
MAC encryption. The application protocol is CoAP, which provides the means for ser-
vice (resource) deployment on each node. The communication between the gateways
and the servers is not addressed in this research; in the proposed network, it can be
achieved through either wireless or cable technology because the power consumption is
not relevant at the gateway level.
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Application

JSON/CBOR

CoAP NTP

UDP

IP / IPsec

6LoWPAN

IEEE 802.15.4

Figure 4.2: Network stack

Each type of element in the topology has a different role; thus, an individual descrip-
tion of each is needed.

Nodes are resource-constrained embedded devices with wireless connectivity and are
usually powered by batteries. The wireless connectivity provided by the gateway
allows them to communicate with other nodes, servers or clients. The essential
task of a node is to sense a physical variable and use an actuator to produce a
change in the physical environment. With advancements in microcontrollers, such
devices have become capable of performing complex tasks, such as analyzing and
evaluating data using filters, finding relevant profiles, and applying adaptive trig-
gers. Manually configuring each node is not feasible in an industrial environment.
Therefore, each node can ask for its configuration during boot time; even if the
configuration changes during run time, the node must be able to reconfigure itself.

Nodes are not merely clients. In fact, with the use of CoAP, each node can dynam-
ically create services and provide customized services. To do so, they must use an
access control mechanism.

In the proposed platform, a single node can provide services based on aggregate
data, such as the average temperature of nearby nodes, or take actions based on
data from other nodes. In other words, the nodes can create systems of systems.
To this end, direct machine-to-machine (M2M) communication is mandatory.

Gateways are embedded computers with two main tasks: providing wireless connectiv-
ity to the nodes (thus acting as a standard gateway) and running a Supervisory
Control and Data Acquisition (SCADA) system. The SCADA system is respon-
sible for registering each connected node with the Device Manager (DM) and for
providing bootstrapping and configuration services as well as the authentication
and authorization services for access control. All these services are replicates of the
services hosted on the internal server, to decentralize the system and ensure that it
continues to function even if the connection to the internal server goes down. Each
service is described in detail in the following sections.
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Gateways create 6LoWPAN connections to the nodes and Ethernet, WiFi, 4G or
5G connections to the internal server. Therefore, the communication between a
gateway and the internal server is conducted using the HTTP/HTTPS protocol.
Gateways also extend the IPv6 network of the nodes to the internal network, al-
lowing the internal server to also communicate directly with each node.

Servers are not addressed in the research reported in this thesis, but a basic definition
of their functionality is needed for a detailed understanding of the platform. There
are no differences between internal and external servers (see Figure 4.1); even an
external server can act as an internal server with the use of a VPN connection to
the internal network. The names are simply labels to distinguish between servers
that are exposed or not exposed to external links such as the Internet. Servers act
as gateways with greater computational power and memory and more connections.
The greatest difference between a server and a gateway is that a server can provide
communication between nodes corresponding to different gateways.

4.2 Services

This section describes all of the mandatory services that the proposed framework must
provide to cover all requirements for an IIoT platform: bootstrapping, configuration,
device management and access control.

4.2.1 Bootstrapping

The bootstrapping service is compliant with LWM2M OMA Bootstrapping [53], which
provides information to IoT devices regarding instances of essential services such as access
control, configuration, and the LWM2M server.

The bootstrapping service must run on the gateway and should use a predefined port
because this port is information that a node is required to have during its first boot. In
other words, the bootstrapping service must be readily available to any IoT device that
joins the network.

When a device initiates a bootstrapping request, it can include additional information
in the request, such as its serial number, MAC address, and internal software name or
version. Using this information, the framework can distribute the IoT devices among
different access control, configuration or LWM2M servers. This can help to balance the
loads among different servers, ensure a variety of devices with different versions, and
improve availability.

Bootstrapping increases the stability and robustness of the framework. If a service is
down, it can be replaced by another simply by changing the IP address or port in the
bootstrapping response. It supports multiple endpoints for the same service, and when
one is busy, the device can use the next. Moreover, in the case that a node is connected
to another wireless network with different services or different network routes, it ensures
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that everything will function as usual. Code 4.1 shows an example of a bootstrapping
response.

Code 4.1: Bootstrapping example

1 {
2 "auth": {
3 "ip": "fdfd::0A",

4 "port": 5683,

5 "v": 1,

6 "res": "/Authentication",

7 "resAlt": "/Authorization"

8 },
9 "conf": {

10 "ip": "fdfd::0B",

11 "port": 5682,

12 "v": 1,

13 "res": "/Conf"

14 },
15 "dev": {
16 "ip": "fdfd::0C",

17 "port": 5681,

18 "v": 1,

19 "res": "/rd"

20 }
21 }

JSON: 305 bytes - CBOR: 147 bytes
This service can also be used for simple time synchronization or to deploy other relevant

information.

4.2.2 Configuration

The role of a sensor is to take measurements of a physical variable, and the role of an actuator
is to take actions on physical variables. The configuration service sets the parameters for
how those measurements must be performed, how the data should be analyzed, and which
actions must be taken under certain conditions. For example, this service sets sampling rates
and triggers, sets filters dynamically, sends alerts to other devices, and manages collaborative
analysis, among other tasks.

The configuration service also sets the services that must be active on each device depending
on the task to be performed. This on-demand creation of services improves the performance
and reusability of each node. In addition, it can be used as a security countermeasure and as
a way to reduce power consumption.

The configuration service is a CoAP observable resource, which means that a device can
observe the configuration service and, during run time, receive a new configuration to optimize
its performance or battery life.

The configuration service has several benefits, most of which are focused on optimizing each
device and creating collaborative applications. The power consumption of each device can be
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reduced, but at the cost of increasing the complexity of how the services are programmed, which
has a direct negative impact on the program’s size.

Code 4.2: Configuration example for an IoT temperature measurement device

1 {
2 "Services": [

3 {
4 "name": "TempService",

5 "type": "temperature",

6 "source": "sens1",

7 "interface": {
8 "GET": {
9 "active": true,

10 "return": "sens1"

11 },
12 "POST": {
13 "active": false

14 },
15 "PUT": {
16 "active": true,

17 "receive": "trigger",

18 "return": "trigger"

19 },
20 "DELETE": {
21 "active": false

22 },
23 "OBSERVABLE": {
24 "active": true,

25 "period": 120,

26 "return": "sens1"

27 }
28 }
29 }
30 ],

31 "Actuators": [],

32 "Sensors": [

33 {
34 "name": "sens1",

35 "period": 60000,

36 "triggered": "yes"

37 }
38 ]

39 }

JSON: 692 bytes - CBOR: 268 bytes
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4.2.3 Device management

In a large network, having all entities registered in a server is useful for management and
administration. The idea of having a Device Manager is that during the boot process, each
device registers itself with the Device Manager service, which will notify the SCADA system
and start the acquisition process. The Open Mobile Alliance (OMA) has proposed the OMA
Lightweight Machine to Machine (LWM2M) protocol [54] for standardized device management.
At present, there are two widely used solutions: Leshan [55] and Wakaama [56]. Both support a
broad range of standard LWM2M features, and both were tested during the research described
in this thesis; however, the presented framework uses a customized version based on Leshan.

4.2.4 Authentication and authorization

The authentication and authorization services are part of the access control mechanism pre-
sented in the previous chapter (see Chapter 3).

4.3 Case studies

The work presented in this thesis was tested during the development of various projects directly
related to industry. For this reason, a description of each of these study cases is needed.

4.3.1 Mobile machinery monitoring

High-load working vehicles are expensive to maintain. A common problem is the maintenance
of the ball bearings: changing them too soon results in a useless expenditure of money, whereas
changing them too late can cause damage to the wheels, engine, and other parts. Therefore,
find the perfect moment at which to change them before they break saves time and money.
This project was conducted as part of the Arrowhead project, in collaboration with SKF.

To address this problem, each wheel is assigned a node, with an accelerometer on the axis
and a temperature sensor in the lubricant oil of the ball bearing. Using these sensors, we can
measure the number of rotations per wheel, the direction, impacts, changes in the temperature
of the ball bearing, etc. The nodes are connected to a gateway on the vehicle, with 4G Internet
access for communication with the Arrowhead servers. This gateway can collect and analyze
data and can transmit the results to Arrowhead when it has connectivity.

Figure 4.3 shows accelerometer data collected for one wheel in a wheel loader field test.
Data analysis can be performed to extract the speed of the vehicle, any impacts or vibrations,
and, in combination with the Z-axis data, even the angle of the wheel.

4.3.2 Smart rock bolts

Historically, there have been many dramatic accidents related to the mining Industry. For
example, 29 workers died in a coal mine in New Zealand in 2010, 33 men were trapped for over
two months in a coal mine in Chile in 2013, and 301 workers died in a coal mine in Turkey
in 2014. In all these situations, the mine partially collapsed. Rock bolts are metal bars of 3
meters in length that are placed in the wall of a mine to reinforce its structure. However, in
some situations, the rock bolts can bend or even break because of the work in the mine or
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Figure 4.3: Acceleration of one wheel on the X and Y axes during a test

seismic vibrations; under these conditions, the rock bolts can lose their reinforcing properties.
Detecting such situations is critical because they can easily turn into collapse scenarios, which
pose a high risk to workers and cause economic problems for mining companies.

(a) Smart Rock Bolt prototype (b) Position and sensor distribution in a tunnel
installation

Figure 4.4: Smart Rock Bolt

The objective of the Smart Rock Bolt project is to add sensors and electronics to a standard
rock bolt (see Figure 4.4), endowing it with sensing and communication capabilities. The sensors
can measure the pressure on the bar and detect a breakdown situation; moreover, they can also
detect small vibrations in the walls. The data are analyzed locally, and if a dangerous situation
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is detected, the data are transmitted to a gateway, which collects the data and analyzes all
possible alarms in the mine. The system can alert the corresponding authority to take actions
such as evacuating or reinforcing the tunnel.

This project was presented as part of the IPSO Challenge 2015 [57] and won first place in
the contest.

4.4 Experiments and results

This section provides a description of the experimental setup for all performed experiments and
an overview of the obtained results.

4.4.1 Test setup

The experimental scenario was a realistic environment outside of laboratory, with a gateway
running the SCADA software and multiple nodes connected to it. The experimental results
could therefore be affected by radio transmissions from other nodes and by network traffic
effects. The goal of the experiments was to determine the energy consumption and delays
generated by the use of the various elements of the proposed framework, including secure com-
munications, the access control mechanism, and the bootstrapping and configuration services.
The experimental configuration relied on measurements of battery current and voltage that
were performed externally to the device by using a 16-bit ADC operating at 1840 Hz to capture
rapid events such as radio signals, wakeups, etc. All these measurements were combined into
8 digital inputs that could be used to gain detailed information on the power consumption of
each software component. The selected IoT platform was a Mulle (as previously described)
with the Contiki OS; all recorded measures were affected by running the OS at the same time,
thereby yielding data that were as realistic as possible. The effect of running an OS generates
peaks in internal processing queues, communications, internal timeouts, events, etc. which can
increase the error levels of the measurements.

4.4.2 Results

IPsec

Security is a crucial feature for IoT communication. To analyze the energy consumption and
delays of IPsec-ESP, various configurations were tested. The ESP settings were AES128-CTR
and AES-XCBC. To obtain relevant data, the analysis was performed at two CPU speeds (96
MHz and 48 MHz), with and without hardware acceleration for AES128, and for different pay-
loads. Between 20 and 40 measurements were obtained for each payload. Figure 4.5 compares
the energy consumption (a) and delays (b) with and without security.

A detailed analysis of the data revealed the overheads in terms of energy and delays for
transmission (Figure 4.6) and for reception (Figure 4.7), which demonstrate the feasibility of
using this technology for communication protection.
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Other services

The configuration of each service is as follows:

Internet Key Exchange v2 (IKEv2) The key exchange process has two steps: initializa-
tion and authentication. Therefore, both were analyzed separately. The IKEv2 configu-
ration is AES128-CTR + AES-XCBC + SHA1 + ECP192.

Bootstrapping The bootstrapping analysis included the overheads for the bootstrapping re-
quest and the parsing of the response, yielding information about the Device Manager,
access control, and configuration services (see Code 4.1).

Configuration The configuration analysis included the configuration request, the parsing of
the response, the configuration of a sensor and the creation and deployment of a new
service (see Code 4.2).

Authentication The authentication analysis included the authentication request, the Chal-
lenge Request/Response process, and the parsing of the ticket and attributes.

Authorization The authorization analysis included the first authorization request and the
parsing of timeouts and permissions.

Device Manager The Device Manager analysis included the registration of a node in the
OMA LWM2M Server.

Figure 4.8 shows the energy consumption and delays for each service at two CPU speeds
(96 MHz and 48 MHz), and Table 4.1 presents the values obtained in the experiments in more
detail.

Service Power (mW) Delay (ms) Energy (mJ)
Speed (MHz) 96 48 96 48 96 48
IKE INIT 195.7 158.6 2145.6 3789.2 419.9 601.1
IKE AUTH 209.8 168.1 3916.5 10650.1 821.8 1791.2
Bootstrapping 68.0 65.2 56.4 55.8 3.8 3.6
Configuration 170.9 134.7 81.9 84.2 14.0 11.3
Authentication 197.9 158.6 188.4 232.8 37.3 36.9
Authorization 74.8 71.7 56.9 56.4 4.8 4.0
Dev. Manager 113.7 90.8 72.8 71.8 8.2 6.5

Table 4.1: Analysis of power consumption, delays and energy overheads for each service

4.4.3 Summary

For smaller payloads, communication incurs lower power consumption and shorter delays. The
effect of having the Contiki OS running on the device during the measurements has a larger
impact for smaller payloads. For this reason, the data in Figure 4.6 and Figure 4.7 appear
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inconsistent, with high overheads and large error bars on small payloads. However, the overhead
values for payloads over 200 bytes seems to be consistent and stable. Therefore, to compare
the overheads between different configurations, those are the values that must be used.
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Chapter 5

Contributions

This work was performed within the framework of the Arrowhead project, a European
project to improve interoperability in industrial environments. Some of the focuses of this
project include service orchestration, system orchestration, multi-protocol communications,
zero-configuration operation, and Quality of Service.

Security

Energy
Efficiency

Interoperability Dependability

Scalability

Paper A Paper B Paper C

Paper D Paper E Paper F Paper G

Figure 5.1: Contribution of each paper to each IoT research area

The author has contributed to various areas of research related to IoT-WSNs, all of which are
interconnected, in developing this thesis: interoperability, scalability, dependability, efficiency

55
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and security (see Figure 5.1). These areas have been described and discussed in previous
chapters (see Chapter 2, Chapter 3 and Chapter 4).

This chapter presents a summary of the appended papers and an outline of the author’s
main contributions to each paper.

Paper A: A Feasibility Study of SOA-enabled Networked Rock Bolts
Authors: Jens Eliasson, Pablo Puñal Pereira, Henrik Mäkitaavola, Jerker Delsing, Joakim

Nilsson and Joakim Gebart

Published in: Proceedings of 2014 IEEE 19th International Conference on Emerging Tech-

nologies & Factory Automation (ETFA 2014): Barcelona, Spain

In this paper, research concerning the use of IoT rock bolts in mines is presented. Each
rock bolt can measure strain and seismic activity; each node provides its data as a service over
a wireless mesh network. Using the collected data it, the ability to detect falling rocks and the
presence of mobile machinery is demonstrated.
The author’s main research contribution to this paper was a study of the possible systems that
could be used to protect the network against potential attacks.
This paper was presented at the IEEE 19th International Conference on Emerging Technologies
& Factory Automation (ETFA) in Barcelona, Spain, in September 2014.

Paper B: EXIP: A Framework for Embedded Web Development
Authors: Rumen Kyusakov, Pablo Puñal Pereira, Jens Eliasson and Jerker Delsing

Published in: Proceedings of ACM Transactions on the Web, 2014

This paper presents the design and implementation techniques of the EXIP framework for
embedded Web development. The framework consists of a highly efficient EXI processor, a
tool for EXI data binding based on templates, and a CoAP/EXI/XHTML Web page engine.
A prototype implementation of the EXI processor is presented and evaluated herein. It can be
applied to Web browsers or thin server platforms using XHTML andWeb services for supporting
human-machine interactions in the Internet of Things.
This paper presents four major results: (1) theoretical and practical evaluations of the use of
binary protocols for embedded Web programming; (2) a novel method for the generation of EXI
grammars based on XML Schema definitions; (3) an algorithm for grammar concatenation that
produces normalized EXI grammars directly, consequently reducing the number of iterations
during grammar generation; and (4) an algorithm for the efficient representation of possible
deviations from the XML schema.
The author’s main research contributions to this paper were the integration of the EXIP library
with CoAP in an embedded system and the demonstration of direct interaction between a mobile
IoT device and a web browser, with the direct provision of EXIP data from the resource-
constrained device.
This paper was published in ACM Transactions on the Web in October of 2014.
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Paper C: An Authentication and Access Control Framework for CoAP-based
Internet of Things
Authors: Pablo Puñal Pereira, Jens Eliasson and Jerker Delsing

Published in: Proceedings of the 40th Annual Conference of the IEEE Industrial Electron-

ics Society (IECON 2014), Dallas, USA

The necessity of a fine-grained access control method for CoAP networks is described and
justified in this paper. It presents an analysis of other security mechanisms that can be useful
in combination with CoAP in constrained embedded systems, identifying the shortcomings of
these mechanisms and the reasons to create a new access control mechanism for CoAP systems.
The author’s main research contribution to this paper was the design of a fine-grained access
control mechanism consistent with the power-efficient CoAP concept for small devices to reduce
overhead and the implementation of a small network to demonstrate its performance.
This paper has been accepted for publication in the Proceedings of the 42nd Annual Conference
of the IEEE Industrial Electronics Society (IECON) in Dallas, USA, November 2014.

Paper D: Translation Error Handling for Multi-Protocol SOA Systems
Authors: Hasan Derhamy, Jens Eliasson, Jerker Delsing, Pablo Puñal Pereira and Pal

Varga

Published in: Proceedings of the IEEE 20th International Conference on Emerging Tech-

nologies & Factory Automation (ETFA 2015): Luxembourg, Luxembourg

The problem of networks using multiple protocols is addressed in this paper. In an attempt
to increase interoperability in networks of this type, this paper proposes a solution based on
protocol translation and a study of how to handle specific protocol error messages.
The author’s main research contribution to this paper was the analysis of the security aspects
involved in translating between protocols.
This paper was presented at the IEEE 20th International Conference on Emerging Technologies
& Factory Automation (ETFA) in Luxembourg, Luxembourg, in September 2015.

Paper E: The Arrowhead Framework Configuration Approach
Authors: Oscar Carlsson, Pablo Puñal Pereira, Jens Eliasson, Jerker Delsing, Bilal Ah-

mad, Robert Harrison and Ove Jansson

Published in: Proceedings of the 42nd Annual Conference of the IEEE Industrial Elec-

tronics Society (IECON 2016), Florence, Italy

The purpose of the Arrowhead project is to provide services for configuration, bootstrapping,
and deployment to enhance dependability and zero-configuration capabilities. Several use cases
for these services are presented in this paper, including building automation, the manufacturing
industry, IoT devices and the process industries.
The author’s main research contributions to this paper were the research, development and
testing of low-power services that can be used by a resource-constrained IoT device to implement
bootstrapping and configuration for sensors, actuators, and services.
This paper has been accepted for presentation at the 42nd Annual Conference of the IEEE
Industrial Electronics Society (IECON) in Florence, Italy, in November 2016.
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Paper F: Using Internet of Things for Industrial Applications: A Feasibility
Check
Authors: Jens Eliasson, Pablo Puñal Pereira and Jerker Delsing

Submitted to IEEE Journal of Sensors

This paper presents a condition monitoring architecture for industrial applications based
on IoT devices using the OMA LWM2M protocol, IPSO Smart Objects, and the Arrowhead
Framework. The paper analyzes the feasibility of applying this technology to rock bolts in the
mines, with a focus on performance and lifetime.
The author’s main research contributions to this paper were the technical aspects, research, de-
velop and implementation of the architecture, with particular attention to reducing the power
consumption of the IoT devices.

Paper G: An Efficient IoT Framework for Industrial Applications
Authors: Pablo Puñal Pereira, Jens Eliasson and Jerker Delsing

Submitted to IEEE Internet of Things Journal

The use of IoT technology for condition monitoring has gained relevance over the past five
years; this paper presents an Industrial IoT platform for condition monitoring with the capabil-
ity to adapt itself to the power consumption of each node, improving the nodes’ measurements
or lifetimes when needed. The paper also studies the impact of each applied technology to
analyze the power consumption and delays; these technologies include communication features
such as access control and encryption as well as functional features such as zero-configuration
networking, device management, and reconfiguration at run time.
The author’s main research contributions to this paper were the design and implementation of
the platform as well as the execution of the power consumption and delay analysis to optimize
the platform performance and lifetime.



Chapter 6

Discussion

To conclude this thesis, some reflection on the obtained results and the research questions
presented in the Introduction (Chapter 1) is required. As is illustrated in Figure 6.1, the thesis
research began with a real-world problem that motivated these Ph.D. studies, i.e., the current
lack of a mechanism for implementing efficient Wireless Sensor and Actuator Networks with
high interoperability for industrial applications.

Real-world
problem

Research
motivation

Research
question

Hypothesis

Method

Results

Raise a question

Deve
lop a hypothesis

Answ
er the question

Test
the hypothesis

Evaluate the results
Discussions: results’ impact on the initia
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blem

Figure 6.1: Research methodology for this thesis

This real-world problem of interoperability was addressed close to twenty years ago with
the adoption of Internet technology in embedded devices, as discussed by Delsing et al. [58]
and Sveda et al. [59]. However, the inefficient use of the IP protocol caused power consumption
to increase, which prevented the widespread introduction of this technology into industrial
WSANs, especially for battery-powered nodes. In recent years, international alliances such
as the International Internet Consortium (IIC) [60], the IPSO Alliance [61], the Open Mobile
Alliance (OMA) [62], and the Internet Engineering Task Force (IETF) have been investigating
the standardization and promotion of the use of the Internet Protocol. The development of
6LoWPAN finally enabled the use of IP (IPv6) in wireless low-power networks, and the use of
CoAP as an application protocol allows an HTTP-like protocol to be used to deploy services
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on resource-constrained devices.
The initial hypothesis of this thesis was that CoAP could be used over 6LoWPAN to cre-

ate a Service Oriented Architecture for industrial WSANs. The subsequent research, based
primarily on experimental work, yielded the results reported in Paper A. Evaluation of this
research motivated the following question: “Is it feasible to use IoT-SOA technology in WSANs
for industrial applications?” considering all of the requirements of IoT devices, i.e., bootstrap-
ping, zero-configuration networking, access control, etc. The hypothesis-results-evaluation loop
required several iterations to evaluate the impact of the results on the initial problem. This
final evaluation is the reason for this chapter.

The accumulated results demonstrate that enabling IoT technology with services for boot-
strapping, configuration, access control, device management, etc. increases the computational
complexity on the nodes but allows their constrained resources to be optimized to reduce in-
efficient overheads as much as possible. As demonstrated in Chapter 4 (see Figure 4.5), the
highest power consumption occurs when a node is using wireless communication, especially
during transmission. Thus, at this point, a comparison between polling-based and event-based
WSANs, as considered in this thesis, is mandatory.

Communication efficiency

There are two perspectives from which communication efficiency can be evaluated: data effi-
ciency and energy efficiency.

• Data efficiency (see equation 6.3) is the capability of a system to acquire only valuable
data; in other words, is a measure of how well a system reacts when the measured value
of a source changes. If the data efficiency is 1, the system can obtain all valuable data.
If it is lower than 1, this means that the system is losing some relevant data.

Dataacquired = f · t
where f is the frequency at which the system acquires data.

Datarelevant = fsource · t
where fsource is the frequency of the measured source, or how rapidly the measured
physical variable can change. A change to a measured physical variable is considered a
relevant datum; for example, if the temperature in a room is stable, then only one of all
recorded measurements is a relevant datum, whereas if the temperature is not stable, all
varying values are relevant data.

Dataacquired and relevant =

{
f · t, if f < fsource

fsource · t, if f ≥ fsource
(6.1)

Datanon-acquired and relevant =

{
(fsource − f) · t, if f < fsource

0, if f ≥ fsource
(6.2)

μdata =
Dataacquired and relevant

Datarelevant
=

{
f/fsource, if f < fsource

1, if f ≥ fsource
(6.3)
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• Energy efficiency (see equation 6.5) is the capability of a system to acquire only the
important data and discard all irrelevant values, i.e., a measure of how good the system
is at obtaining relevant values. If the energy efficiency is 1, the system acquires only
appropriate values. If it is lower than 1, this means that the system acquires some
irrelevant values.

Dataacquired and non-relevant =

{
0, if f < fsource

(f − fsource) · t, if f ≥ fsource
(6.4)

μenergy = 1− Dataacquired and non-relevant

Dataacquired
=

{
1, if f < fsource

fsource/f, if f ≥ fsource
(6.5)

The total efficiency μ must therefore include both energy and data efficiency, as shown in
equation 6.6.

μ = μdata · μenergy =

{
f/fsource, if f < fsource

fsource/f, if f ≥ fsource
(6.6)

An energy-efficient system is usually a data-inefficient system and vice versa, i.e., an energy-
efficient system acquires data at a low rate to save energy, meaning that the system will likely
lose some relevant data, whereas a system with a high data acquisition rate can measure all
relevant data but will also likely measure some data that are not relevant and is therefore an
energy-inefficient system. The source of the relevant data is usually a physical variable that the
system can sense, and with the exception of time, there is no physical magnitude that exhibits
a constant frequency of change. Thus, upon adding temporal variability to equation 6.6, the
following result is obtained:

μ(t) =

{
f/fsource(t), if f < fsource(t)

fsource(t)/f, if f ≥ fsource(t)
(6.7)

In a polling-based system, the polling rate may be either constant or even adaptive1, but
in either case, the polling frequency can be considered as a constant in time. Therefore, such a
system cannot be perfectly efficient.

μ(t)|polling �= 1

As illustrated in the Figure 6.2, polling-based systems are not efficient even for small changes
in fsource over time. The efficiency is reduced by more than half when fsource ≤ (fpolling/2) or
fsource ≥ 2 · fpolling.

By contrast, an event-based system acquires data only when the source changes; thus, its
frequency of acquisition is variable over time, and an event-based system can potentially be
fully efficient.

μ(t)|event = 1

1An adaptive polling-based system can modify its polling rate depending on external conditions. For
example, if the system is measuring wind and the wind is more stable during the night than during the
day, the polling rate may be different between day and night.
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fsource(t)
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Figure 6.2: Evolution of the efficiency between fsource(t) and f

The inefficiency of polling-based systems is a strong reason to conclude that the WSNs
must implement event-based systems, especially when the nodes use wireless technology and
are powered by batteries.

The crypto layer of communication has not yet been discussed. There are two standard
solutions for encrypting CoAP communications: IPsec and DTLS. IPsec was used for the work
presented in this thesis; the main reason for this choice was the performance of IPsec implemen-
tations compared with that of DTLS implementations four years ago (as shown by De Rubertis
et al.[63]). At present, the performances of both are similar, and thus, the work presented in
this thesis could be repeated using DTLS instead of IPsec. The differences between the two
have been discussed by many authors, such as Hennebert et al.[33] and Alghamdi et al.[64].

The presented methods of authentication and authorization have been successfully tested in
several IoT applications as part of the Arrowhead project as well as in the IPSO Challenge 2015.
The results presented in this thesis prove the efficient of the proposed method as a fine-grained
access control mechanism; it can be used to control access at the service and method levels and
can even provide control with regard to a parameter of the CoAP URI. Concerning overheads,
the method does not increase the power consumption by more than 13.3% in the worst case (a
CoAP message without a payload). Thus, it is an efficient access control method.

6.1 Conclusions

The work presented in this thesis aims to advance the state of the art in Industrial IoT-WSNs,
and it represents a step forward in the implementation and expansion of IoT technology in
the industrial world. The approach that is presented in this thesis can be used as a guide
for creating new configuration, security, access control, and management mechanisms and for
improving industrial technology.

This thesis answers the main research questions presented in the Introduction (Chapter 1):

1. Is it feasible to use IoT-SOA technology in WSANs for industrial applications?
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Figure 6.3: Energy consumption profile of a typical IoT device

The results of this thesis show that with SOA approach it is feasible, it requires more
sophisticated techniques than WSANs, which increases the computational overhead. But
this complexity can reduce the average power consumption and improve the data acqui-
sition, with the implementation of smart resources i.e. services. Therefore, an IoT-SOA
framework can be more efficient than today’s WSAN.

1.1. Which are the benefits of adding IoT technology to Industrial WSANs?

The use of IoT technology maximizes interoperability, enables machine-to-machine
(M2M) communications, makes systems easier to upgrade, allows zero-configuration
networking, and increases the ease of maintaining and replacing system components.

2. How can access to exposed IoT nodes be protected and controlled while maintaining per-
formance?

The Authentication and Authorization solution presented in this thesis enables fine-
grained access control with very low penalties in terms of performance and power con-
sumption. This solution, based on the use of tickets, can be adapted for use with standard
solutions such as RADIUS and DIAMETER.

3. How can zero-configuration operation be achieved for an IoT node?

In this thesis, services such as bootstrapping, authentication, authorization, and config-
uration are used to demonstrate how a node can receive a customized configuration from
scratch. Hence, an optimized and specific configuration is realized for each node. This
thesis also provides a route toward the creation of dynamic configurations to adapt the
behavior of each node to its current context.
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6.2 Future work

The framework presented in this thesis demonstrates the feasibility of using IoT-SOA technol-
ogy in industrial applications. Therefore, the work presented herein can be used as a basis for
further research. There are three different topics related to the Industrial IoT concept that
must be addressed in future work: efficiency, scalability and Quality of Service (QoS).

Efficiency has already been considered as part of this thesis, but there are many additional
aspects that could not be addressed because of time limitations, including issues that emerged
as a direct result of this research. From the charts presented in Chapter 4, is easy to recognize
that IKEv2 is the most inefficient component of the IoT system, reaching levels of consumption
one hundred times higher than that of 500-byte encrypted communication. Hence, a new, more
efficient Internet Key Exchange mechanism is needed for IoT applications.

Another area for improvement is the optimization of the wireless communications at the low-
level protocols, to synchronize the radio and sleep cycles of the microcontrollers and minimize
the time that each device is awake waiting for radio beacons.

The configuration process could be improved by allowing it to be performed completely
dynamically while adapting the behaviors of the sensors and actuators to their current contexts,
e.g., changing sampling rates, temporarily shutting off sensors or actuators, or increasing sleep
cycles to maximize battery life or enhance performance.

The most recent generation of microcontrollers includes specific hardware for processing
certificates; therefore, the use of micro-certificates instead of tickets could be an alternative to
enable better protection in access control.

Industrial process monitoring requires the use of a large number of nodes, for which scal-
ability is critical. During this thesis work, all tests and implementations were performed with
only a limited number of devices; therefore, the presented framework still needs to be tested
and proved for application in massive networks.

This thesis work is based on a Service Oriented Architecture, and one parameter that is
widely used in modern SOA frameworks is the Quality of Service (QoS). For commercial
applications or critical services, this feature is particularly important, e.g., to guarantee that
a firmware updating service has sufficient bandwidth or priority to be completed as soon as
possible or to prioritize alert services ahead of data services.
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A Feasibility Study of SOA-enabled Networked Rock

Bolts

Jens Eliasson, Pablo Puñal Pereira, Henrik Mäkitaavola, Jerker Delsing and Joakim
Nilsson

Abstract

The use of rock bolts in the mining industry is a widely used approach for increasing
mine stability. However, when compared to the automation industry, where the use of
sensors and real-time monitoring of processes have evolved rapidly, the use rocIPseck
bolts have not changed a lot during the last 100 years. What is missing are technologies
for keeping installed rock bolts under real-time and online monitoring. One problem is
that rock bolts can become damaged by seismic activities or movements within the rock,
and thus lose their load bearing capacity. If that happens, the outer shell of a tunnel’s
walls or ceiling can collapse, with disaster as a result. Therefore, there is a clear need for
online and real-time monitoring solutions for strain and thereby stress, as well as seismic
activity.

In this paper, the current state of art in research around intelligent rock bolts is
presented. An intelligent rock bolt is the combination of a traditional rock bolt with an
Internet of Things device, i.e. a rock bolt with embedded sensors, actuators, processing
capabilities and wireless communication. In the proposed architecture, every rock bolt
has its own IPv6 address and can establish a wireless mesh network in an ad-hoc manner.
By measuring strain and seismic activity and exposing the sensors in the form of services,
large gains in terms of safety and efficiently can be achieved. A number of mining
related activities such as stress on the rock bolt can be detected, falling rocks and the
presence of mobile machinery can be observed. Since the network is based on standard
communication protocols such as IPv6, it is vital to add security mechanisms to prevent
eavesdropping and tampering of data traffic.

By utilizing the real-time monitoring capabilities of a network of Internet-connected
intelligent rock bolt, it is possible to drastically improve monitoring of mining activities
and thereby providing workers with a safer working environment.

1 Background and Related work

Mine activity monitoring is today mostly made with geo-phones, still the most sensitive
devices to detect earth movement [1]. In mines geo-phones are now interconnected and
used to gather micro seismic data which is further analyzed to provide safety predictions
[2, 3].
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The mining industry have over time initiated a number of smaller projects to test the
function of rock bolts. This has lead to some functional rock-bolt monitoring specifica-
tions [4, 5]. Some of the most important are:

• measure static and dynamic rock bolt load of <300kN.

• Dynamics to be captured are <100 Hz, thus a sampling rate of 1kHz will be suffi-
cient.

• true load measured with an accuracy 2 %.

• not sensitive to uneven loading on the bolt plate.

• a cable free system.

• continuous load sampling over time (with the possibility to set sampling intervals).

• life time without changing power supply >12 month (using a battery).

There are several approaches to make one shot testing of rock bolts. Ultrasound is
one common approach to measured bolt load through speed of sound measurements. We
do find several scientific papers and several patents in this field. One example is [6].
Some suppliers of ultrasound measurement technology for bolt load measurements are:

• USM-3 by Norbar [7]

• Hevii - US bolt load technology [8].

• Boltscope-II by Hydratight [9]

This ultrasound technology has the potential to provide the most information on the
changes in the rock bolt. The technology is still rather young and much development can
be expected in the future. The major drawback is the price tag. An attractive approach
for strain gauges sensing applied to rock bolt load measurements is the MMT prototype
found with Hitec corporation [10]. They exhibit and custom device drilled into to the
head of the bolt. The major draw back is the sensitivity to non-axial loads. To our
understanding the development has been halted.

The process automation industry, where the use of sensors, actuators, distributed
control systems and other technologies are widely used, have responded well to the new
possibilities that networked embedded devices, e.g. Internet of Things (IoT) and Cyber-
physical systems, (CPS) can offer [11]. The use of IP-based networked sensor and actua-
tor devices with vertical integration into traditional industry systems is currently being
investigated in some of Europe’s largest automation projects such as the R&D projects
FP7 IMC-AESOP [12] and Artemis Arrowhead [13].

The COBS project [14] at Lule̊a University of Technology aims at developing smart
conveyor belt rollers for the mining industry and logistics. By equipping a conveyor belt
roller with a wireless sensor node and additional sensors, the roller is able to monitor
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itself and thereby sending alarms when for example a ball bearing is getting too warm
which is an indication of a ball bearing damage. The higher level system is used to alert
operators of any anomalies or alarms and assist in scheduling maintenance and reduces
cost from less unexpected downtime.

2 Architecture

This section outlines the core architecture of the intelligent rock bolt with its sensing and
networking capabilities, the support for communication and as well as security.

Intelligent rock bolt

The current proposed design of the intelligent rock bolt is composed of several individual
components. The base is a standard rock bolt, which is equipped with measurement
electronics. The core of the electronic system is the Mulle platform from Eistec AB [15].
The Mulle is a low-power sensor node designed for Internet of Things applications. The
current Mulle features a 16-bit microcontroller, analog and digital inputs and outputs, an
868 MHz IEEE 802.15.4 transceiver, several memories and power management circuits.
To the Mulle is an interface board for the strain and vibration sensors connected, which
is described in more detail in the next section. The Mulle runs the Contiki operating
system from Dunkels et al. [16].

Electronics and sensors

The measurement system consists of a strain sensor and an accelerometer. The accelerom-
eter is mounted on a printed circuit board (PCB) while the strain sensor is external to
the PCB, i.e. mounted inside the rock bolt’s head. Both these sensors produce a voltage
which is sampled by two 24-bit analog-to-digital converters (ADCs). These ADCs are
mounted on the PCB which also hosts a connector that allows the ADCs to communicate
with the Mulle using a high-speed SPI port.

The measurement board hosts a high-density connector for interfacing the Mulle. It
also features some LEDs for development use, power supply, etc. Figure 1 shows the
circuit of the vibration sensor system with Mulle platform.

The two sensors, accelerometer and strain, have been chosen in order for the rock
bolt to be able the two most important factors for mine stability. Seismic activity will
cause vibrations in the rock, and forces lead to tensions in the rock which when released
can result in small earthquakes. These quakes can in worst case result in the collapse of
tunnels, or even portions of the mine.

Internet of Things networking stack

The current communication stack is based on previous work from several research projects.
Other research projects that have been developing the Mulle architecture are EU FP7
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Figure 1: Sensor node electronics

IMC-AESOP and I2Mine and Artemis Arrowhead. The current version of the Mulle’s
communication stack is based on the IEEE 802.15.4 standard, and uses IPv6 and RPL
over 6LoWPAN. Data is normally transmitted using SenML encoded using XML (with
optional EXI-compression by the EXIP parser [17]) over CoAP. Figure 2 shows the Mulle’s
communication stack.

The software side of the strain and acceleration measurements were implemented as
CoAP [18] services. A CoAP service is easily accessible through a web browser that
supports it. This provides simplicity in monitoring and configuring the rock bolts as it
can be done through a standard web interface over the Internet. CoAP is a protocol
designed to be used on resource-constrained, low power electronic devices.

Figure 2: Rock bolt communication stack

Since Contiki, which is used on the Mulle platform and hence rock bolts, runs RPL
[19] it is possible to create mesh networks, i.e. with multi-hop support. The mesh net-
working support has been experimentally verified on the rock bolts and the performance
of RPL has been investigated by Potsch et al. in [20]. Time synchronization is per-
formed using the NTP protocol. Wireless re-programming of Mulle devices is handled
by a custom written CoAP service. The Mulles are connected to existing networks (i.e.
Ethernet) using a BeagleBone based gateway, also equipped with an IEEE 802.15.4 radio
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transceiver. The gateway host several services, such as RPL, NTP, and a number of
CoAP services. The gateway is connected to its back-end system using an encrypted
VPN solution. This ensures that sensor data is transmitted from a Mulle to database
servers over encrypted channels only.

The use of a Ultra-wide Band (UWB) chip from Decawave has also been investigated.
Preliminary results indicates that UWB is a viable solution for environments with severe
multi-path problems. This will be studied further as well. The use of UWB in com-
bination with distributed event detection and pattern recognition, as proposed in [21],
could provide one solution for performing detection and classification of mining related
activities.

Measurement software

For the strain measurements, a CoAP service was created that can retrieve a strain
sample at any time. Also, a threshold value can be set that allows the user of the service
to be notified when a measurement is collected that has changed a specified amount
from when the threshold was set. This is realized through CoAP’s Observe-mechanism.
Moreover, the sampling interval of the notifying service can be set through another CoAP
service.

For the acceleration measurements, a CoAP service was created that controls the
sensor to store a given amount of acceleration samples to the internal flash memory of
the Mulle. When the logging is complete, the samples can be fetched through another
service. Acceleration measurements are done in this way as acceleration data must be
sampled at a much higher data rate than the available bandwidth of the wireless network.

Communication security

A high level of security usually means complex methods and algorithms, therefore more
CPU time and more energy consumption. For this reason on low power systems (net-
works) the security design is a critical task. Nowadays one of the most extended systems
over 6LoWPAN is IPsec that is an extension of the IP protocol that adds security to IP
and higher layers. It was developed for the ”new” IPv6 standard and was later adopted
to include IPv4 as well.

IPsec has two different protocols, AH and ESP, to secure the authentication, integrity
and confidentiality on communication [22]. IPsec can protect completely the IP datagram
(Tunneling Mode [23]) or only the protocols on higher layers (Transport Mode). In
Tunneling mode the IP datagram is encapsulated completely inside a new IP datagram
that uses IPsec (the final IP of the datagram could even be different). In Transport mode,
IPsec only manages the content of the IP datagram, adding the IPsec header between
the original IP header and the header of higher layers, shown in Figure 3.

To protect the integrity of IP datagrams, the IPsec protocol uses authentication mes-
sage codes based on hash, HMAC (Hash Message Authentication Codes). To protect the
confidentiality of IP datagrams, IPsec uses standard algorithms of symmetric cipher (in
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Figure 3: IPsec encryption and authentication

our case using AES-128, but could work with any other cipher such as AES-256). In or-
der to protect against DoS (Denial of Service) attacks, IPsec uses sliding windows. Each
packet receives a sequence number and only is accepted by the receiver if the number of
packet is inside this window or next. Any previous packets are immediately discarded.
This is an efficient protection mechanism against attacks with message repetition, espe-
cially when the attacker is using sniffed original packets to resend.

The current IPsec version, which is based based on the compressed IPsec design
developed by Raza [24], is under development and does not support directional keys, this
means that IPsec must use a different secret key for each direction of the communication
with the same client/server, but this implementation uses the same (reducing the security
level). One big step forward is the implementation of IKE - Internet Key Exchange - that
is now work in progress. With IKE IPsec could change and choose the correct secret key
for each communication. The use of DTLS encryption for CoAP would further increase
the communication security [25].

3 Performed experiments

This section presents the tests and experiments that have been performed, and gives an
overview of all tests’ setup in terms of hardware and software.

Test overview

In order to investigate the performance and feasibility of the rock bolt design, several tests
were performed. The first set of tests was performed indoors in a controlled laboratory
environment. When it was confirmed that the sensing electronics were functioning as
planned as well the integration between the electronics and the rock bolt the next step
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Figure 4: Intelligent rock bolt installed in mine

was taken by performing tests using four rock bolts in an active mine. The mine test
system was comprised of a total of four intelligent rock bolts, two Linux-based BeagleBone
devices, interface cables, and power supplies.

Laboratory test setup

In the initial laboratory test, the strain sensor was mounted on a device constructed to
simulate strain. This device was fastened to a desk and different torques were applied
at the nut of the device to simulate the strain of a rock bolt. The accelerometer was
also tested in a lab. setup where vibrations were measured as well. All measurement
data were transmitted wirelessly using a CoAP service over a 6LoWPAN network and
stored to file for later processing and visualization. A Java implementation of CoAP,
Californium [26], was used to retrieve all measurements.

Mine installation

Figure 4 shows how an intelligent rock bolt is installed in a mine tunnel. The rock bolt
itself is around three meters long, and the head with the Mulle and sensor interface board
inside the grey plastic box. The strain sensor is located inside the stainless steel head.
The two cables, one for power and one for data, are connected to the data logger and
power supply, respectively. This installation is a prototype device, and not of production
quality. In practice, the electronics must be protected in a better manner in order to
withstand the harsh environment inside an active mine but for prototyping and testing
this approach was sufficient.

Performed tests

When all four rock bolts were installed and equipped with the electronics for measuring
strain and vibration, the two BeagleBone-based data loggers were time synchronized
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using NTP over an 100 Mbit/s Ethernet cable. Each logger stored data from one pair
of rock bolts installed on the same tunnel wall. This procedure was performed during a
total of three days in order to collect as much data as possible.

Several different experiments were conducted in the mine in order to collect as much
relevant data as possible. The performed experiments were:

Strain

The strain was recorded on all four rock bolts.

Tunnel wall vibration

A metal object was used as a hammer to hit the tunnel wall and the vibrations were
recorded.

Top hammer drill rig

The vibrations generated by a production top hammer drill rig some 30 meters away for
the rock bolts were recorded.

Falling rocks

A rock was dropped in order to simulate the event of rocks falling from a tunnel’s ceiling.

Vehicle detection

A car was driven by the rock bolts and the generated vibrations were recorded.

4 Results

This section presents results from the collected data from the laboratory experiments
performed in August 2013 as well as from the Kittilä mine experiments performed in
October 2013. All data processing and plots were performed using Matlab. For the
accelerometer, the Z-axis has been used which corresponds to vibrations along the length
of the rock bolt.

Note that a 24-bit ADC has been used, together with an accelerometer that can
measure static acceleration (i.e. the gravity components is visible in the signal). A DC-
blocking filter could be used to remove all offset. The accelerometer will see a different
offset depending on the angle the rock bolt is installed with.

Laboratory strain measurements

To test the linearity of the strain sensor, different torques were applied to the strain
simulation device. Four different boards and sensors were tested, labeled 2, 3, 4 and 5
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and the strain output as a function of applied torque were recorded. The measurements
were taken at torques of 0, 40, 50, 70 and 80 Nm. 10 measurements were taken for each
value of torque and the mean and standard deviation, respectively, of the measurements
were then plotted. The resulting plots are shown in Figure 5. It can also be seen that
the strain measurement sensors have good linearity properties.
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Figure 5: Strain measurements for varying torque

Steel rod

In this first mine-based test, a rock bolt rod was used as a hammer to hit the wall near
one of the installed rock bolts. This was repeated eight times in order to get a better
understanding of which type of signal amplitudes that could be expected from a very
strong source of vibration in close proximity of a rock bolt. The vibration data collected
is shown in Fig. 6.
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Figure 6: Steel rod hit on wall

It is clearly shown in the wave form when the rod hits the tunnel wall and generates
a vibration pattern. This type of amplitudes, or even higher, would probably also be
generated if a mobile machine would drive too close to a wall and brush against it. The
rock bolts can therefore be used for anomaly detection around vehicles.

Drill test

The second mine-based test was performed in order to investigate if a rock bolt’s vibration
sensor can be used to detect mining-related activities such as drilling. A mobile top
hammer production drill rig, located approximately 25-30 meters from the installed rock
bolts, was used as a vibration source.

Figure 7: Drilling detection

It is clearly seen in the signal at 140 and 360 seconds in Figure 7 when the drilling
machine drills, takes a short pause to insert a new rock tool, and starts drilling again.
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Figure 8: Vehicle detection

This indicates that a rock bolt can be used to detect drilling activity in close proximity,
and even count how many drill holes that have been drilled.

Vehicle detection

One important feature that can be used to localizing vehicles is the ability for a rock bolt
to monitor the presence of close by vehicles. This can be used for fine grain localization
of mobile machinery such as cars, trucks, etc. Figure 8 shows the raw and unfiltered
vibration signal from one rock bolt when a car was used in the vicinity. At 265 seconds
into the signal, the car’s engine was turned off which is clearly visible as a sharp drop
of signal amplitude. The plotted signal is the raw output from the sensor, without any
applied signal processing, such as filtering. By applying filtering techniques, the presence
of a nearby vehicle could be detected [27].

How larger vehicles, such as loaders and trucks, will be observed is currently unknown.
However, previous work performed within the iRoad project indicates that heavier vehi-
cles generate higher amplitude levels, as shown by Hostettler et al. [28].

Falling rock detection

Rocks falling from a tunnel’s ceiling are a clear indication of pending danger. When this
occurs, a collapse of the tunnel could happen, or lead to larger and heavier rocks falling
which could result in damage to vehicles and machinery as well as injuries on workers.

In order to see if the rock bolts could detect falling rocks, a simple experiment was
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Figure 9: Falling rocks detection

performed by dropping a loose rock weighing approximately 3-4 kg from around two
meters height down on the tunnel’s floor around 1.5 meters from the rock bolt. At 314,
323 and 332 seconds in the signal shown in Fig. 9, three spikes are clearly visible. This
indicates that an intelligent rock bolt can be used to detect falling rocks. When this
feature is combined with the wireless communication capabilities, this could be used for
a near real-time alarm system.

Strain test

A strain gauge sensor can be used to monitor stress in pillars, tunnels walls and ceilings.
Strain can be a good indication of how strong forces that are affecting a volume of rock.
The strain sensor is currently mounted at the rockbolt’s head, however this will severely
limit the amount of strain that can be detected by the sensor due to the fact that the
shotcrete will limit the forces to propagate along the rockbolt.

The output from the strain sensor, shown in Figure 10, also concludes this. For
better strain gauge sensor performance, the strain sensor must be re-designed. This is
considered as future work.

5 Future work

Some of the more prominent features that need more work are: efficient signal processing
of captured data, sufficient low-power operation on sensing, processing and communica-
tion, and integration with back-end mine monitoring systems. Performance of the used
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Figure 10: Strain gauge sensor output

sensors also needs more testing, especially the strain gauge which is challenging to ob-
serve in a mine due to the very high time constants and slow change rates. The mounting
of the strain gauge also needs more investigation. Another key issue that needs more
research is how the use of traditional Internet of Things protocols and technologies, which
were originally designed for very low data-rate transmission, with no or low real-time re-
quirement will behave when larger amounts of data must be streamed, i.e. from vibration
sensors, with high requirements on low-latency transmission. The impact of scalability
and security issues must also be investigated further. An interesting approach for self-
learning methods for signal processing proposed in [29] would be interesting to evaluate
for rock bolt usage. The fourth issue to explore is how strain and/or stress information
and vibration data can be successfully integrated in today’s monitoring systems.

In order to secure the communication and SOA model, the IPsec protocol must be
enhanced with a key exchange mechanism like IKEv2 [30]. A system for fine-grain access
control like Radius is also needed to be able to allow or deny specific clients to access
services.

6 Conclusion

The use of rock bolts in the mining industry is a well known approach for increasing
stability in for example tunnels, and thereby increasing safety for workers. However, what
has been missing is a method of keeping installed rock bolts under constant monitoring.
When compared to the process automation industry, where the use of sensors and SCADA
system is a commonly used, rock bolt monitoring has not been especially improved.

This paper has presented a novel method for rock bolt monitoring, and the design of an
intelligent rock bolt architecture with on-board sensing, processing and communication
capabilities. The intelligent rock bolt, which comprise of a standard rock bolt, sensors
and actuators, signal processing, data storage and wireless communication, can monitor
itself and send alarms when seismic activities are detected, or when different mining
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activities are observed. Since security is highly important, the rock bolts have also
been equipped with a security framework designed to provide tamper-free and secure
communication. The rock bolt can detect, at least but not limited to, the following
mining related activities:

• Deviation of strain on rock bolts

• Drilling

• Usage of mining machinery

• Falling rocks

This paper has also presented concrete test results from a mine-based field test using a
low-cost intelligent rock bolt as the measurement device. Results from the tests indicates
that a traditional rock bolt can be equipped with sensors, and that the sensors are capable
of detecting mining-related activities.

Test results also show that successful integration between low-power electronics and a
standard rock bolt is feasible. When all results presented in this paper are summarized,
it is clear that intelligent rock bolts can be used within the mining industry to produce
a better and safer working environment.
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EXIP: A Framework for Embedded Web

Development

Rumen Kyusakov, Pablo Puñal Pereira, Jens Eliasson and Jerker Delsing

Abstract

Developing and deploying Web applications on networked embedded devices is often
seen as a way to reduce the development cost and time to market for new target plat-
forms. However, the size of the messages and the processing requirements of today’s Web
protocols, such as HTTP and XML, are challenging for the most resource-constrained
class of devices that could also benefit from Web connectivity.

New Web protocols using binary representations have been proposed for addressing
this issue. Constrained Application Protocol (CoAP) reduces the bandwidth and pro-
cessing requirements compared to HTTP while preserving the core concepts of the Web
architecture. Similarly, Efficient XML Interchange (EXI) format has been standardized
for reducing the size and processing time for XML structured information. Nevertheless,
the adoption of these technologies is lagging behind due to lack of support from web
browsers and current Web development toolkits.

Motivated by these problems, this article presents the design and implementation
techniques for the EXIP framework for embedded Web development. The framework
consists of a highly efficient EXI processor, a tool for EXI data binding based on tem-
plates, and a CoAP/EXI/XHTML Web page engine. A prototype implementation of the
EXI processor is herein presented and evaluated. It can be applied to Web browsers or
thin server platforms using XHTML and Web services for supporting human-machine
interactions in the Internet of Things.

This article contains four major results: (1) theoretical and practical evaluation of
the use of binary protocols for embedded Web programming; (2) a novel method for
generation of EXI grammars based on XML Schema definitions; (3) an algorithm for
grammar concatenation that produces normalized EXI grammars directly, and hence
reduces the number of iterations during grammar generation; (4) an algorithm for efficient
representation of possible deviations from the XML schema.

Categories and Subject Descriptors: E.4 [Coding and information theory]: Data
compaction and compression; H.3.5[Online Information Services]: Web-based ser-
vices
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General Terms: Performance, Design, Algorithms, Standardization

Additional Key Words and Phrases: Information Exchange, EXI, XML, Data For-
mats, CoAP, Data Processing, XHTML, Embedded Systems, Internet of Things, Web of
Things

1 Introduction

Web technologies are rapidly expanding to networked embedded devices with studies
showing that in 2013 there were more Web-connected gadgets than people in the U.S.1

This process is expected to accelerate due to the increased IPv6 adoption rate and the
availability of small-sized, cheap, off-the-shelf hardware that is powerful enough to exe-
cute full-featured network stacks. Already now, the number of TCP/IP connected sensor
and actuator devices using low-power wireless technologies or even power-line communi-
cation is huge. The application areas cover home automation [1], energy management,
and industrial process monitoring and control [2].

With the increase in the number of devices, the requirements on their interfaces are
also higher. Consumers are demanding “smart” gadgets that are easy and intuitive
to deploy, configure, interact with, and integrate with other devices and systems. An
example from the home automation domain is a smart thermostat that can communicate
with the user’s smart phone to display the current temperature in the house along with
energy costs as well as control settings. It is becoming more common to equip the
traditionally simple sensor and actuator devices with additional diagnostics, logging,
and security capabilities. This phenomenon leads to developing more complex embedded
applications, which are often required to support Web connectivity for human-machine
interfacing. As the code base increases, so are the product cost and time-to-market for
new devices. The development and support for different hardware platforms becomes
especially challenging, and thus the need for a common development platform based on
established and globally adopted standards. The Web development has proved successful
in leveraging a set of global standards for unification of the development for front-end
tools and applications over a large number of desktop and mobile platforms. In addition,
ICT research as argued by [3] suggests that embedded computing will also benefit from
Web development platforms.

The trade-off between Web and native applications has been a turning point for
development strategies in the mobile market. As discussed by [4], Web applications are
cheaper to build, deploy, and maintain, but are often lagging behind in performance and
user experience when compared to the native apps. This gap is narrowing, thanks to
HTML5 and new Web toolkits such as Argos [5] which provides direct access to devices’
capabilities from JavaScript code. While the app stores made the management of native
applications much easier and user-friendly, their main drawback remains - supporting

1According to data from research firm NPD Group
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different platforms often requires substantial rebuild of the code base that needs to be
kept up-to-date with new versions of the different operating systems. As Charland et
al. conclude, one size does not fit all, and there are use cases when it is better to use
one or the other approach. While there are a number of differences between the smart
phone and the embedded systems segments, it is possible to draw some similarities and
list a number of applications where building Web applications is more beneficial even
for resource-constrained hosts when compared to developing proprietary solutions. The
simplified use case presented in Section 5, which demonstrates a human-machine interface
with a sensor platform, provides an example of such application. In this scenario, the
user interface is implemented as dynamic Web application based on CoAP/EXI/XHTML
and using the EXIP framework.

The approach of using standard binary protocols for enabling Web connectivity for
constrained hosts differs from the most common methods described in the literature. The
state-of-the-art solutions to the problems of embedded Web development (e.g., memory,
network, and processing constraints) can be classified into two groups. The methods
in the first group rely on powerful gateway devices that translate the standard Web
protocols to some lightweight messaging framework, and vice versa. An example of this
approach is the work by [6], which describes a gateway architecture for providing Web
connectivity to highly resource-constrained nodes. The methods in the second group
focus on implementing efficient and stripped-down version of the standard text-based
Web protocols. High-impact research results based on this method are the techniques for
implementing an efficient HTTP server for embedded devices presented by [7] and [8], as
well as the small-footprint XML Web service implementation by [9].

Using text-based protocols that rely on simple character encoding such as ASCII, was
important requirement in the early days of distributed computing systems. During that
time, the ability to debug the interactions between the systems with one’s bare hands
was crucial to the acceleration of the adoption of the protocols. Nowadays, practically
all text editors and development tools support UTF-8 character encoding. The tools
also parse the XML documents before printing them to the screen to support syntax
highlighting. Proper tool support opens up new possibilities for efficient representation
of the information on the wire. The new binary encoding schemes are transparent for
the user - if, in any case, the XML documents are parsed before printing them, then
it is better to use faster, binary encoding which is easier to process than text-based
representation. However, implementing highly optimized binary coding schemes is much
more challenging than processing text-based streams. Even more challenging, is the use
of such binary processors on resource-constrained embedded devices where the memory
footprint and CPU usage are crucial. As an example, a common way to compress the
size of an XML document is by indexing frequently used tags and value items. Instead of
encoding each occurrence in the stream, the repeated information items are represented
by their index. Using more extensive indexing increases the compression, but also makes
the memory footprint required to store the indexed information larger. Providing efficient
methods to build and store the indexes is just one example of optimization that is needed
for running binary encoding schemes on embedded hosts.
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In this work, we present design and implementation strategies for running an Efficient
XML Interchange processor on embedded devices for enabling Web connectivity through
RESTful interface that is based on Constrained Application Protocol. The RESTful
interface can be used for human-machine interactions with Internet of Things hosts as
well as for implementing embedded distributed systems based on the Service Oriented
Architecture, as discussed by [10].

Unlike XML, the EXI specification mandates the use of schema-specific parsing [11]
when the EXI document is encoded with schema knowledge i.e. using schema mode. In
order to address all possible use cases, the presented EXI processor supports both the
schema and schema-less modes of operation. This is achieved by using dynamic state
machine abstraction that can evolve through addition of new states and state transitions.
The main benefit of using static state machines, as in the EIGEN [12] and libEXI [13]
libraries, is the small footprint and hence the ability to implement highly optimized,
dedicated EXI processors. In order to efficiently support a static mode of operation -
in other words, strict schema processing with no deviations, the EXIP library needs to
be configured to strip the code responsible for evolving the state machines. This can be
done easily during compile time due to EXIP modular architecture.

One important component of EXI implementations supporting schema-enabled pro-
cessing is the automatic generation of the state machines based on XML schema language
definitions. These definitions are used to construct a set of formal grammars that describe
a particular XML language which is then recognized by the generated state machines.
EXIP includes an optimized and lightweight grammar generation utility that can be exe-
cuted efficiently at run time. This allows it to support dynamic XML schema negotiations
even on embedded hosts. The main contributions of this article are the grammar gener-
ation algorithms that are the core of the high performance of this utility. To the best of
our knowledge, all other EXI implementations use an external library for processing the
XML Schema definitions that are used for the grammar extraction. A commonly used
external XML Schema library is Apache Xerces. However, its usage for embedded Web
development is limited to static compile-time generation of the EXI state machines.

A prominent research work that is based on the approach of compile-time generation
of the state machines is presented by [14]. The authors show that the use of EXI for
embedded Web service development brings substantial benefits in hardware utilization
(network, CPU, RAM and programming memory). Moreover, their work includes the
design of a Web service code generator based on Simple Object Access Protocol (SOAP)
and the HTTP/EXI/SOAP protocol stack. Promising future research work, as stated by
the authors of that study, is to add support for CoAP RESTful Web service interface to
the proposed generator. As such, the EXIP framework described herein is extending and
further specifying the suggested CoAP RESTful Web service generator.

EXI is not the only possible data format that can meet the requirements of the
embedded Web programming, but it has been shown to provide the highest efficiency
compared to rival binary XML solutions [15]. Lightweight text formats such as JSON
and Comma-separated values (CSV) or binary encoding schemes (ASN.1, BSON, Pro-
tocol Buffers, Thrift etc.) are also capable of representing very efficiently structured
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information. However, the lack of formally defined mapping between these technolo-
gies and the XML Information Set [16] makes them unable to guarantee interoperability
with existing Web technologies and protocols such as XHTML, Scalable Vector Graphics
(SVG), Extensible Messaging and Presence Protocol (XMPP), and RSS feeds to name a
few.

The initial goal of the EXIP library was only to provide efficient implementation of
an EXI processor for embedded systems. Since the initial version of the prototype EXI
processor, the EXIP library was used in a number of research projects and prototypes
as in [17] and [18]. Based on the recurring need of higher processing efficiency and
Web integration, the scope of the EXIP project has now extended, and new processing
algorithms are employed. In addition to the grammar generation algorithms that are part
of the EXI processor prototype implementation, this work defines the overall architecture
of the EXIP Web development toolkit. The architecture consists of three main modules:
the EXI processor library, EXI data binding, and the CoAP/EXI/XHTML Web page
engine. Their functionality, required properties, and overall design in the context of
embedded Web development are discussed in Section 2. Detailed descriptions of each of
these modules and the associated research questions that are investigated are presented
in Sections 3, 4, and 5, respectively.

2 Background

Optimizing the hardware utilization by the Web protocols is a key requirement for their
application on embedded platforms. Very often the connected devices have limited mem-
ory (both RAM and programming memory), and use low-cost CPUs. If the device is
battery powered, the communication overhead is a main contributor to the power con-
sumption that needs to be carefully modeled in order to guarantee the intended up-time
periods. Simulation tools such as PowerTOSSIM [19] can be employed to highlight areas
of the protocol implementations that are mostly responsible for draining the battery.
Among the use of radio duty cycling and CPU sleep modes, reducing the number of
packets sent and received is another way of cutting the power consumption, especially in
wireless applications.

W3C performed an extensive evaluation of the EXI format [20],[15] that shows sub-
stantial improvements in compactness compared to text encoding as well as other XML
binary formats. Additionally, EXI has superior processing performance compared to plain
XML. Both the compactness and processing efficiency depend heavily on the structure of
the encoded documents and the options used for processing. For example, the use of XML
schema information during encoding and decoding can cut the size of small documents
more than 50 %, as the element and attribute qualified names are encoded as indexes
instead of strings. This allows for substantial reduction of the number of packets required
for communication of structured information over the network, and thereby minimizes
the power consumption. Existing Web technologies that are formally described using
XML schema language such as XHTML, for example, can then be efficiently represented
for use in embedded applications.
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Figure 1: Overview of the tools and technologies for embedded Web development that
are based on standard binary protocols. The tools that are the main focus of this work
are marked with red ellipses.
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Compaction and processing improvements of CoAP compared to HTTP are also sig-
nificant, as reported by [21]. Moreover, the asynchronous design of the CoAP protocol
makes it much more suitable for event-driven interactions. Publish/subscribe protocols
are often preferred in embedded systems, as they provide better hardware and network
utilization compared to polling schemes that are used by HTTP, for example.

Figure 1 provides an overview of the state of the art of embedded Web development
along with a high level architectural view of the use of binary protocols for network com-
munication and information exchange. The suggested components of the architecture are
grouped depending on their role - client-side, networking layer, and server-side execution;
and their application domain - user tools and applications, technologies/protocols/spec-
ifications, and development tools. The goal of this categorization is to show how the
work presented in this article relates to the current technologies and applications, and to
further motivate the need for this research.

As shown in Figure 1, client-side user applications of the embedded Web include
browsers, graphical Web clients (HMI devices), embedded Web services, and proxy de-
vices translating the binary Web protocols to their text-based counterparts. The tech-
nologies to implement these client-side user applications are CoAP client, EXI parser,
lightweight client-side scripting engine, and EXI/XHTML/CSS rendering engine. The
concrete development tools that can be used for implementing these technologies are the
EXIP parser library, which is the primary objective of this work, EXI/XHTML to DOM
translator, and CoAP libraries such as libcoap [21], Erbium [22] and Californium [23].

Similarly, the networking layer shows different wired and wireless network stacks
and protocols grouped according to the OSI model along with developing tools used for
debugging.

The server-side is represented by resource-constrained embedded devices that are
conforming to the thin server architecture suggested by [23]. The server technologies
include CoAP server, EXI serializer, and EXI/XHTML page engine. The proposed de-
velopment server-side tools are the EXI data binder and CoAP/EXI/XHTML Web page
engine that are described in detail in Sections 4 and 5 of this work. Other server-side
tools for embedded Web development are again, the CoAP libraries libcoap, Erbium, and
Californium.

EXI

EXI data format significantly reduces the size of XML when stored on disk or trans-
ferred over the network and also speeds up the parsing and serialization. According to
[15] the compression level varies between 1 % of the original size for large and sparse doc-
uments with compression and schema options enabled to 95 % for schema-less encoding
of very small and dense documents. Nevertheless, EXI format has few drawbacks that
are inherited from XML and must be taken into account in the discussions that follow
in this article. XML notation and semantics are perceived as complex both for humans
to understand but also for machines to process which stems from the design goal of the
format to be flexible and easily extendable for application in variety of use cases. This
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flexibility creates a lot of special cases and exceptions that must be specifically handled
with if-then-else statements during serialization and parsing. While EXI is very efficient
in removing the redundancy in the XML syntax, it does not simplify the processing -
it merely speeds it up. Besides, EXI adds another level of flexibility by introducing en-
coding options that can be used to influence the level of compression, processing speed
and RAM usage during parsing and serialization. Providing support for all possible EXI
options requires large and complex code base that can hardly fit into the programming
memory of a highly resource constrained embedded device. Therefore, the application of
EXI on such platforms often requires defining a profile of the EXI specification which re-
stricts the supported EXI options to particular values and predefines the XML Schema.
Different EXI profiles and how they are supported by EXIP are further discussed in
Section 3.

Selecting the values for the EXI options is often a trade-off between memory usage,
processing speed and level of compression (for example when setting the values of val-
uePartitionCapacity, valueMaxLength and compression options). Furthermore, as these
parameters heavily depend on the structure of the documents and even on the schema
design (as shown by [20],[15]) it is difficult to predict the level of efficiency when applying
EXI on a particular set of XML documents without performing an extensive empirical
study.

EXI theoretical foundations

The goal of this section is to provide the necessary background information for supporting
the discussions on the EXI processor architecture and algorithms for embedded processing
that follow without going into details of the inner workings of the EXI specifications.
For in-depth overview of the EXI format, the reader is advised to refer to the W3C
specification [24] and white paper [25].

An EXI stream is a sequence of events that describe the content of the XML docu-
ment. These events are analogous to the streaming XML events and denote the start of
an element or attribute, value items, closing tags and so on. For achieving higher com-
pactness, the events are represented by a simplified Huffman coding [26] scheme. The
occurrence of each event in the EXI stream is controlled/described by a set of formal
grammars. The EXI specification very broadly identifies the formal grammars used as
being in restricted Greibach normal form [27]. Support for the theoretical fitness of the
discussed grammar generation algorithms is given in the next paragraph. It provides
more concrete classification of the EXI grammars.

Unlike Greibach grammars, the EXI grammars have at most one non-terminal symbol
on the right-hand side of the grammar productions. Therefore, all EXI grammar rules
are in one of the following two forms: 1) Z → aY or 2) Z → a ,where Z and Y are
intermediate (non-terminal) symbols and a is a terminal symbol. As all grammar rules
are in one of these two forms, the EXI grammars are also regular and in particular right
linear grammars as they require exactly one terminal on the right-hand side and at most
one non-terminal which is at the end of the grammar rule. The regular grammars are
strict subset of the context-free grammars according to the Chomsky hierarchy, and as
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every context-free grammar can be represented in Greibach normal form [27], they are
also a subset of the Greibach grammars.

Identifying the EXI grammars as regular grammars provides much more insight into
their properties. For example, context-free grammars define very broad class of languages
and are equivalent to pushdown automaton (PDA), while regular grammars are equivalent
to nondeterministic finite automaton (NFA). Moreover, the EXI grammars are simple
a.k.a. s-grammars [28] as each pair Z → a... appears only once in each EXI grammar.
Based on this constraint, the EXI grammars are also unambiguous and support linear
parsing time by deterministic finite automaton (DFA).

The process of converting a set of XML Schema definitions to EXI grammars includes
four steps:

1. Create a set of proto-grammars that describe the content model according to the
schema. The EXI proto-grammars are strictly context-free grammars that are
neither regular nor in Greibach normal form as they allow unit productions: Z →
Y where both Z and Y are intermediate (non-terminal) symbols.

2. Normalize the proto-grammars to EXI grammars. The normalization includes
simplification of the proto-grammars by removal of the unit productions. This
creates regular grammar that can be ambiguous, in other words, lacking unique
leftmost derivation tree for every input. In this case a second simplification is per-
formed in which the ambiguous regular grammars are transformed to unambiguous
s-grammars.

3. Assign event codes to grammar productions

4. Extend the EXI grammar with additional productions that describe the possible
deviations from the XML Schema

Section 3 describes an extension to the algorithm for creating proto-grammars from
schema definitions [step (1)] that guarantees that the resulting grammars are regular
s-grammars. This allows for avoiding the normalization of the proto-grammars as a
separate second-step process.

Section 3 describes a modified version of the algorithm for augmenting the EXI gram-
mars for handling schema deviations [step (4)]. The new version of the algorithm allows
the removal of redundant grammar productions that are otherwise required by the ap-
proach described in the EXI specification.

Related work for XML grammars

The formal grammars used in the EXI specification express the constraints defined in
the XML Information Set [16] and are not specific to EXI format itself. As such, the
formal models and theoretical results developed for XML are also valid for EXI. There
are two main theoretical models for studying the properties of XML languages and XML
schema languages. The first model treats XML instances as strings and schema languages
as formal languages that define particular sets of strings representing the possible XML
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instances that are valid according to a certain schema. This model is based on context-
free (word) grammars and their more restricted forms such as parenthesis and balanced
grammars as presented by [29].

In the second model, the XML instances are treated as trees and the schema languages
as formal languages defining sets of trees representing the valid instances according to a
certain schema [30], [31]. The nested structure of the XML forms ordered unranked trees
i.e. trees with nodes allowed to have any number of ordered child nodes. The theoretical
foundation of this model are regular tree grammars which can be seen as a generalization
of regular word grammars. The tree model is appropriate when studying the expressive
power of different XML schema languages as shown by [32]. In this work, Murata et al.
present a formal classification and comparison between DTD, W3C XML Schema, and
RELAX NG based on the regular tree grammar theory.

Context-free word languages and regular tree languages are closely related. For exam-
ple, it is proven that the set of derivation trees for a language defined by a context-free
word grammar forms a regular tree language [33]. In addition, Brüggemann-Klein et
al. show that tree grammars, and even more generally hedge grammars, are effecively
identical to balanced grammars and that balanced languages are identical to regular
tree languages, modulo encoding [34]. These results demonstrate that the two models
are equally expressive and can be used interchangeably when studying or characterizing
languages based on XML Information Set.

The discussions in this paper are following the first model, because the EXI specifica-
tion defines the XML content with a set of regular word grammars as already presented in
Section 2. For that reason, all grammars in this work are assumed to be word grammars
even if not explicitly stated.

Instead of defining the terminal alphabet in terms of ASCII or UTF-8 characters,
which is commonly used in word grammars, the EXI grammars use XML events (start
element, attribute definition, end element etc.) as terminal symbols. This provides
high level description of the XML content model without affecting the theoretical results
developed for regular grammars. As XML Information Set defines context-free language
parsed by pushdown automaton, a single regular grammar (a single DFA) is, in general,
unable to represent (parse) the content of a whole XML document. Using a single
regular grammar (or a single DFA) for describing (parsing) the whole content of an
XML is possible when certain restrictions on the document structure are met by the
XML/EXI instances. For example, this approach is used for efficient processing of SOAP
Web services that are ordered XML documents with predefined schema [35]. A less
restrictive form of schema-specific XML parsing that uses an extended version of PDA is
presented by [11]. Unlike these approaches, the EXI specification defines the parsing and
serialization of XML Information Set documents based on a stack of regular grammars.
Each regular grammar in the stack describes the content of particular XML element.
The stack of grammars is used to model the nesting of elements (e.g. parsing a nested
element equals adding its regular grammar on the stack) similarly to the role of the stack
in the PDA.

For illustrating how the grammar stack is used during processing in EXI it is conve-
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nient to represent the XML Information Set in terms of extended context-free grammars
(ECFG) which describe exactly the context-free languages and are the basis for DTD
schema language [36]. In an extended context-free grammar each right-hand side of a
production consists of a regular expression which is in turn equivalent to regular grammar
or finite automaton. Consider the example XML instance and its corresponding ECFG
shown in Table 1:

Table 1: Extended context-free grammar for a sample XML instance where element
<notebook> can have zero or more <note> elements with optional <subject> and
mandatory <body>. The following operators are used in the regular expressions in
ECFG: . - denotes concatenation, * - Kleene star operator (zero or more occurrences), ?
- zero or 1 occurrence and [ ] - matches a single character from the specified set within
the brackets. The non-terminal symbols are in uppercase letters.

Sample XML Corresponding ECFG
<notebook>

<note>
<subject>Sample</subject>
<body>XML Instance</body>

</note>
</notebook>

NOTEBOOK → <notebook>.(NOTE)*.</notebook>
NOTE → <note>.(SUBJECT)?.BODY.</note>
SUBJECT → <subject>.[UTF-8 characters]*.</subject>
BODY → <body>.[UTF-8 characters]*.</body>

The set of regular grammars, used during processing of EXI documents, corresponds
to the set of regular expressions in ECFG which describe the content of all possible
elements. At every step the EXI processor uses the regular grammars on top of the
grammar stack to process the content of the current element. Starting of a nested element
involves pushing its grammar to the stack and closing an element pops its grammar from
the stack. In this way, parsing the XML document shown in Table 1 involves: (1)
parse the content of <notebook> element according to the regular grammar for that
element which is initially the only grammar in the stack; (2) the start of the nested
<note> element requires pushing its regular grammar on the stack and parsing its content
according to that grammar; (3) on start of the nested <subject> element its grammar is
pushed to the stack and used for parsing; (4) When all the content of <subject> element
is parsed and there are no more nested elements at this level pop its grammar from the
stack and continue processing according to the <note> grammar that is currently on
the top of the stack; (...) the same procedure is repeated for the rest of the elements in
this example.

Unlike DTD which defines a local language, the language defined by the set of regular
grammars in EXI is a single-type language that corresponds to the expressive power of
W3C XML Schema [32]. This essentially means that two or more elements sharing the
same name but having different types are evaluated using different regular grammars that
match their type. This differs from DTD where the name of an element uniquely identifies
its content model (or, equivalently, the regular expression or the regular grammar of its
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content).

CoAP

The Constrained Application Protocol [37] is specially designed for use with resource-
constrained hosts over low-bandwidth network links. CoAP functionality resembles the
HTTP request/response interaction model, and is based on the Representational State
Transfer (REST) architecture of the Web [38]. CoAP also supports well established
concepts of the Web such as URIs and Internet media types. This allows for transpar-
ent translation between CoAP and HTTP traffic while enabling Web interactions with
embedded systems.

CoAP fulfills the requirements of the embedded domain such as providing support for
asynchronous message exchange, multicast capabilities, lightweight discovery mechanism,
very low overhead, and implementation simplicity. This is possible by using UDP as a
transport protocol with optional reliable unicast support and Datagram Transport Layer
Security (DTLS) instead of TCP and TLS. The use of UDP enables the implementation
of CoAP lightweight publish-subscribe mechanism [39] supporting dynamic content ex-
change between embedded servers and Web clients. The built-in asynchronous exchange
of events encoded with EXI provides features similar to the AJAX framework, but with
much lower cost in terms of network bandwidth and hardware requirements for the hosts.

Application areas that would greatly benefit from an open and standard way to con-
nect embedded hosts to the Web include various Internet of Things and machine-to-
machine (M2M) applications such as home automation and energy management.

3 EXI Processor Design and Implementation

Deploying EXI-based RESTful Web services on resource-constrained hosts requires a
modular implementation of the EXI processor library that can support different compile-
time configurations depending on the application scenario. For example, some target
platforms can make use of hash tables for fast lookups in the string tables, while others
have too little RAM for that. In other cases, certain EXI options (e.g., compression,
random access, etc.) are not allowed, and hence the code for processing them can be
pruned from the library.

In this section, we present the modular design of the EXIP library [40] that enables
compile-time profiling of the code base. As shown in Figure 2, by using fine-grained
components that have low interdependencies, it is possible to define different profiles of
the library that support a variety of use cases. Such profiles can be application-specific
(e.g., full-featured, most-restricted, etc.), or defined as part of different communication
standards - EXI Profile for limiting usage of dynamic memory [41], Vehicle to grid com-
munication interface (ISO 15118), or other energy management standards [42] such as
Smart Energy Profile 2.0 [43], and OpenADR, for example.

The encapsulation of the components’ source code is done with the standard mecha-
nisms available in the C programming language - splitting the code into different header
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Figure 2: EXIP modular architecture and application profiles

and source files, and hiding the implementation in static functions, strictly avoiding the
use of global variables and, where needed, using conditional C preprocessor macros. This
enables the implementation of a simple and easy-to-maintainMakefile build system which
can track the dependencies between the components. With this build system in place
the developers can cherry-pick only the components that are needed during compile time
which allows using the EXI Processor library for different application profiles or contexts.

Problem Formulation

The first step in supporting the requirements of the EXI-based embedded Web program-
ming is to provide efficient Application Programming Interface (API) to encode and
decode EXI streams. Already established XML APIs such SAX, DOM, and StAX are
widely used in Java processors, but are shown to provide less than optimal efficiency for
resource-constrained devices [44]. Other requirements of the EXI processor implementa-
tion include a small footprint and an easy-to-use code base that executes quickly, and
consumes as little RAM as possible while being portable across a wide range of embedded
platforms. Although the main goal of the EXIP library directly follows from these require-
ments, detailed description and evaluation of the degree to which these requirements are
met is out of the scope of this paper. The reason for excluding these discussions is the low
research value of the implementation technicalities that are involved in writing efficient
and portable C code, a subject which is better presented by the EXIP library developers’
documentation2. Instead, this section is focused solely on the grammar generation func-
tionality that is an essential part of a number of use cases connected to dynamic/runtime
exchange of schema information. The need for such runtime negotiation of the document
structure is evident in supporting versioning of the schema documents and implementing
generic Web services such as information logging and archiving, data visualization of

2Available at http://exip.sourceforge.net/
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uncategorized information, dynamic Web service composition, and peer-to-peer services.
A concrete example where the XML Schema documents are processed during runtime to
generate EXI grammars is the specification draft for using EXI over Extensible Messaging
and Presence Protocol (XMPP) [45].

The dynamic processing of XML schema information can also be employed in cases
where no schema information is available to describe a particular set of XML documents.
In such cases the XML schema can be inferred from the set of available XML examples,
and used to enable more compact EXI encoding. Both the schema inference and the
generation of EXI grammars can be done at runtime. Example approaches for schema
inference include learning of deterministic regular expressions [46], as well as learning
chain regular expressions, in the case of the Trang open source software library [47].

Efficient EXI Grammar Generation

The standard way of generating EXI grammars from XML Schema is to rely on a generic
XML Schema parser/validator such as the Apache Xerces library. The role of the XML
Schema parser is to load the schema definitions into appropriate structures in the memory.
These structures are then converted to EXI grammars based on the algorithms specified
in the EXI specification. The EXIP library takes a different approach by including a
dedicated EXI grammar generator without external dependencies on schema parsers,
which uses a modified version of the algorithms described in the EXI specification.

Many embedded targets use EXI because XML processing is too heavy to support. In
such cases, the dynamic generation of the EXI grammars cannot be achieved in a standard
way, as it requires processing text-based XML schema definitions. One possible solution
is to use proprietary encoding for the EXI grammars, which is against the principles of
the Web, and will still require some loading code that expands the programming memory
footprint.

The dedicated EXI grammar generator solves this problem by using two simple ideas.
First, the XML Schema document is itself an XML document that can be represented in
binary using EXI, thus reducing its size and improving the loading time. Second, once
represented in EXI, the XML Schema document can be parsed by the EXI parser itself
without the need of an external library for that; in other words, the EXI decoder code is
reused to extract the XML schema definitions.

EXI Grammar Concatenation and Normalization

The EXI specification defines an algorithm for building a set of context-free grammars
that directly correspond to the definitions in the W3C XML Schema specification. These
grammars are called proto-grammars as they are intermediate representation which is
only used during EXI grammar generation. The process of building proto-grammars is
roughly as follow:

1. a set of simple proto-grammars are defined that describe the content model for each
atomic XML schema definition (attributes, simple types, element terms, wildcard
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terms)

2. the proto-grammars for composite schema definitions are built by using the proto-
grammars of their sub-components. For example, the <sequence> compositor
equals to concatenation of the proto-grammars of its child elements and<choice> com-
positor equals to the union of the proto-grammars of its children.

The next step in the process of building EXI grammars is to normalize the proto-
grammars such that all unit productions (Z → Y where both Z and Y are intermediate
symbols) are removed and there are no ambiguities in the grammars. This essentially
converts the proto-grammars to EXI grammars that are then used for processing EXI
documents conforming to a schema.

The review of the algorithm for creating EXI proto-grammars from XML Schema
definitions in section 8.5.4.1 EXI Proto-Grammars of the EXI specification leads to the
conclusion that the only way for creating proto-grammars that contain unit productions,
and hence are not regular, is as an output of the grammar concatenation operator (see
8.5.4.1.1 Grammar Concatenation Operator of the specification). However, all atomic
grammars used as an input to the concatenation operator are regular and from the closure
property of the regular languages under concatenation [48] we know that the resulting
output grammar can also be presented in a regular form.

This section defines an extended grammar concatenation operator that produces reg-
ular EXI grammars, thereby removing the need for additional normalization of the gram-
mars by removal of unit productions. The extended operator depends on the following
recursive definition:

DEFINITION: Weak equality of grammar productions The grammar produc-
tion A : Z1 → a1Y1 and the grammar production B : Z2 → a2Y2 are weakly equivalent
if:

1. a1 ≡ a2 and Y1 ≡ Y2

OR

2. a1 ≡ a2. Let the sets of productions in the EXI grammar that have Y1 and Y2

as a left-hand side be denoted as {Y1} and {Y2} respectively. The two sets have
the same cardinality, and each production P ∈ {Y1} is weakly equivalent to a
production in {Y2}.

The grammar concatenation operator defined below is very similar to the one in the
EXI specification in the sense that it creates a new grammar given two input grammars.
The new grammar accepts any set of symbols accepted by the left operand followed by
any set of symbols accepted by the right operand of the concatenation operator. The
main difference is that the operator defined here produces regular EXI grammars, given
its operators are also regular grammars.
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DEFINITION: Extended grammar concatenation operator Given two EXI
Grammars L(Nl, T, Sl, Pl) and R(Nr, T, Sr, Pr) where Nl and Nr are finite sets of non-
terminals, T is the set of terminal symbols representing the EXI events, Sl ∈ Nl and
Sr ∈ Nr are both designated initial symbols, and Pl and Pr are the sets of grammar
productions in L and R respectively. All grammar productions in Pl and Pr are in one of
the following two forms: Z → aY where a ∈ T and a �= EE or Z → EE where EE ∈ T
is the terminating end element EXI event.

The result of applying the grammar concatenation operator to L and R, L
⊕

R, is
a new grammar C(Nl ∪ Nr, T, Sl, Pc) where the set of productions Pc is defined as fol-
lows: each production l ∈ Pl, where l �= Z → EE for every Z ∈ Nl, is part of Pc; each
production r ∈ Pr, where r �= Sr → aY for every a ∈ T , and Y ∈ Nr is part of Pc.
For each production el ∈ Pl, where el ≡ Z → EE for every Z ∈ Nl, the following set
of productions is also part of Pc: the set {Z → aY } where a production sr of the form
Sr → aY exists in Pr, and sr is not weakly equivalent to any production in Pl that
has Z as a left-hand side non-terminal symbol. There are no other productions in Pc

besides those defined with these rules.

When the extended concatenation operator is used for XML Schema 〈sequence〉 defi-
nitions, the resulting regular grammar might contain productions with duplicate terminal
symbols i.e. the result can be an ambiguous regular grammar. In this case the algorithm
in section 8.5.4.2.2 Eliminating Duplicate Terminal Symbols of the EXI specification
should be further applied to the resulting concatenated EXI grammar. It is worth noting
that these cases are extremely rare and can only occur when optional element particles
are allowed to repeat more than once. Example content model that contains duplicate
terminal symbols and leads to the creation of ambiguous regular grammar is the following:

<sequence maxOccurs=”2”>
<element name=”a” maxOccurs=”3”/>
<element name=”b” minOccurs=”0”/>

</sequence>

Efficient Representation of Schema Deviations

The EXI specification defines an algorithm that augments the EXI Grammars with addi-
tional grammar productions which are used to handle possible deviations from the XML
schema. Such deviations are often used to add extensions to a particular protocol or
handle cases that require additional information in the XML documents. Furthermore,
certain XML events that are not explicitly declared in the schema may also occur in the in-
stance documents without making them invalid (e.g. comments, processing-instructions,
type casts using type attribute from http://www.w3.org/2001/XMLSchema-instance

namespace).
One constraint that must be followed when adding productions to the normalized EXI

grammars is that addition of productions allowing attribute deviations must only occur
before the element content - otherwise the grammars describe a document which is not
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well formed. The algorithm as described in the EXI specification (see 8.5.4.4.1 Adding
Productions when Strict is False [24]) depends on a set of redundant productions in the
normalized EXI grammars in order to fulfill this requirement. The redundant productions
are a copy of the productions describing the possible states for starting the content of
an XML element that has wildcard attributes or a mixed-content model. An example of
such redundant productions is the EXI grammar describing element fragments (see 8.5.3
Schema-informed Element Fragment Grammar [24]).

The algorithm described in this section augments the EXI grammars for accepting
schema deviations without having a dependency on redundant productions in the input
EXI grammar. The algorithm is presented by highlighting only the modifications and
differences with comparison to the algorithm in the EXI specification. An example of
applying the modified algorithm is given in Appendix A.

The algorithm depends on the definition of a content non-terminal symbol, and an
index called content index for each input EXI grammar. The assignment of content
index and content to a non-terminal symbol is identical to the process defined in the
EXI specification, and a prose description of it is given below:

DEFINITION: content non-terminal symbol The content non-terminal sym-
bol is the symbol that indicates that all attributes (AT terminal symbols) are already
encoded. The content non-terminal symbol represents all the states for starting the
encoding of the content of a particular XML element.

DEFINITION: content index Assign index numbers to all non-terminal symbols
such that the designated initial symbol of the EXI grammar has index 0 and all other
indexes are larger than 0. The index of the content non-terminal symbol, in other
words, the content index, is then the smallest index that is larger than the indexes of
all non-terminal symbols that are used as a left-hand side in grammar productions with
AT terminals.

DEFINITION: Grammar augmentation for schema deviations Create a copy
of all grammar productions that have the content non-terminal on the left-hand side
if and only if there are AT productions that have the content non-terminal symbol on
their right-hand side or the content index is 0. The copy of the content non-terminal
symbol - content2 if available, is inserted just before the content i.e. it has index of
(content index - 1). In the case when the content index is 0, that would mean that
the content2 is now the entry non-terminal symbol of the grammar. After the copying,
there should be no productions with content2 non-terminal on the left-hand side that
have content2 on their right-hand side - instead they should have only content. All
AT productions that have a content non-terminal symbol on their right-hand side are
changed to point towards content2 instead.

Apply the procedure in 8.5.4.4.1 Adding Productions when Strict is False
[24] while applying the following modifications to the algorithm:
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• The designated initial symbol of the EXI grammar is changed to content2 when
content index is 0.

• Change each occurrence of content with content2 and vice versa, that is, each
occurrence of content2 with content.

• If there is no content2 non-terminal, then do not perform the procedure for it and
assume the content2 index is smaller than the content index, but larger than
the indexes of all non-terminals that are used in AT productions.

Performance Evaluation

The goal of this section is to evaluate the performance of the dedicated EXI grammar
generator implemented as part of the EXIP library. The grammar generator accepts EXI
encoded XML Schema definitions as an input, and uses the extended grammar concate-
nation operator and the algorithm for efficient representation of schema deviations. The
measurements in this section are indicative and aim to compare the execution time and
memory usage of grammar generation on real-world data. As the core contribution of
this work is in the grammar generation utility, this section does not evaluated the overall
EXI processing performance. Measurements of the EXI parsing speed are included only
to the extent needed to put the grammar generation evaluation in context.

Description of the test setup A set of 5 XML schema documents were used for
decoding 15 instances (XML examples that conform to the schema; 3 instances per each
schema document) by 3 different EXI processors. Decoding in this experiment refers to
converting a binary EXI file to its text-based XML representation. The EXI processors
are EXIficient v0.9.1 Java [49], OpenEXI v1.0238.0 Java [50], and EXIP v0.5.3 C [51].
At the time of writing this article - June 2014, there is one more open source EXI parser
- WS4D-uEXI3. WS4D-uEXI is written in C and is designed for constrained embedded
devices. It is not included in this comparison as it uses EXIficient library for building
the EXI grammars at compile time and therefore does not support runtime grammar
generation [52]. Moreover, WS4D-uEXI implements a subset of the EXI specification
and its current version (SVN r2) is unable to decode some of the EXI instances in this
evaluation due to missing features.

The evaluation uses the following XML schema documents: netconf.xsd4, SenML.xsd5,
sep.xsd6, OPC-UA-Types.xsd7, and XMLSchema.xsd8. All of them were accessed from
the local hard-drive, including the imported XML schema files, so there were no depen-
dencies on the network performance.

3http://code.google.com/p/ws4d-uexi/
4Network Configuration Protocol: https://www.iana.org/assignments/xml-

registry/schema/netconf.xsd
5Sensor Markup Language: http://tools.ietf.org/html/draft-jennings-senml-10
6SEP2: http://www.zigbee.org/Standards/ZigBeeSmartEnergy/SmartEnergyProfile2.aspx
7OPC-UA: http://opcfoundation.org/UA/2008/02/Types.xsd
8Schema for XML Schema: http://www.w3.org/2001/XMLSchema
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Figure 3: Grammar generation execution times for each XML Schema test case. The
averaged times per XML schema are given on the logarithmic Y axis for each of the
tested EXI processors - EXIficient (leftmost column, forward slash hatching), OpenEXI
(middle column, backslash hatching) and EXIP (rightmost column, grid hatching). Each
bar in the chart represents the execution times when explicit optimizations are applied
(lighter colored part of the bar) and when no optimizations are applied.

The tests were executed on a desktop PC (Intel(R) Core(TM)2 Duo CPU E8400 @
3.00GHz, 4GB RAM @ 1067 MHz) running 32-bit Linux Ubuntu 13.10. The version
of the Java Virtual Machine (JVM) used for running EXIficient and OpenEXI is Java
HotSpot(TM) Server VM 1.7, and the C compiler used for EXIP is GCC 4.8.1.

Two distinct measurements of the execution time were performed for each EXI pro-
cessor: (1) the time it takes for loading an XML Schema and converting it to EXI
grammars, and (2) the time it takes to generate the EXI grammars as well as decode
a sample XML instance. The time was measured using System.nanoT ime() in Java
and clock gettime() in C, in other words, we measured wall-clock time which can vary
depending on the external load of the system. In order to get comparable results, the
tests were executed ensuring similar conditions on the system load, and taking the mean
value of 300 measurements. Moreover, the mean value is calculated for two distinct runs
of the test framework - one with optimizations and one without applying optimizations.
In the unoptimized case the Java processors run on a ”cold” JVM i.e. the code is exe-
cuted for the first time on the VM and hence the classes for grammar generation and
instance decoding are loaded at runtime. Also the ”cold” JVM has smaller chance for
applying run-time optimizations such as Just-In-Time (JIT) compilation. Conversely,
the optimized case uses ”warmed-up” JVM where the tests are run 5 times on the JVM
before the measurement are taken. The EXIP processor is compiled with −O0 flag for
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Figure 4: Grammar generation and instance decoding execution times for each XML
Schema test case. The averaged times per XML schema are given on the logarithmic Y
axis for each of the tested EXI processors - EXIficient (leftmost column, forward slash
hatching), OpenEXI (middle column, backslash hatching) and EXIP (rightmost column,
grid hatching). Each bar in the chart represents the execution times when explicit op-
timizations are applied (lighter colored part of the bar) and when no optimizations are
applied.

unoptimized case and with −O3 for the optimized run.9

Figure 3 and Figure 4 show the averaged execution times per each XML schema test
case with enabled and disabled optimizations. In Figure 3 the times are for grammar
generation only while Figure 4 shows the execution times for both grammar generation
and instance decoding. In both charts, the execution times on the Y axis are represented
in logarithmic scale for enhancing the visual representation.

Table 2: Averaged execution times (ms) for all XML Schema test cases

EXI Processor
Optimized Unoptimized

Grammar Grammar+Instance Grammar Grammar+Instance
EXIficient 150.3 168.7 586.5 651.4
OpenEXI 98.8 106.9 639.3 676.2
EXIP 10.5 11.3 14.7 15.8

On average, among all test cases, the execution times for grammar generation and

9The automated test framework for configuring and executing the evaluation is available open source
at http://github.com/kjussakov/exip-eval
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instance decoding are given in Table 2. As shown in the table, EXIP generates the
grammars about 9 times faster than OpenEXI and 14 times faster than EXIficient when
compile time optimizations for the C code and run-time JVM optimizations for the Java
code are enabled. This cannot be attributed solely to the performance difference in native
code versus Java byte code execution where on average Java programs are somewhere
between 50 % faster to 4 times slower than their C counterparts10.

The superior performance of EXIP grammar generation is mainly due to the use of
EXI-specific XML Schema parser that accepts EXI encoded XML Schema definitions as
opposed to the use of general purpose XML Schema parser. By using the extended gram-
mar concatenation operator (see Section 3), EXIP has to perform one less iteration over
the set of all grammar rules which has noticeable benefits mainly in large XML Schemas
such as SEP2 (sep.xsd). The grammar augmentation algorithm presented in Section 3
has no effect on processing efficiency, but slightly improves memory usage. Code opti-
mizations, in terms of avoiding unnecessary loops and selecting appropriate searching and
sorting algorithms (for example the use of a hash table for mapping element definitions
to their globally defined types instead of iteration), have impact on the performance as
well but are harder to quantify.

Memory usage

This section provides some insight into the memory consumption of EXIP, and EXI in
general, as memory is often a bottleneck in embedded system applications. Section 2
already discussed that the dynamic memory usage for EXI processing can be controlled
by some of the parameters defined in the EXI header. This is done by adjusting the
extent of the content indexing used to detect and reduce redundancy in the data which
also affects the compactness and processing speed. However, the mechanisms provided in
the EXI specification cannot guarantee bounded run-time memory usage when deviations
from the XML schema are present. For that purpose, an extension to these mechanisms
are developed in a complementary specification called EXI Profile for limiting usage of
dynamic memory [41]. A subset of this profile is supported by EXIP but its impact on
the memory consumption is not evaluated in this section as the tests presented here are
restricted to a schema valid instance of the SenML standard. Table 3 shows the size and
memory usage during encoding and decoding for a sample instance document borrowed
from the SenML specification11.

The size and memory consumption are given for different encoding options. The
platform used for testing is Raspberry Pi embedded computer with ARM-based system
on chip including 700 MHz processor with 512 MB of RAM. The memory usage presented
in Table 3 shows only the amount of dynamic memory (heap) usage for statically compiled
EXI grammars and is measured using DHAT (dynamic heap analysis tool) that is part
of the code profiling library Valgrind.

An interesting observation is that although the document is relatively small, turning

10Source: http://benchmarksgame.alioth.debian.org/u32/java.php
11Available at: http://tools.ietf.org/html/draft-jennings-senml-10#section-7
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Table 3: Size of a SenML instance for different encoding modes and memory usage for
EXIP and the light-weight XML parser library MiniXML on a Raspberry Pi system. The
rows are ordered by document size.

Encoding mode
Size

(bytes)
RAM/heap usage (kB)

EXIP MiniXML
Encoding Decoding Encoding Decoding

Plain XML 387 - - 1.36 1.55
EXI Schema-less byte aligned 248 7.95 8.26 - -

EXI Schema-less no value indexing 237 6.93 6.79 - -
EXI Schema-less default options 200 7.90 8.26 - -

EXI Schema mode no value indexing 137 1.93 2.27 - -
EXI Schema mode default options 100 2.87 2.21 - -

EXI Schema mode strict 98 2.89 2.23 - -

off the indexing of repeating values (i.e. setting valuePartitionCapacity parameter to 0)
substantially inflates the size of the resulting EXI representation. This is due to the
high redundancy in the attribute values which has profound affect even in schema mode
encoding. This simple example shows the high variation of compression and dynamic
memory usage depending on the content of the documents and the encoding options in
use.

The compile-time allocated RAM used by the EXIP library (calculated as the sum of
.rodata, .data and .bss sections in the Executable and Linking Format (ELF)) is 23 kB
(of which 8 kB EXI grammar definitions used for schema mode cases) while the light-
weight XML parser MiniXML v2.8 requires only 3 kB. EXIP SenML parser uses 79 kB
programming memory while MiniXML uses only 16 kB. Additionally, as shown in Table
3, MiniXML is more efficient in the use of dynamic memory compared to EXIP. These
results indicate that EXI processing, and EXIP library in particular, require more RAM
compared to highly optimized XML processing. The main reason for this is the use of
content indexing and grammar information during EXI processing. Further optimizations
of the RAM usage in EXIP are possible both for the size of the content index as well
as the in-memory grammar representation. It should also be noted that schema-based
EXI processing implicitly performs partial schema validation while MiniXML is a non-
validating parser.

Enabling run-time EXI grammar generation from the SenML schema additionally
requires 57 kB of dynamic memory and 37 kB of programming memory. These memory
requirements show that the run-time grammar generation module fits easily in embedded
devices such as Raspberry Pi but is too heavy for the most constrained platforms. As an
example, the popular Stellaris LM4F120H5QR 32-bit ARM Cortex-M4F microcontroller
(80 MHz CPU frequency, 256 KB flash and 32 KB SRAM) does not have enough RAM for
supporting run-time EXI grammar generation. Nevertheless, by using static grammars
the EXIP library is capable of running on such platforms with averaged total RAM usage
of about 20 kB12 and 60kB of programming memory for the SenML sample instance.

12The RAM usage in schema mode is 20 kB (1 kB stack size + 2.5 kB heap + 16.5 kB .data and .bss)
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4 EXI data binding

The information contained in an XML/EXI document is often loaded into the memory
for further processing and mapped to a hierarchy of data structures or objects that are
maintained by the applications. For example, a status report by a device can include
various hierarchal information such as network status (which in turn contains parameters
like RTT, signal strength, connected peers etc.) or resource utilization (storage space,
battery level etc.) that is mapped to a corresponding hierarchy of programming objects.
The process of generating an XML/EXI document from a hierarchy of objects and vice
versa is known as XML/EXI data binding. The process of building objects from an
XML/EXI input document is called unmarshalling and the reverse - the generation of
XML/EXI output document from objects, is called marshalling. The unmarshalling
is implemented as a software module that connects to the parser API, and generates
memory structures that correspond to the structure and content of the XML document.
The marshalling is implemented as a module that transforms a set of objects in the
memory to a sequence of calls to the serialization API.

The XML/EXI data binding code can be complex to write and maintain manually.
For that reason, it is often automatically generated. There are two main approaches
when generating the code and keeping it in sync with the XML/EXI documents - direct,
and indirect mapping. In direct mapping, the source code is generated based on XML
schema definitions or vice versa - the XML schema can be built based on the existing
source code definitions. When no schema information is available or needed, the XML
tree can be directly mapped to a memory representation, as in the case of the Document
Object Model (DOM). The data binding frameworks that are based on direct mapping of
the XML Information Set and the memory representation, are widely adopted in desktop
and enterprise applications - examples include DOM, JAXB, XMLBeans, and others [53].
Their main advantage is that it is very easy to build and maintain the XML-to-source
code mapping. An example of a pure XML direct mapping framework for embedded
systems development is the gSOAP toolkit [54]. A similar approach, but applied to
EXI and targeted at highly resource-constrained embedded devices is the automatic EXI
Processor generation reported by [55].

The indirect mapping is a more flexible approach that allows discarding the unnec-
essary XML structures or reusing existing objects in the memory by defining a layer of
indirection between the XML Information Set and the memory representation. Example
libraries in this category include Castor and JiBX [56] - both only available in Java, and
targeted at server/desktop applications. A comparison between the two approaches i.e.
direct and indirect mapping, along with performance measurements, are presented by
Sosnoski in IBM developerWorks article on data binding tools for Java/XML [57].

The EXI binding presented in this section falls into the category of indirect mapping,
and it is targeted at embedded systems development. Its design is based on the following
requirements:

while
the RAM usage in schema-less mode is 19 kB (1 kB stack size + 7.5 kB heap + 10.5 kB .data and .bss)
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• The mapping rules should have intuitive syntax and semantics.

• The binding definitions should be independent from the programming language in
use - the same binding definition should work for programs written in C, Java,
Python, and so on.

• The EXI binding should be efficient to use on embedded platforms.

• The mapping layer should allow for loading the binding definitions and building
the objects in memory dynamically at run-time.

To optimally fulfill these requirements, we propose template-based binding definitions
that are written in XML and converted to EXI before being used for code generation
or loading at runtime. The binding templates are very similar to other frameworks for
dynamic content delivery based on templates such as JavaServer Pages (JSP) technology.
An in-depth overview of template-based code generation is presented by [58] where the
authors describe the theoretical foundations of template systems and include comparison
with other code generation techniques. The proposed EXI template framework is a
heterogeneous code generator that follows the model-view-controller design pattern as
suggested by [58].

Figure 5 shows a comparison of this approach to what is a commonly used method
for defining such binding definitions. As depicted, the mapping between dynamic EXI
content and programming constructs is done using a special character @ and semicolon
notation. As such, the definitions are intuitive to define as well as simple to process by the
loading code. As with other such approaches based on templates, these special characters
must be escaped when used in a static content. As an example, the value for a static
attribute email within an EXI binding definition should be defined as example@@com
to escape the special character that indicates the beginning of dynamic content mapping.

5 CoAP/EXI/XHTML Web page engine

This section presents a prototype implementation of a dynamic Web interface for an
embedded sensor platform based on CoAP/EXI/XHTML technologies. The implemen-
tation is developed using the EXIP framework, and consists of an experimental Java
browser running on a laptop PC that connects to a wireless sensor device (Mulle version
3.2 [59]) over Bluetooth. The laptop user can navigate to the device Web interface using
mDNS/DNS-SD or CoAP built-in discovery capabilities - multicast service discovery [37],
or CoRE Resource Directory [60]. In our simplified test setup, the network address of
the sensor device is predefined so the discovery process was not implemented.

The EXI encoded XHTML page is dynamically generated on the sensor platform on
a CoAP GET request, and it contains an iframe tag with a link to an external observable
CoAP resource:

. . .
<p>Current temperature i s :</p>
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Figure 5: Comparison between typical binding definitions and the EXIP templates

<iframe src=”coap://192.168.150.10:5683/temp”/>

. . .

The observable CoAP resource is linked to a temperature sensor on the wireless device,
and is updated whenever there is a change in the measured air temperature.

As shown in Figure 6, upon user request, the Java browser13 sends a CoAP GET re-
quest to the sensor device using the Californium library. The wireless device receives the
request and generates a CoAP response using the libcoap library. The CoAP version 13
payload is a dynamically generated EXI/XHTML Web page using the EXIP framework.
Once the packet is transmitted back to the Java browser, the EXI document is decoded
by the OpenEXI library, and the iframe link is resolved by initiating an additional CoAP
request to fetch the temperature. By using CoAP Observe [39], the Java client subscribes
to changes in the temperature without requiring additional periodic polling requests. The
temperature is represented in plain text, and visualized on the browser window each time
a CoAP notification is received.

13Based on Flying Saucer XHTML/CSS 2.1 renderer: https://code.google.com/p/flying-saucer/
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Figure 6: CoAP/EXI/XHTML dynamic Web interface demonstration

This prototype demonstrates how the newly emerging binary Web protocols can be
employed to enable a dynamic Web interface for highly resource-constrained embedded
devices. The Web interface can be used in a wide range of mobile applications, as sug-
gested by [61]. The approach of using the iframe tag with CoAP Observe enables very
lightweight event-based content delivery that is suitable for low-power radio communi-
cations such as IEEE 802.15.4 (6LoWPAN, ZigBee), Z-Wave, or Bluetooth low energy.
Example application domains for the EXIP framework include, but are not limited to:
industrial process monitoring and control, eHealth and elderly care, wearable electronics,
home automation, and energy management.

Data visualization technologies based on XML encoding such as SVG14 and X3D15 can
be readily included in the CoAP/EXI/XHTML engine to efficiently represent graphical
indicators (e.g., battery level, signal strength) and visualize measurements and configu-
ration parameters. An evaluation of EXI encoding for SVG in rich media applications for
embedded systems presented by [62] shows that EXI significantly increases the efficiency
of the SVG format. Also shown in this work is an approach using the EXI header option
datatypeRepresentationMap to further optimize the compression of graphics formats for
embedded web applications.

14Scalable Vector Graphics (SVG): http://www.w3.org/TR/SVG11/
15X3D Specification for 3D Graphics: www.web3d.org/x3d
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The presented CoAP/EXI/XHTML Java browser always tries to subscribe to the
iframe CoAP links - if the resource is not observable, the subscription is not established.
When the resource is observable but should be treated statically for display in the browser
(for example representing a snapshot of dynamic data), the embedded server should reject
the subscription request by the browser. This approach can be too limited in certain
scenarios, in which case different ways to indicate whether the browser should subscribe
to changes on the iframe resource can be employed - adding an extra boolean argument
observe to the iframe tag as an XHTML schema deviation, or requesting the resource
description in CoRE Link Format before sending the subscription request. Similarly, in
more complex scenarios the use of plain text encoding for the iframe resource might be
too limiting. In such cases a structured format such as EXI can be used instead of plain
text. The definition of the data format (including parameters and schema if available)
for particular iframe can be defined as XHTML schema deviation or read from the CoRE
Link Format as suggested for the observe use case.

Implementation details The information provided hereafter gives more insight into
the actual implementation, and is useful for reproducing the test setup. The Mulle
sensor platform has a 16-bit Renesas M16C/62P microcontroller and Mitsumi Bluetooth
2.0 wireless module. The application runs on bare metal, in other words, without an OS,
on top of a port of lwIP TCP/IP stack and a libcoap v4.0.1 library. The EXI/XHTML
generation is done in schema-less mode using EXIP v0.5.1.

The laptop PC is running Debian Linux, and is equipped with a USB Bluetooth
2.0 adapter. Debian packages bluez-compat v4.99-2, bridge-utils v1.5-6, and isc-dhcp-
server were installed and configured on the system to enable TCP/IP communication
over Bluetooth.

The size of the EXI/XHTML Web page is 239 bytes, and is generated directly in
binary (EXI) form without transition to plain XML. If converted to text XHTML, the
size is 427 bytes. The temperature notifications are in plain text, and account for 14
bytes of CoAP packet size (UDP payload) in total, assuming 2 bytes for the plain text
temperature value.

6 Conclusions

The newly emerging transport and data representation protocols based on binary encod-
ing - CoAP and EXI - provide an efficient way to connect embedded systems to the Web
across scenarios as diverse as mobile computing, home automation, and smart grid. As
the translations between CoAP ⇔ HTTP and EXI ⇔ XML are well defined, the inte-
gration of these binary protocols to the existing Web infrastructure is standardized and
conforms to the well-established programming interfaces. For example, EXI processors
often provide the same API as XML processors, and CoAP/HTTP proxies are simple to
deploy and are transparent for the Web users.

The work presented in this paper shows that the use of CoAP/EXI stack and the
EXIP Web development toolkit enables reuse of the existing pool of Web technologies
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and developers’ skills, even on very resource-constrained embedded platforms. The de-
velopment process and especially the integration with existing systems is much faster
and easier to maintain as compared to the use of handcrafted communication protocols.

Moreover, the presented EXI processor design, and the EXI grammar generation algo-
rithms in particular, provide superior processing performance compared to the methods
described in the EXI specification with order-of-magnitude speed-up in some of the test
cases. This could enable exchange patterns supporting dynamic XML schema negotia-
tions even for embedded hosts. The use cases for such an approach include support for
schema versioning, generic Web services, and runtime service composition.

Finally, the presented prototype of dynamic Web interface for sensor platforms demon-
strates the possibility to use event-based Web content delivery with a very low overhead
in terms of network bandwidth and processing power. The development of the Web
interface or Web service exchange can be automated by using the template-based EXI
data binding. As the data binding creates indirect mapping between the EXI document
and the programming constructs, the memory structures and programming objects can
be reused when generating or decoding the EXI streams.

Possible extensions of this work include in-depth memory consumption evaluation and
trade-off analysis as well as developing a formal specification of the EXIP data binding,
and implementing prototypes in C and Java to evaluate the proposed approach against
existing XML data binding frameworks. Providing support for light-weight client-side
scripting as part of the CoAP/EXI/XHTML embedded Web programming is also an
interesting and important topic for future investigation. It is also worth analyzing the
application of CoAP/EXI, and the EXIP framework in particular, for mobile platforms
and even for desktop applications that are not resource-constrained. Lowering the net-
work traffic and CPU cycles for Web content delivery on mobile phones and tablet PCs
could potentially increase the battery life for these devices, lower the networking cost for
both operators and users, and even lead to energy savings if applied on a global scale.
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*
APPENDIX A: Grammar Augmentation Algorithm Example This appendix gives an
example of how the augmentation procedure is applied to the wildcard XML schema
type anyType which is the base type definition for all other XML schema types. A
minimal (without redundant productions) EXI grammar that describes the content model
according to the process of creating proto-grammars is:

anyType−0:
AT(∗ ) anyType−0
SE(∗ ) anyType−1
EE
CH anyType−1

anyType−1:
SE(∗ ) anyType−1
EE
CH anyType−1

There is no need to copy the content grammar productions (the ones with anyType-1 on
the left-hand side) because there are no AT productions that points to it and the content
index is 1.

Then apply the procedure in 8.5.4.4.1 Adding Productions when Strict is False [24]:
As there is EE production already do not add additional one. Adding the AT(xsi:type)
and AT(xsi:nil) productions produces:

anyType−0:
AT(∗ ) anyType−0
SE(∗ ) anyType−1
EE
CH anyType−1
AT( x s i : type ) anyType−0
AT( x s i : n i l ) anyType−0

anyType−1:
SE(∗ ) anyType−1
EE
CH anyType−1

”For each non-terminal Elementi,j, such that 0 ≤ j ≤ content ...”
becomes:
”For each non-terminal Elementi,j, such that 0 ≤ j ≤ content2 ...”
Because there is no content2 we apply that rule only to anyType-0:

anyType−0:
AT(∗ ) anyType−0
SE(∗ ) anyType−1
EE
CH anyType−1
AT( x s i : type ) anyType−0
AT( x s i : n i l ) anyType−0
AT(∗ ) anyType−0
AT( ∗ ) [ untyped value ] anyType−0

anyType−1:
SE(∗ ) anyType−1
EE
CH anyType−1

After adding the NS and SC productions:

anyType−0:
AT(∗ ) anyType−0
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SE(∗ ) anyType−1
EE
CH anyType−1
AT( x s i : type ) anyType−0
AT( x s i : n i l ) anyType−0
AT(∗ ) anyType−0
AT( ∗ ) [ untyped value ] anyType−0
NS anyType−0
SC Fragment

anyType−1:
SE(∗ ) anyType−1
EE
CH anyType−1

”Add the following productions to each non-terminal Elementi,j, such that 0 ≤ j ≤
content.”
becomes:
”Add the following productions to each non-terminal Elementi,j, such that 0 ≤ j ≤
content2.”
The result of applying this rule is:

anyType−0:
AT(∗ ) anyType−0
SE(∗ ) anyType−1
EE
CH anyType−1
AT( x s i : type ) anyType−0
AT( x s i : n i l ) anyType−0
AT(∗ ) anyType−0
AT( ∗ ) [ untyped value ] anyType−0
NS anyType−0
SC Fragment
SE(∗ ) anyType−1
CH[ untyped value ] anyType−1

anyType−1:
SE(∗ ) anyType−1
EE
CH anyType−1

”Add the following productions to Elementi,content2 and to each non-terminal Elementi,j,
such that content < j < n, where n is the number of non-terminals in Elementi.”
becomes:
”Add the following productions to Elementi,content and to each non-terminal Elementi,j,
such that content2 < j < n, where n is the number of non-terminals in Elementi.”
The final grammar is:

anyType−0:
AT(∗ ) anyType−0
SE(∗ ) anyType−1
EE
CH anyType−1
AT( x s i : type ) anyType−0
AT( x s i : n i l ) anyType−0
AT(∗ ) anyType−0
AT( ∗ ) [ untyped value ] anyType−0
NS anyType−0
SC Fragment
SE(∗ ) anyType−1
CH[ untyped value ] anyType−1

anyType−1:
SE(∗ ) anyType−1
EE
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CH anyType−1
SE(∗ ) anyType−1
CH[ untyped value ] anyType−1
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[17] R. Kyusakov, H. Mäkitaavola, J. Delsing, and J. Eliasson, “Efficient XML Inter-
change in factory automation systems,” in IECON 2011 - 37th Annual Conference
on IEEE Industrial Electronics Society, nov. 2011, pp. 4478 –4483.

[18] D. Caputo, L. Mainetti, L. Patrono, and A. Vilei, “Implementation of the EXI
Schema on Wireless Sensor Nodes Using Contiki,” in Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on,
2012, pp. 770–774.

[19] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh, “Simulating
the power consumption of large-scale sensor network applications,” in Proceedings
of the 2nd international conference on Embedded networked sensor systems, ser.
SenSys ’04. New York, NY, USA: ACM, 2004, pp. 188–200. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031518

[20] C. Bournez, “Efficient XML Interchange Evaluation,” W3C, Tech. Rep., April
2009. [Online]. Available: http://www.w3.org/TR/exi-evaluation/



References 127
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An Authentication and Access Control Framework

for CoAP-based Internet of Things

Pablo Puñal Pereira, Jens Eliasson and Jerker Delsing

Abstract

Internet of Things (IoT) and Cyber-physical Systems (CPS) are two very hot research
topics today, and more and more products are starting to appear on the market. Research
has shown that the use of Service Oriented Architecture (SOA) can enable distributed
application and devices to device communication, even on very resource constrained
devices, and thus play an important role for IoT and CPS.

In order to realize the vision of Internet of Things, communication between devices
must be secured. Security mechanisms for resource constrained devices has attracted
much interest from the academic community, where research groups have shown solutions
like IPsec, VPN-tunnels, (D)TLS, etc. are feasible to use on this type of networks.
However, even though the use of well-known security mechanisms are vital for SOA-based
IoT/CPS networks and systems to be protected, they do not provide any fine-grain access
control.

In this paper, a CoAP-based framework for service-level access control on low-power
devices is presented. The framework allows fine grain access control on a per service
and method basis. For example, by using this approach a device can allow read/write
access to its services to one group of users while only allowing read access to another
group. Users without the right credentials are not even allowed to discover available
services. To demonstrate the validity of the proposed approach, several implementations
are presented together with test results.

The aim is to provide a holistic framework for secure SOA-based low power networks
comprise by resource constrain devices.

1 Introduction

The use of Service-Oriented Architecture (SOA) on resource-constrained devices has gain
a lot of interest from both the academy as well from the industry in recent years as shown
by [1, 2]. Service-oriented Architecture is based around the notion of services, formal in-
terfaces and standardized protocols. A service is the core building block of SOA, and is
piece of software performing some task, encapsulated with a formal interface described
using some standard description format such as WSDL, and WADL in the case of Web
services. A service must hold certain properties, such being discoverable, composable and
loosely coupled from any operating system, programming language and other services.
Since services are distributed in their nature, and relies on communication channels to
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exist to function, they are inherently vulnerable for issues such as hackers, malware and
other network based intrusion threats, for example denial of service (DOS) attacks. Ser-
vices must therefore be protected using communication protocols using strong encryption
and authentication, such as IPsec [3], SSL and other mechanisms. If Internet of Things
and Cyber-physical Systems are to become mainstream technologies, used by millions
of users, there must exist strong communication security and reliable authentication
mechanisms. For example [4], Kasinathan et al. investigated mechanisms for detecting
denial-of-service (DOS) attacks, which can be used to disrupt a network. 6LoWPAN is
especially sensitive of DOS attacks due to the low bandwidth.

Regarding security, the utilization of IPsec (IP Security) over low-power networks
was increased during the last years. IPsec has two modes of operation: the Transport
Mode, which adds a Authentication header between the IP header and the UDP/TCP
header, which allows the system to validate incoming packets but the original data is
visible and accessible for all other devices on the network. The second mode is called
Tunnel Mode, which is similar to the first one except that the IP header, the UDP/TCP
header and the payload are encapsulated and encrypted (typically using AES) as payload
of a new IP packet. This mode protects packets against eavesdropping attack, discards
data modification and adds the possibility to detect Denial of Service attacks.

IPsec needs a shared password to encrypt and decrypt properly all incoming and out-
going messages. If these passwords are static could be compromised after some thousand
messages. To solve this problem the IKE (Internet Key Exchange) and IKEv2 protocols
were created. These protocols guarantee a safety communication between two devices
and are able to create new shared passwords using circling derivative methods.

To protect UDP packets (even over IPsec), there is another protocol that can be used
to add an extra layer of protection called Datagram Transport Layer Security (DTLS) [5].
This protocol uses a initial handshake to set the passwords. After that the content of the
UDP packet is encrypted (usually with TLS PSK over AES) and a header of 13 bytes is
added, together with the initialization Vectors (IV) (over 8 bytes for AES128), integrity
values (8 bytes) and the padding required by the cipher suite. DTLS increases the size of
the packet, but this is a consequence of the packet encapsulation. This protocol is fully
integrated in the CoAP protocol [6].

However, even though the use of well-known security mechanisms such as IPsec, VPN-
tunnels, SSL, (D)TLS etc are vital for SOA-based networks and systems to be protected,
they do not provide any fine-grain access control mechanisms. For example, if computers
are exchanging data using a SOA-enabled protocol such as CoAP, only the packets are
protected from external tampering and access. Any request from a client already inside
a protected tunnel will be accepted by the server. The use of DTLS-encrypted CoAP
could be one way of achieving a per service access control, but this would require a
large number of different key-pairs to be in use in order to enable a true access control
where a client can have different security access to different services, and even access to
different operations on one service. For example, a client can have GET permissions to
an actuator in order to view the status, but might not be allowed to actually perform
a change of state using PUT or POST on that service. If only a few DTLS keys would
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be used, then fine-grain access in not possible. If a very large number of keys are used,
then fine-grain access control is possible but the management and administrating of key
exchange mechanisms would be difficult.

A better approach is to separate the access control from the communication security.
This would increase the security since another layer of protection is added. A client would
also only need a few keys for the IPsec ad DTLS encryption, and then use a authentication
service to gain access to other services. This makes administration easier since all access
rights are centralized in the authentication service. Two access control protocols that
use this approach are Kerberos [7] and RADIUS [8]. Kerberos is an authentication
protocol which works on the basis of ’tickets’ to allow nodes communicating over a non-
secure network to prove their identity to one another in a secure manner. RADIUS is
often used for network authentication in wireless domains, and supports Access control,
Authentication and Accounting (AAA).

This paper proposes a CoAP-based framework that solves the problem of a fine grain
access control, which is not possible with other connection control system like IPsec and
DTLS. The framework is focused on low overhead on resource-constrained devices that
are commonly used in network for Internet of Things and Cyber-physical systems. The
proposed solution uses ideas for other access control systems like Kerberos and RADIUS
, and merge the two with the CoAP protocol to get a reliable access control framework
for IoT.

This paper is structured as follows: Section 2 presents the background and related
work, followed by a presentation of the proposed architecture in Section 3. After comes
Section 4 which provides a detailed presentation of the authentication process, followed
by a security analysis in Sec. 5. Section 6 outlines the performed experiments and
results. Finally, future work and the paper’s conclusions are presented in Sections 7 and
8, respectively.

2 Background and Related work

In this section, the background and the reason of this work are described, with a CoAP
protocol description and some authentication protocols, and methods that were a base
for the proposed framework.

Industrial networked devices and security

Industrial usage of networked for automation has been around for a long time. The
industry is healthy with expected growth of 7% or more [9]. The projected big numbers
of connected devices [10] indicate an even more rapid growth in networked devices for
industrial usage automation. The discovery of the Stuxnet virus [11] and the information
from the whistle blower Edward Snowden opened the eyes of the industry and general
public about that any connected device might be vulnerable to Internet and electronics
security issues. Currently much effort is devoted to prevent and protect against cyber
attacks on networked devices. This certainly is true for Internet of Things.
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In the field of networked resource constrained devices certain protocols are gaining
popularity. Some of the most interesting ones, from the security point of view, are briefly
reviewed below.

CoAP (Constrained Application Protocol)

The IETF Contrained Application Protocol is an application-layer protocol designed
to provide web services working with constrained nodes. The protocol is designed for
low-power networking. CoAP provides a request/response interaction model between
application end-points, supports built-in discovery of services and resources, and includes
key concepts of the Web such as URIs, RESTful interaction, extensible header options,
etc. CoAP easily interfaces with HTTP for integration with the Web while meeting
specialized requirements such as multicast support, very low overhead and simplicity for
contrained environments. CoAP uses UDP unlike HTTP. Some features of CoAP are:

- Two types of request messages: Confirmable Message (CON) - the message is
retransmitted (four times maximum) with an exponential time out waiting for an
Acknowledged Message (ACK) or the correct response form the server. The second
type is the Non-Confirmable Message (NON) - the message is sent without any
kind of response.

- The URI format allows the use of standard and specialized service endpoints. One
for example is the resource discovery defined in RFC 5785 [12] that uses the .well-
known/core path and the CoRE link format.

- CoAP also allows to send very big messages with a stop-and-wait mechanism called
”blockwise transfers” (splitting messages and sending them with a reference order).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
V T TKL Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ...
1 1 1 1 1 1 1 1 Payload (if any) ...

Figure 1: Original CoAP packet format.

The CoAP packet format (see Figure 1) has a maximum length of 1400 bytes, but
the header has a length of 32 bits (2 for the version control, 2 for message type, 4 for
token length, 9 for the message code and 16 for the message ID).
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0
0 1 2 3 4 5 6 7
Delta length
Delta (extend)
0 - 2 bytes

length (extend)
0 - 2 bytes

Value
0 - ...

Figure 2: CoAP option format.

Kerberos

Kerberos [7] is a protocol that uses a primary communication between the client and the
Authentication Server (AS) to generate a valid ticket. This ticket will be used for future
accesses to Service Servers (SS). There are Kerberos implementations that run over UDP
or TCP. Also the Ticket generation process could include different encryption methods,
everything is flexible and configurable by the network administrator.

RADIUS (Remote Authentication Dial In User Service)

RADIUS [8] is a networking protocol to provide Authentication, Authorization and Ac-
counting management centralized in a single server. This protocol offer the possibility to
configure a single Network Access Server (NAS) into a user specific NAS. The use of it is
widely used. It was designed in 1991 and allows many different types of configurations,
but always work over UDP. This protocol supports Challenge responses (as PAP and
CHAP) increasing the security against Eavesdropping attacks and also supports the use
of certificates like X.509 [13]. The RADIUS packet format is shown in Figure 3.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Code Identifier Length

Authenticator

Attributes (if any) ...

Figure 3: Original RADIUS packet format.

There are only five possible fields: Code field (to identify request/response type),
Identifier (to identify each packet), Length (to know the packet size), Authenticator
and Attributes. The first four are always required, but the last one is optional. The
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Authenticator is a field of 16 bytes that is used to send encrypted data only to trust
the communication between server and client. The encryption type is not predefined,
originally this protocol was designed to use MD5 [14] but nowadays is not sufficient,
therefore any other HASH generator could be used instead of MD5, like SHA-512 [15] or
PBKDF2 [16]. After a request, there are three types of responses:

• Access Reject: the user has not access to any network resources. The reason could
be a failure or a wrong identification.

• Access Challenge: to increase the security, the server could request extra informa-
tion before trust on that user.

• Access Accept: The user has granted access.

The RADIUS protocol and format could run over CoAP protocol (see section 4),
because all connection features can be possible also over CoAP. Also it is useful to
authenticate devices over 6LoWPAN and enable the access to the network (see future
work at section 7). The overhead of this protocol affects only to the authentication
process (see section 4 and Fig. 6). Therefore it is reasonable to use in low-power and low
band width networks.

Diameter

Diameter [17] is the evolution of RADIUS, the biggest modification is the use of TCP/SCTP
instead of UDP. This change increase the security performance as much as TCP allows er-
ror handling, capability to negotiation and alive connections. But it also makes Diameter
non-backwards compatible with RADIUS, and also with CoAP.

3 Framework

In this section all components of the proposed architecture are explained, with their
ability to provide robust low power authentication and access control mechanisms.

Requirements

In order to get sufficiently fine grain access control, the framework must be designed
optimal in terms of computation and overhead for access control and security over low
power devices and networks with low width band. The communication to the access
control service must be enable for all network devices, at least for valid devices. Is
possible to filter the connection to access control service by IPsec and DTLS. The access
control must be independent of other devices (there are no relation between two different
accesses) and must be easy to automatize, due to most of these will be done by machines.
The access rules and methods could be different depending on authentication polices,
witch could change in base of local conditions, like time, power source, position, sensor
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information, etc. The final objective is reach a fine-grain access control per service (that
includes access methods and specific tags).

Scope

The aim of the proposed framework is to provide fine-grain and low-power authentication
and access control mechanisms for resource-constrain devices, however the framework
does not focus on communication security but relies on existing secure protocols such as
IPsec and DTLS (see Fig. 4).

Figure 4: Communication layers

The lowest communication security level is based on IPsec (see Figure 4). The imple-
mentation of this IPsec layer is based on the open source implementation by Raza[18].

Access Control and Authentication Aspects

The proposed framework uses the best benefits of CoAP, Kerberos and RADIUS solutions
to create a low-power platform for AAA. The propose architecture is shown Figure 5.

The Client must be a CoAP client ready to get the ticket after a login and use it
in each future CoAP request. The AAA server checks the authentication requests and
communicates the result to the CoAP server. CoAP server has the following requirements:

• Must check all the incoming packets looking for a CoAP Option [#100] called Ticket
(Kerberos approach). This Ticket must validate the user and must give permissions
to use the specific service by the user. All incoming request without Ticket will
be discarded except Reset (RST) and Acknowledge (ACK) messages. Optional the
[.well-known/core] could be also discarded to protect the network against automatic
attacks.

• The authentication service [.well-known/auth] must exist on the CoAP server.
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AAA Server

device_KEY

CoAP NAS Mulle

CoAP protocol
user_KEY

Figure 5: Simplified architecture

– Must have two different options [.well-known/auth?login] to do the login and
[.well-known/auth?logout] to do the logout.

– If the login process fails, the server must send an error message. If the login
process succeeded, the server must generate and send a new ticket together
with the timeout.

– The logout process must delete the ticket on the server side and send a message
to the user that the logout was successfull.

4 Authentication Process

The Authentication and Access Control consists of two different steps. The first step is
a Authentication. In this step the system must recognize user as a valid user (with a
password, a shared key or some other validator). This process will inform the CoAP-NAS
about who the user is, permissions, group, time out of the ticket, etc. At the end of this
process the CoAP-NAS must send the user a valid ticket but only if the authentication
process is successful. In other case the server must inform the user that the authentication
is not valid for the authentication process (incorrect user, incorrect password, black list,
etc.). The second step is the Access control. On each client request, a valid ticket must
be included to identify this request to the valid user, then the server will recognize the
user and will respond with the correct message. If the client does not send the ticket or a
valid one, the server will respond with an error message. The complete process is shown
in a scheme in Figure 6.

Authentication Method

On the authentication process the server must recognize the user as a valid user and
communicate that to the CoAP-NAS. This process needs to be flexible and compatible
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AAA ServerCoAP NASPCuser_KEY

Login service new request
validatedValidated & Ticket

Service & Method & Ticket
response

Service & Method & Ticket
response

eLogin service tnew request
validatedValidated & Ticket

Service & Method & Ticket
response

Service & Method & Ticket
response

Ticket timeout

Authentication

Access Control

Authentication

Access Control

Figure 6: Authentication process

with other standards and with this goal the propose framework creates a public login
CoAP service on the CoAP-NAS. This login service must receive a PUT request with
one of the following contents as a payload:

• User name and password as plain text. This option is only recommended during
testing, debugging and development phases.

• User name and password hash. This is easy to implement and could be authenti-
cated directly on the CoAP server (without RADIUS).

• A RADIUS packet (future work).

The possibility to run RADIUS protocol over CoAP (see section 2) gives to the
framework a flexible authentication method usable with a standard RADIUS server.
This appaorach requires no RADIUS protocol on the client, then the overhead and the
required resources will be smaller compared with the use of both protocols at the same
time. This is especially important for resource-constrained sensor nodes. Therefore,
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the conversion between RADIUS packet and CoAP-RADIUS packet is simple. In this
framework there are proposed two alternatives, the first one is the most compatible
with RADIUS standard, due to all of a RADIUS packet will be in the CoAP payload
packet (Figure 7). The alternative option is omit any redundant information as much

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
V T TKL Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ... 1 1 1 1 1 1 1 1

Code Identifier Length

Authenticator

Attributes (if any) ...

Figure 7: RADIUS over CoAP packet

as possible, thus deleting the Code, Identifier and Length in the RADIUS packet. This
could be directly translated from the CoAP ID and Code (shown in Figure 8).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
V T TKL Code Message ID
Token (if any, TKL bytes) ...
Options (if any) ... 1 1 1 1 1 1 1 1

Authenticator

Attributes (if any) ...

Figure 8: Compressed RADIUS over CoAP packet

Control Method

The servers could manage a lots of connections per second and CoAP protocol is focused
on communication with low overhead packets. Then, the access control process must not
increase too much the normal size of the packets. For this reason the propose framework
would add a new option into the CoAP standard option set. This option called Ticket
has the following properties:
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• Unique per user and session. When a session expires the user must authenticate
again and will receive a new one. The use of a time out will further increase the
security.

• The ticket length could be configurable from 32 to 128 bits according to the re-
quirements.

• Alternative to increase the security level, the first Ticket could be used as a seed to
create a new one on each communication. This dynamic generations must be done
with the use of hashing techniques.

On each incoming packet, the server must know from the CoAP packet the Message ID,
the Ticket, the Service Name or URI to access and the Method. From the IP packet
the server knows the IP address and the port number. For each authentication process
the server must keep on memory the user name, the user password (or a hash), the IP
address, the port number, the generated Ticket and the time stamp for time out. With
all this information the server is able to recognize the user and check the permissions in
a database. This process must done with the highest priority to detect a valid or non-
valid ticket. At this point, if the ticket is valid, the server must send a normal response
(according to the CoAP specifications). If the ticket is wrong or there is no ticket on the
packet, the server must send an error message with the error code 406 (Not Valid) to
inform the user that has not permissions to use that service. The propose framework is
able to detect if a client is sending wrong tickets to ignore it.

5 Security Analysis

This section shows the security features of the proposed platform against different attacks.

1. Eavesdropping attack: IPsec and DTLS protect the system against this type of
attacks. But to increase the security, the proposed platform could generate a new
ticket for each message (plus hashing it with other parameters like Message ID),
thus increasing the difficulty for a malicious user to predict a valid ticket.

2. Data modification attack: IPsec layer protects against this type of attacks. If the
data is modified the Authentication Header of IPsec will detect that.

3. Man in the middle attack: IPsec will encrypt the data and will use time outs for
each IP connection (with IKE), increasing the difficulty to guess the valid password
to decrypt all packets.

4. Identity Spoofing attack: the use of false IP addresses is not going to work over the
IPsec layer.

5. Denial of Service attack: there is no protection against this type of attacks. It is
possible to decrease the overload discarding all dirty packets directly on the IP layer



144

(using IPsec), but finally if the attack is is severe the system will finally collapse
(see [4]).

6. Application-Layer attack: this is considered the most difficult type of attack. In
this case, the IPsec layer and (D)TLs are not going to protect the system. Here,
only services with are under access control will be protected.

7. Replay attack: IPsec layer protect those attacks with the use of sliding windows.

The security features depend directly on the complexity of the encryption method
and also on the length of the keys. The proposed framework do not need a specific
cipher suite or a hash generator, but the security performance will depend directly of
this selection.

6 Experiments and results

To perform the experiment, the server is based on libcoap 4.1.1 [19]. The source code of
the server was modified to integrate the management of the users and the groups on each
service with the permissions. The Copper (Cu) Firefox add-on [20] was used as a client.
This enables the latest version of CoAP (draft 18) to be used, and has a user-friendly
Graphical User Interface. The Copper plugin needed to be modified in order to integrate
the ticket management and to add a visual user login menu (shown in Fig. 9).

Figure 9: Copper login menu

To test the proposed fine-grain access control, several services were created with
different permissions according to methods, user names and group names. Like other
common access control systems, three users groups were define: unknown user, normal
user and administrator user.

Screenshots taken during the experiments (see Fig. 10) show that the proposed access
control mechanism work as expected. Services for non authorized users could be public
(accessible for everybody) or could be some specific service for non authorized, like guest
services that are not going to be accessible by authorized users. Services for authorized
users could be exclusive for the user (User name services), exclusive for the user group
(Group name services) or accessible services for authenticated users.
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Figure 10: Screenshots of the available services for a non authorized user / authorized
user / administrator taken during the experiment

Table 1 shows which packet types where an overhead is caused by the access control
mechanism proposed in this paper. Depending on ticket size, the overhead (Ticket size)
is in normal cases only 6-10 bytes.

CoAP CoAP+AA
request response request response

GET N N N+T N

POST N N N+T N

PUT N N N+T N

DELETE N N N+T N

OBSERVE N N N+T N

ACK N N N N

RST N N N N

.well-known/core N N N+T N

.well-known/auth?login - - I N+T

.well-known/auth?logout - - O N

N: Normal size

T: Ticket size

I: Login request size (I>S)

O: Logout request size (O>=S+T)

Table 1: Normal CoAP message size vs CoAP+AAA
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7 Future work

The use of a more Kerberos style access control mechanism would be beneficial, therefor
the proposed framework will be improved with distributed mechanisms like Kerberos for
service access control. The use of RADIUS for 6LoWPAN will also be investigated, i.e.
to adopt the same type of mechanisms used by for example WiFi to 6LoWPAN to further
increase a networks’s security.

The use of a two-way ChallengeResponse mechanism such as CHAP for authenticating
a client would improve the security even more since no password, or even a hash of
the password, would need to be transmitted. This would never compromise a client’s
credentials, even in the case when a service has been compromised. By also enabling
real-time monitoring of access attempts to services, it is possible to detect when a certain
IP address or user name is trying to gain access with incorrect credentials. This intrusion
detection system could then be used to notify network administrators about suspicious
activity and even blacklist an IP address in for example a firewall. The use of a firewall
on each sensor node would of course also be beneficial since rules can be dynamically
adjusted to provide an extra security layer by e.g. only allowing certain IP address or
address ranges certain access to services.

8 Conclusion

The use of the CoAP protocol has increased in popularity during the last years, espe-
cially over low-bandwidth links such as 6LoWPAN over IEEE 802.15.4. To secure the
type of communication, there is the possibility to use IPsec and/or (D)TLS. These two
protocols are able to protect the communication channel against some sorts of attacks,
but regarding access control both IPsec and DTLS are not sufficient. That is, controlling
the access to services by IP and/or session level only does not enable sufficient fine-grain
access control. A user on one IP address might have full read and write access to one
service, but only read access on another. By using existing methods there is no good
way on achieving this. For that reason the proposed framework suggests a new CoAP
Option to be used. This framework proposes uses a type of Ticket as well as defines
packet formats to add the possibility to use standard protocol for authentication such as
Kerberos and RADIUS. With these definitions this framework’s CoAP extension enables
a fine grain access control to CoAP-based servers and services.

In the performed experiments, a modified version of the CoAP C-library libcoap [19]
was running as a server and a customized version of the Firefox plugin Copper [20] as a
client, demonstrating that the proposed CoAP extension works and that fine-grain access
control is able to know which IP address, user, services and method that are involved in
a request, and send the correct response depending on the client’s permissions.

The framework’s access control mechanisms have been defined and successfully tested.
In the next step, this concept will be converted into a more distributed mechanism
like Kerberos, and to test the performance impact in terms of memory usage, power-
consumption and packet overhead. Plans are also to add full support using decentralized
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AAA servers.
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Hasan Derhamy, Jens Eliasson, Jerker Delsing, Pablo Puñal Pereira and Pal Varga

Abstract

The IoT research area has evolved to incorporate a plethora of messaging protocol
standards, both existing and new, emerging as preferred communications means. The
variety of protocols and technologies enable IoT to be used in many application scenarios.
However, the use of incompatible communication protocols also creates vertical silos and
reduces interoperability between vendors and technology platform providers. In many
applications, it is important that maximum interoperability is enabled. This can be for
reasons such as efficiency, security, end-to-end communication requirements etc. In terms
of error handling each protocol has its own methods, but there is a gap for bridging the
errors across protocols. Centralized software bus and integrated protocol agents are used
for integrating different communications protocols; however these do not fit well in all
Industrial IoT application scenarios.

This paper investigates error handling challenges for a multi-protocol SOA-based
translator. A proof of concept implementation is presented based on MQTT and CoAP.
Experimental results show that multi-protocol error handling is possible and furthermore
a number of areas that need more investigation have been identified.

1 Introduction

The Internet of Things (IoT) has assisted in breaking down application domain silos and
promoting horizontal integration between application domains. The Arrowhead frame-
work, presented by Blomstedt et el. in [1] is looking to improve interoperability and
integrability of services provided by networked embedded devices. Cisco has estimated
that there will be 50 billion devices connected to the Internet by 2020 [2]. This is a
staggering number of devices and managing the differing communication standards is
not trivial.

The IoT area has seen many existing and new communications protocols emerging as
preferred standards. The adoption of the varied communication protocols can be linked
to specific application vertical requirements and is likely to stay this way as the IoT
further develops. Thus in order for the Arrowhead framework to provide interoperabil-
ity between application verticals, methods and technologies for communication protocol
translation are required. Some of the IoT protocols used in SOA based applications and
systems are; REST over HTTP, XMPP, MQTT, COAP and OPC-UA. Each of these
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protocols offers benefits in particular application requirements, such as low-power opera-
tion, verbose headers and semantics, connection oriented messaging, decoupling producer
from consumer, discovery, bootstrapping, real-time or reactiveness, and statelessness.

Today, there is a variety of commercial IoT platforms which support interaction be-
tween different communication protocols. They offer an API for either; translation agents
[3][4] running embedded on the device or in gateways or a cloud based software bus [5][6]
for each protocol. This indicates that there is a need to integrate different communica-
tions protocols.

However, these platforms either confine applications to using adapters integrated into
their solutions, or require all communications be routed through a central server. Both
approaches reduce flexibility for application designers and integrators, introduce secu-
rity vulnerabilities with untrusted third-party clouds. This creates inefficiencies in the
communications path and bandwidth usage for localized applications. Enabling protocol
interoperability by the use of Service Oriented Architecture (SOA) will increase design
flexibility, enable local applications and remove dependency on third-party translators.
But Quality of Service (QoS), end-to-end connectivity, robustness and error handling
become challenges which need to be addressed. A literature search did not reveal much
research in multi-protocol translation. This indicates the need for more research in this
area.

This paper investigates the question of error handling in a multi-protocol translation
for SOA systems. While in a single protocol system, errors are propagated according
to protocol specification. In the case of multi-protocol systems error handling becomes
more complex. In designing a SOA based translator error handling and considerations
becomes critical to robust communication. An error in one protocol must be translated
to be understood by other protocols. While a SOA based translator must also address
other aspects such as QoS, control messaging, security and semantic translation, these
are not considered in this paper and are considered future work.

This paper is structured as follow: Section 2 provides background and related work,
followed by problem definition in Section 3 and proposed solution in Section 4. An
example application scenario and implementation details and results are presented in
Sections 5 and 6. Finally, Conclusions are presented in Section 7, with suggestions for
future work presented in Section 8.

2 Background and Related Work

A SOA-based architecture presented by Karnouskos et el. in [7] shows a shift towards
SOA paradigm for Industrial IoT (IIoT). Development in the area of SOA is driven by
the need for collaboration within Ultra-Large Scale systems [8]. SOA has been used to
great effect in web based systems to create an ecosystem of collaborative parts.

The IoT is seeing growth in new application spaces and new application requirements
with an evolving ecosystem of platforms, frameworks, protocols and devices [9]. This
means system integrators are presented with the challenge of evolving their legacy sys-
tems, and technologies, to satisfy the new requirements and make use of new technologies.
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By tightly coupling translation agents into the systems the cost of upgrading the system
is increased. Relying on centralized cloud based software bus also limits the ability to
leverage the native benefits of using new technologies.

Collina et el. in [10] have proposed an MQTT to REST bridge. This architecture
exposes MQTT topics as REST resources. This allows MQTT clients and REST clients
to interact through the new centralized QEST broker. There are two terms that appear in
this field: protocol translation and protocol conversion. There is no clear differentiation
between these terms, although ”translation” is used generally in computer networking
(especially and almost exclusively for network layer translation) - whereas ”conversion”
is used more widely in the industrial automation domain.

The traditional networking ISO-OSI terminology for nodes dealing with translation
are that switches, routers and gateways work at the data link, network and transport lay-
ers, respectively [11]. The most widely known functionality is Network Address Transla-
tion, although its protocol translation version working between IPv4 and IPv6 (NAT-PT)
was suggested for historic status [12] due to a series of serious issues.

There are no general guidelines or standards for higher level translation - these are
seemingly all legacy solutions. Such translators do merely parameter mapping between
two protocols, although sometimes also deal with the issues of the transport layers.

For this study two protocols used in similar application spaces were selected. This in-
vestigation helped to refine challenges error handling and proposal of solutions to address
some of these challenges. CoAP and MQTT were selected as they are both intended to
be used in highly efficient industrial applications.

CoAP

The CoAP protocol [13] has been developed by the IETF for use in extending Internet
capability down to resource constrained devices. It applies the request-response commu-
nication pattern to a client-server network model. CoAP is targeting sleepy and lossy
networks in which supporting TCP becomes inefficient and power consuming [14]. It is
based on UDP and provides an optional retry mechanism at the CoAP layer. It has
a RESTful API with the GET, PUT, POST and DELETE verbs supported with the
addition of the OBSERVE function. It creates a publisher-subscriber session between
a CoAP server and client, sending notifications either when resource state changes or
periodically [13]. Having this flexibility makes it an ideal choice for machine-to-machine
interaction.

MQTT

The MQTT protocol has been developed for enabling efficient communication between
data sources and data sinks. It applies the publisher-subscriber pattern to a client-server
network model. It has recently been standardized by OASIS but has a long history
with IBM being used in sensor networks. Some of its features [15] are decoupling data
producer from data consumer through the centralized broker system; reduced header
size and event based publishing enable highly efficient communication; QoS levels with
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message delivery; and, simple centralized security model with connection initiation by
clients enabling useful firewall and NAT traversal features.

3 Problem Definition

Dependent on how much the protocols overlap in the OSI layers there can be much
complexity in the translation process. Errors which can be detected and monitored need
to be handled in a manner which will enable adequate debugging and issue resolution,
either automated or by manual intervention.

In this section some of the challenges with handling errors of multi-protocol translation
are elaborated and specifically, the case of translation between MQTT and CoAP studied.
The error cases defined may not be exhaustive; however they represent some of the most
common and in some cases challenging errors.

Error cases

Connection errors can occur when trying to establish new connections, having a current
connection lost for some reason, or inability to close a connection gracefully. These
kinds of errors need to be detected and translated appropriately to ensure efficient use
of resources (at the end points as well as at the translator). Also information connection
error events need to be made known for analysis on network performance and candidates
for possible improvements.

Lossy communication errors are a real problem in wireless sensor networks (WSN),
which make up a good proportion of the future IIoT. The problem with lossy commu-
nication is made more complex with layers handling the issue at different layers of the
OSI stack. A higher level protocol may rely on a lower level layer to guarantee transport
while the target protocol may perform such transport checking itself. This means that
handling lossy communication at may need to go across layers or provide informational
error alert which will then rely on application layers to monitor and perform corrective
action if needed.

Response related delays and application introduced delays are two such categories of
delay related errors. Miss-matched timeouts at the communications or application layers
can lead to one sided timeouts. To handle one sided timeouts the channels need to be
re-synched, how will the translator deal with this? Application delays could be found
on resource constrained devices not being able to service a request or publish an update
within the time limit expected by the other party.

Application layer packetization which relies on ordered delivery by underlying layers is
a special case of moving between ordered delivery protocols such as TCP and un-ordered
delivery such as UDP. Is this something which can be handled by the translator? Is this
something which is required by the translator?

Invalid messages arriving at the translator requires the translator to be able to detect
and take appropriate action. In request-response protocols an error message can be sent
to the origin. However in many publish-subscribe protocols it is not possible to send
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an error back The translator must be responsible for providing some level of confidence
to the end points about how much of the protocol dependencies are still valid and how
much cannot be support.

Errors produced as part of the protocol procedure such as authentication problems,
resource availability or others can generate legitimate error codes. These error codes
while represented on one side of the translator need to be passed to the other side. To
address this first the error codes of each protocol must be listed and then mapped based
on the cause. Often the mapping will not be symmetric with many error codes being
mapped to a lesser number, or even some error codes not being able to be mapped at all.
This is described in detail in Section 4.

Transient Error Cases

Transient error cases can occur at end points but also in the translator. This class of
error cases relate to errors which can occur at any time and will generally ‘heal’ in a short
period of time. They require special treatment in terms of handling and translation, in
terms of maintaining protocol behavior.

Transient errors due to resource usage occur when there is an increase in transla-
tion demand to such an extent that the translator is no longer capable of handling the
throughput. It must take remedial action in accordance with the protocols which are be-
ing translated. These actions are highly dependent on the source of the increased demand
and the capability for the translator to influence this demand. This can be illustrated
where two end-points have a contract for delivery of notifications on periodic updates.
If the size of the messages begins to increase while the rate of the messages remains at
a high frequency, the translation of these message packets may consume resources which
are not available. In this case the source of the data cannot be asked to reduce the
frequency as the contract is between the end points. In such a case the translator must
become a negotiating party and reduce the frequency or the size of the messages. In
some cases the protocol does not allow such freedom for negotiation and in fact requires
the end-point to drop the connection in such situations, as is the case for MQTT [15].

The second transient error case is from buffer problems. Buffer problems can occur
when resource usage increases without correct remedial actions. But in this case we are
referring to miss matches in buffer sizes between protocols and end-points. Whilst one
high performance end-point, such a REST based web application, may be able to handle
large verbose messages, once this is translated for a constrained end-point, such as CoAP,
an error will occur between the end-points and once again remedial action will need to
be taken and the event will need to be logged.

Lastly, transient errors can occur due to miss-matches in protocol or application
sensitivity to jitter or delays. An application or protocol which has been designed to be
sensitive to a specific range of jitter or delay may find that this is not always possible to
be met either because of the jitter and delays introduced at the translator, or because
the other protocol cannot guarantee the same jitter and delay bands. This can impact
either the protocol behavior or the application behavior and thereby generate errors in
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the end-to-end process.

4 Proposed Solution

There is much work to be done in order to address the challenges in the previous section.
As each challenge is tackled there is likely to be an increase in the solution complexity.
This section looks to address error code translation and discuss QoS and Error reporting.

Mapping Error codes

In this paper the error mapping was done a single pair of protocols. This is the basis
for the development of an error code mapper which would produce a generic interface
which individual protocols must use to define their error codes to the map. In MQTT,
protocol error codes are only reported from the broker to the client [15]. The protocol
does not specify error code reporting by the client to the broker. This is illustrated in
the Figure 1. CoAP in turn also only reports errors from the server to the client [13].
This unidirectional use of error responses means that in certain configurations the error
codes cannot be passed to the end-points. This is discussed further below.

Figure 1: Direction of error reporting in MQTT and in CoAP protocols

The MQTT protocol defines error codes for initial connection and subscription control
packets, other control packets do not have associated error codes [15]. The decoupled
nature of MQTT networks means that clients have much less visibility of errors occurring
in other clients.

Below are two tables with the error codes producible in MQTT and in CoAP. Table 1
shows the error cases which are generated by MQTT and mapped to CoAP. The mapping
in this case is used when a CoAP client is attempting to initiate a subscription to an
MQTT broker through the translator. This is illustrated in Figure 2.

In this case error codes generated by the MQTT broker can be translated and passed
to the CoAP client. For example the CoAP client will be awaiting the response to its
GET request and if the MQTT broker does not allow the connection or the subscription,
then this error can be passed to the CoAP client.

In Table the CoAP error codes are mapped to MQTT. These represent the case when
an MQTT client subscriber is attempting to retrieve data from a CoAP server. This case
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MQTT error case MQTT code CoAP

Failure – Topic filter not accepted SUBACK 0x80 Error 4.04

Not Authorized CONNACK 0x05 Error 4.01

Bad username or password CONNACK 0x04 Error 4.01

Server not available CONNACK 0x03 Error 5.03

Identifier rejected CONNACK 0x02 Error 4.00

Unacceptable protocol version CONNACK 0x01 Error 4.06

Table 1: Error code mapping from MQTT broker to CoAP client

Figure 2: Configuration one allows direct translation of some error codes

is illustrated in Figure 3.

CoAP error case CoAP code MQTT

Bad Request Error 4.00
Unauthorized Error 4.01
Bad Option Error 4.02
Forbidden Error 4.03
Not Found Error 4.04
Method Not Allowed Error 4.05
Not Acceptable Error 4.06 Not implemented
Request Entity Too Large Error 4.13
Unsupported Media Type Error 4.15
Internal Server Error Error 5.00
Not Implemented Error 5.01
Bad Gateway Error 5.02
Gateway Timeout Error 5.04

Table 2: Error code mapping from MQTT broker to CoAP client

In this case there is no path for the error codes to be transferred to the subscribing
MQTT client. This is due to the nature of the MQTT protocol; and so the CoAP error
codes do not have a mapping to MQTT clients.

However, the error codes can be used by the translator and can be mapped to transla-
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Figure 3: Configuration two does not allow direct translation of error codes

tor behaviors. That is, for translating between two different protocol pairs, there will be
different behavior by the translator to take corrective actions or logging. This could be
translating the error code as in Table 1, or other remedial actions as defined in the trans-
lator. For the use case implemented in this paper the translator actions are described in
Section 6.

Quality of Service aspects

Since the translator is in the path between the service producer and the service consumer
application systems, its performance affects the end-to-end QoS. The translator, as a
physical entity has resource limitations for memory and processing power.

Furthermore, it can serve very different application needs and very many of those.
Which means it will handle many queues, which fragment those limitations further:
allocating memory for the various queues, for each entity in the queue; and handling the
processing overhead due to the handle queuing mechanisms (i.e. scheduling).

The translator has similar types of QoS-related issues as a network-level processing
node (i.e. router); although these are somewhat enlarged. This is due to the differences
in information volume: translator needs to process application payload, whereas a router
merely processes the network layer header.

It is not only that the translator (that handles various types of service needs) should
handle QoS profiles, but these should describe further detailed metrics than those well-
known at the network level.

Besides handling loss, delay, delay and utilization metrics, their more specified ver-
sions [16] should be kept under control: one-way and two way throughput and delay, as
well as their variance. Availability as a QoS metric is hard to address other than binary
terms - either it is available, or not. Loss as a quality metric gets another meaning here
- loss in translation - where not the whole message, but its parts get lost. Depending
on the context and the parameters that weren’t able to be mapped, may lead to QoS
degradation - or it may have no noticeable effect.

Error reporting aspects

One of the most challenging aspects of distributed systems is error diagnosis. The IoT
promises massively distributed systems and with the introduction of cross protocol trans-
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lation the error cases not only increase in number but also in complexity. Therefore error
logging and reporting is critical to the success of a translation system.

Systems can take an active approach towards error monitoring which will mean that
the error notification may have soft real-time requirements. While other systems may take
a reactive approach to error monitoring which will mean that they will require persistent
log of the error events leading up to the final event which caused the investigation. This
is true for all distributed systems with or without translation, but as the translation is
a third party to the two end points involved in most interactions it becomes pertinent
to discuss the implications. This means that the error stream reported by the translator
must maintain a link with the end points it is translating for.

Either one of the end-points being translated or a third application will need to
be able to securely and efficiently query the error log. This introduces challenges in
authenticating and authorizing the interested parties to access the logs and to then find
the relevant error records. If the error logs need to be exposed to a third-party which is
providing support, then how can they be authorized to access the required logs?

5 Application Scenario

In order to test the proposed method in a real world monitoring application, subtask
1.8 in the Arrowhead project was chosen. Arrowhead is a European R&D project with
the aim to develop SOA-based interoperable systems [1]. Arrowhead’s Task 1.8 is a
research and development activity aimed at delivering hardware and software for ball-
bearing monitoring of a wheel loader. Task 1.8 is a joint collaborative effort conducted by
Lule̊a University of Technology, SKF and Eistec AB. The translation scenario selected for
demonstrating the challenges of error handling within the framework of Arrowhead is a
CoAP based sensor network monitoring the condition of the wheel loader’s ball bearings
and providing this data as a service within the Arrowhead framework. See Figure 4 for
a layout of the network architecture of Arrowhead Task 1.8.

An MQTT based service consumer is behind a firewall and initiates a session with
the broker consuming the sensor data from the CoAP based sensor. The MQTT service
consumer could be a head office system which does not allow incoming UDP packets or
a hand held device running a VPN which again does not allow incoming UDP packets.
In this case CoAP is not suitable as a service consumer. A high level diagram of this
scenario can be seen in Figure 5.

The translator must connect the MQTT broker and the CoAP server to allow data
flow. There are many error conditions possible, as stated in Section III. As a proof of
concept the authors have chosen to detect a sensor disconnect at the wheel loader. In an
industrial environment such as mining, road works or construction sites a disconnection
error is something which the translator must be able to handle. The interaction diagram
between the different components is shown in Figure 6.

Of particular interest in this scenario is the nature of CoAP running on UDP which
is connectionless and therefore requires an agreed timeout based approach to connection
loss. While on the MQTT side TCP is used and therefore a connection state is maintained



160

Figure 4: Wheel loader monitoring architecture

Figure 5: Application scenario requiring translation

Figure 6: Error condition interaction diagram

between the end points. Even so not all TCP disconnections can be identified and so if
the detection of a disconnection is desired, a heartbeat or a keep-alive timeout is also
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required.

6 Implementation and Results

In order to validate the error case assumptions and begin the process of identifying
limitations in error handling of the translation process an error translation scenario has
been implemented. This section will describe the implementation setup and the results
of running the error cases.

Eclipse Paho MQTT client library has been used for developing a simple visualization
of data and events. This was connected to a Mosquitto MQTT broker running on a
standard Windows computer on a loop back network. The wheel loader sensor was taken
from the Arrowhead task 1.8 pilot project and it uses Contiki OS 2.7 and Erbium. The
sensor connected to the translator through a Contiki border router and a BeagleBone
Black gateway. The translator was implemented in Java and uses a Californium [17]
CoAP client to initiate an observe on the state of the wheel loader sensor and using a
hub and spoke architecture passes the resource notifications to an MQTT Paho client
which then publishes the notification to the corresponding MQTT topic in the Mosquitto
broker. This setup is shown in Figure 7 below.

Figure 7: Implementation technologies mapped to system components

The translator itself is not the core of this paper and so the implementation has
been kept to a simple transfer of payload from CoAP to MQTT. Semantics and other
protocol procedures have not been considered. Using a hub and spoke architecture for
implementation, results in a decoupled component based translator with only simple
object method calls being setup by the hub between the spokes. This can be seen in the
Figure 8.

Figure 8: Translator architecture diagram
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Running the experiment uncovered several error cases which were in addition to the
disconnect error case that was to be modeled. This unintended error case was very useful
as it shows a real world use case. The wheel loader sensor is a resource constrained
device running on a low power network and therefore notification timeout due to late
delivery or packet loss was common. In these cases the CoAP spoke would follow the
CoAP specification and on max-age expiry, would attempt to re-register the observation.
This was in almost all cases successful and would re-establish the periodic notifications.
However in the MQTT specification there is no mechanism within the protocol to pass
information regarding update timeout except by disconnection. The keep-alive timer was
controlled by the Paho library and so would keep the connection alive even when no data
was being sent. This means that a non-standard message would need to be sent from the
CoAP spoke to inform the MQTT client that the sensor has had a timeout. Processing
of this message would be at the discretion of the MQTT client application.

However, in the event of a disconnection error which does have protocol procedures
in both MQTT and CoAP there is still special behavior required. So the CoAP spoke
monitors the max-age of the last resource state update. If this max-age is exceeded then
a timeout is noted and the CoAP spoke will attempt to re-establish the observation, as
described earlier. However if the re-establishment is not successful then the CoAP spoke
cancels the observation and an error passes an error event to the translator hub. In a
normal setup an ungraceful disconnection detected by the MQTT system, would result
all subscribing clients being delivered a last will message, if it is available. However in
this case the MQTT system does not have visibility of the CoAP disconnection. It is
required to translate and notify the MQTT system of this disconnection event. The
proposed translator maps the CoAP disconnection to a last will message in the MQTT
side. This mapping takes place in the translation hub. Figure 9 shows the interaction
between internal components of the translator system.

Figure 9: Internal object interaction of the translator behavior
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In this way, the translator has made use of the protocol procedures of both sides
to make sure both protocols are aware of the error event. For interoperable use of the
translator between systems the definition of both the timeout event and the disconnect
event signals is a must. For this implementation two event signals were defined and
encoded in XML. These tags are presented below.

Implementation of the rudimentary good path payload translation between CoAP
and MQTT was relatively trivial. However implementing the mapping of disconnection
and timeout errors introduced a lot of complexity to the code. By refining the implemen-
tation the error handling and mapping were moved to the central hub. This reduced the
complexity of the translation effort immensely. Each translation spoke did not need to
have knowledge of the other. This means that once a spoke is developed it can be con-
nected through the hub to any other spoke. This reduces the effort required to develop
translation services between the ever changing array of protocols.

By decoupling the protocol specific handling to spokes and translation aspects to
the translation hub has meant that the solution is extensible for new spokes and allows
interesting potential for a multi-spoke translator. It has also meant that error cases can
be handled in a standard manner within the translation hub and new spoke development
need only use available hooks in the translation hub in order to pass error conditions.

The results were promising with key advantages to the use of a hub and spoke SOA
based translator. Its active participation in the network, its simplicity for handling errors
and potential for extension to being orchestrated and also into semantic translation are
the main advantages.

7 Conclusion

This paper has presented the challenges and solution for error handling in multi-protocol
translation scenarios for SOA systems. This work is motivated by the creation of new
systems-of-systems that are composed of application domains with different communi-
cations requirements. Current protocol translation solutions use tightly-coupled soft-
ware components or integrated middleware that reduces flexibility and increases cost of
change. Moreover, utilizing centralized software bus for translation increases round trip
time, bandwidth usage and introduces further dependencies (i.e. on cloud platforms,
often operated by third parties). In both of these cases intermediary protocols are used
and this limits the benefits of the native communications protocol.

On the other hand, SOA-based translation systems provide the opportunity to de-
couple the translation components from the application development and also create
flexibility in deciding execution location of the translation service.

This paper discussed the challenges of error handling in the case of loosely coupled
SOA translators. Some of the investigated error cases are connection errors, lossy commu-
nication, application introduced delays and protocol error code mapping. Beside these,
the transient errors in the translator and at end-points need to be handled. This means
that not just message parameter mapping, but the protocol procedures of one side needs
to be reflected on the other side. Transient errors can occur, when resource requirements
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in terms of memory and processing power do not scale as usage demand increases, a mis-
match in buffer requirements between a protocol pair, or a mismatch in jitter and delay
sensitivity. These transient errors require the translator to be capable of self-monitoring
and also negotiation capabilities with the protocol pairs.

The proposed solution uses translator behaviors, which are then mapped to a protocol
procedure or error code. The translator’s overall behavior depends on the protocols
being translated. This is realized in the implementation by the use of a hub and spoke
architecture with the hub containing the possible behaviors of each spoke.

The proof of concept implementation provided error handling for translation between
CoAP and MQTT. To accomplish this, it was required to pass error cases generated on
the CoAP side of the connection to be communicated to the MQTT side. It was decided
to define a set of xml tags and attributes, which would communicate the errors at the
application level. There were two such events defined for this proof of concept, they were
the disconnect event and the timeout event.

8 Future Work

In the future, the architecture of the multi-protocol translator needs to be defined and
refined. Use case extension to other SOA protocols such as XMPP and REST will be
needed.

Challenges are seen in orchestration and co-ordination of the translator end-points,
managing resource requirements, providing security in terms of privacy, confidentiality
and authenticity, and proving performance and flexibility gains.

Performance metrics, evaluation and bench-marking will be needed in order to prove
the advantages of a multi-protocol SOA translator.

Further development of the semantics used to send error information and signals
should be looked into.

Error logging and diagnosis has much work to be done. Logging encompasses a larger
scope than just error events should enable SOA based applications to create an end to
end stream of events. An API must be developed with the ability for machine query and
manual query of the logs.

9 Acknowledgment

The authors would like to express their gratitude towards the European Commission and
Artemis for funding, and our partners within the Arrowhead project.

References

[1] F. Blomstedt, L. Ferreira, M. Klisics, C. Chrysoulas, I. Martinez de Soria, B. Morin,
A. Zabasta, J. Eliasson, M. Johansson, and P. Varga, “The arrowhead approach for



References 165

soa application development and documentation,” in Industrial Electronics Society,
IECON 2014 - 40th Annual Conference of the IEEE, Oct 2014, pp. 2631–2637.

[2] D. Evans, “The internet of things how the next evolution of the internet is changing
everything,” in The Internet of Things How the Next Evolution of the Internet Is
Changing Everything, April 2011.

[3] “Cumulocity,” http://www.cumulocity.com/guides/concepts/interfacing-devices/,
April 2014, interfacing devices.

[4] “Iotivity,” https://www.iotivity.org/documentation/iotivity-services/
protocol-plug-manager/, April 2014, protocol plug-in manager.

[5] “Ptc,” http://www.thingworx.com/, April 2014, thingworx platform a ptc business.

[6] “Xively,” https://personal.xively.com/dev/docs/api/, April 2014, xively rest api.

[7] S. Karnouskos, A. Colombo, T. Bangemann, K. Manninen, R. Camp, M. Tilly,
P. Stluka, F. Jammes, J. Delsing, and J. Eliasson, “A soa-based architecture for em-
powering future collaborative cloud-based industrial automation,” in IECON 2012
- 38th Annual Conference on IEEE Industrial Electronics Society, Oct 2012, pp.
5766–5772.

[8] R. P. G. J. G. R. L. T. L. R. K. M. K. D. S. K. S. L. Northrop, P. Feiler and
K. Wallnau, “Ultra-large-scale systems - the software challenge of the future,”
http://www.sei.cmu.edu/Iibrary/assets/ULS Book20062.pdf, Juny 2006, software
Engineering Institute, Carnegie Mellon, Tech. Rep.

[9] P. Suresh, J. Daniel, V. Parthasarathy, and R. Aswathy, “A state of the art review on
the internet of things (iot) history, technology and fields of deployment,” in Science
Engineering and Management Research (ICSEMR), 2014 International Conference
on, Nov 2014, pp. 1–8.

[10] M. Collina, G. Corazza, and A. Vanelli-Coralli, “Introducing the qest broker: Scaling
the iot by bridging mqtt and rest,” in Personal Indoor and Mobile Radio Commu-
nications (PIMRC), 2012 IEEE 23rd International Symposium on, Sept 2012, pp.
36–41.

[11] B. Singh, Data Communications And Computer Networks 2Nd Ed. Prentice-Hall
Of India Pvt. Limited, 2006. [Online]. Available: https://books.google.se/books?
id=RsocJmhDBcIC

[12] C. Aoun and E. B. Davies, “Reasons to Move the Network Address Translator -
Protocol Translator (NAT-PT) to Historic Status,” IETF RFC 4966, Oct. 2015.
[Online]. Available: https://rfc-editor.org/rfc/rfc4966.txt



166

[13] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol
(CoAP),” RFC 7252 (Proposed Standard), Internet Engineering Task Force, Jun.
2014. [Online]. Available: http://www.ietf.org/rfc/rfc7252.txt

[14] C. Bormann, A. Castellani, and Z. Shelby, “Coap: An application protocol for
billions of tiny internet nodes,” Internet Computing, IEEE, vol. 16, no. 2, pp. 62–
67, March 2012.

[15] “Mqtt version 3.1.1,” http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.
1-os.html, 2014, oASIS Standard.

[16] P. Varga and l. Moldovan, “Integration of service-level monitoring with fault man-
agement for end-to-end multi-provider ethernet services,” Network and Service Man-
agement, IEEE Transactions on, vol. 4, no. 1, pp. 28–38, June 2007.

[17] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic from the
firmware to the cloud: Towards the thin server architecture for the internet of
things,” in Proceedings of the 6th International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS 2012), Palermo, Italy, Jul.
2012.



Paper E

Configuration Service in Cloud
based Automation Systems

Authors:
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Configuration Service in Cloud based Automation

Systems

Oscar Carlsson, Pablo Puñal Pereira, Jens Eliasson, Jerker Delsing, Bilal Ahmad,
Robert Harrison and Ove Jansson

Abstract

Current challenges in production automation requires the involvement of new tech-
nologies like Internet of Things (IoT), Systems of Systems and local automation clouds.
The objective of this paper is to address the actual process of defining a cloud based au-
tomation system. The objective of this paper is to address one of the challenges involved
in establishing and managing a cloud based automation system. Three key capabilities
have been identified as required to create the expected benefits of local automation clouds;
1) capturing of plant design 2) capturing and distributing configuration and deployment
information 3) coordinating information exchange

This paper addresses the capturing and distribution of configuration and deployment
information. For this purpose a system service is proposed, the ConfigurationStore, fol-
lowing the principles of the Arrowhead Framework. The service is accompanied by a
deployment methodology and a bootstrapping procedure. These are discussed for sev-
eral types of automation technology, e.g. controllers, sensors, actuators. A qualitative
evaluation of the proposed approach is made for four use cases; Building automation,
Manufacturing automation, Process automation and IoT devices. Concluding the usabil-
ity for large-scale deployment and configuration of Industrial Internet of Things.

1 Introduction

High level topics in today’s society are sustainability, flexibility, efficiency and competi-
tiveness. These in turn are driven by big societal questions like environmental sustain-
ability, availability of energy and raw material, rapidly changing market trends. We find
several trends that in different ways are addressing these topics. One is the move from
large monolithic organisations towards multi-stakeholder cooperations where cooperation
are fostered by market requirements. Another is the learning from previous products,
other parts of the value chain, the life cycle of the product and the product or service
production process itself.

These trends are creating new requirements for the technology used to support prod-
uct and service production, causing a drive for digitisation of production. Digesting
this reveals a number of gaps regarding technology, organisation, cooperation structure,
operational management and related business models that have to addressed.
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Figure 1: Three important axes for collaborative production, product life cycle, supply
chain and stakholder integration management

Around organisation, cooperation structure and operational management the high
profile key aspects are related to three domains, see Figure 1:

• Product life cycle management

• Supply chain management

• Stakeholder integration management

With the move from large monolithic enterprises towards multi-stakeholder cooper-
ation the management is changing towards distributed multi-stakeholder collaboration
with distributed responsibilities and decision making. The flexible collaboration along
and in-between the three domains also opens for the possibility of dynamic learning. A
further aspect is that these domains tend to become wider (longer) involving more stake-
holders with diverse objectives and more details and variations of the service or product
to meet customer diversity and service and product quality.

These ideas are currently emerging but regarded as very important to address the high
level topics of flexibility, efficiency, competitiveness and with suitable incentives also sup-
porting sustainability. To support these developments there are a number of technology
gaps which seemingly can not be addressed by current state of the art. Because of this,
a number of new technologies are emerging to fill these gaps. Some current big buzz
technologies are:

• Internet of Thing, IoT

• System of Systems, SoS

• Cyber-Physical Systems, CPS
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• Service Oriented Architecture, SOA

Despite all the new operational and organisational ideas and emerging technologies
the automation fundamentals captured by today’s state of the art automation technology
have to maintained. Thus, next generation of automation and digitalisation technology
has to meet a large set of requirements and involve a wider scope of actors and stake-
holders. This is the big challenge for technology suppliers of the future, in this field.

ISA-95, standardised through ISA [1], is today’s standard architecture for automations
systems [2]. Accompanying the ISA-95 standard are related standards like ISA-99 and
IEC 62443 [3, 4], which address control system security.

In 2011, the concept of Industry 4.0 [5] was born in Germany. This concept builds
upon the last generation of industrial monitoring and control systems, but enables an
even finer level of interaction between shop-floor devices and high-level enterprise systems.
In industry 4.0, state of the art technologies like Internet of Things (IoT) and Cyber-
physical Systems (CPS) are utilized in order to be able to break the classical, strictly
hierarchical, approach of ISA-95 [2] with a more flexible approach without fixed barriers
and closed systems.

Figure 2: Transferring the ISA-95 automation pyramid architecture to a cloud. This has
been investigated by several larger EU projects like e.g. SOCRADES and IMC-AESOP

The trends and perspectives put forward indicates that the current solutions use
to build automation systems are not sufficient. Further the cost connected with the
engineering and building of larger automation systems involving multiple stakeholders
seems to be prohibitively high.

For the last 10 years, discussion on the next generation SCADA, DCS and MES
systems has been around. A multitude of research projects on the topic have been
executed. Some more prominent such are SOFIA, SOCRADES [6], and IMC-AESOP
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[7]. All of them were investigating a move from a hierarchical ISA-95 approach to a
more cloud-like approach. A well-known illustration from the IMC-AESOP project is
illustrating such move from the pyramid to the cloud in Figure 2. This is currently a
rapidly changing landscape but some other efforts touching this field are e.g. FiWare [8].
In addition there are a growing number of cloud offerings on the market. An analysis of
the different approaches found in 2015 can be found in [9].

In all these cases the key technology for creating the integration within and in-between
different levels of the ISA-95 architecture is Service Oriented Architecture, SOA [10]. SOA
was originally developed by IBM to enable data/information exchange between different
lines of computer systems.

For the transfer of the ISA-95 architecture to a cloud based approach we do find some
important published work regarding, system architecture [11, 12], suitable technologies[13],
real time [14, 15] migration from legacy systems [16, 17], engineering for cloud based au-
tomation [18, 19].

A parallel discussion is ongoing for the MES and ERP levels. Some important publi-
cations on cloud approaches for the MES and ERP level are [11, 20].

Recently the concept of local automation clouds have been introduced via the Arrow-
head project the newly released Arrowhead Framework [21].

Most of the recent developments are adopting Service Oriented Architecture, SOA,
as the main approach to enable plant automation using cloud technology.

The objective of this paper is to take a step beyond the current cloud automation
technology for production. The ambition is to address the actual process of producing a
cloud based automation system. It is here argued that there are at least three important
capabilities of the automation clouds which are critical to create expected benefits from
local automation cloud approach. The capabilities are:

• A way of capturing a plant design: physical devices, components and systems, ge-
ographical layout and controlled interaction between physical devices, components
and systems

• A way of capturing and distributing configuration information to the entities in-
volved in the plant design

• A way of coordinating information exchange between different entities within a
plant

This paper will address the second point: capturing and distribution of configuration
information.

The outline is; Section 2 outlines related work, followed by Sections 3 and 4, which
presents the proposed approach and gives examples of a few different use cases with
experimental results. Section 5 gives a theorethical discussion on the findings, followed
by the conclusions in Section 6. The paper finishes by stating ideas for future work in
Section 7.
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2 Related work

The configuration has long been a significant part of commissioning automated systems
in all parts of society. As different domains and applications form, using different ap-
proaches and technology, the configuration procedure has developed in somewhat different
directions in different areas.

Hodek and Schlick [22] describe the typical operations for integration of field de-
vices in a state-of-the-art industrial automation system. The device profiles that they
present could very well be used as a standardized baseline configuration for field devices.
However, they also note that there are several other components to a quick and simple
commissioning, such as the programming of Programmable Logic Controllers (PLC’s) and
integration into enterprise software systems. Additionally one of the suggested further
investigations is on technology independent Plug& Play features of industrial Ethernet
solutions.

Cachapa et al. [23] show how an engineering tool based on a Service-Oriented Archi-
tecture (SOA) can help by simplifying the process of designing and applying a production
line layout, although in their case the configuration still contains manual configuration
for each device.

Dürkop et al. [24] present a solution for a reconfigurable automation system where a
Programmable Logic Controller (PLC), using Real-time Ethernet (RTE) connected IO-
devices, is equipped with a Web-Service Interface that allows configuration of both the
PLC and the RTE network.

Perera et al. [25] present a model to help users configure IoT middleware, primarily
for middleware used to collect and process data from IoT-enabled sensors. The issue
described here illustrates a situation that can be expected to become more common as
automation systems become more dynamic and reconfigurable, where users or operators
without detailed knowledge in IT or automation are tasked with the reconfiguration of a
system and how tools and methods can aid this process.

In conclusion, there are several approaches and solutions that can help improve the
engineering and configuration of both existing and future automation systems in many
different areas.

3 Proposed approach

The approach presented in this paper attempts to define certain methods, structures
and interaction patterns that will fit in the many areas of society that Arrowhead aims
to address. As this will encompass a large number of different technologies and very
different external requirements, the general approach is not detailed on a technical level
but instead some more detailed scenarios are discussed in the following sections.
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Arrowhead Configuration store

The Configuration Store service is one of the Arrowhead automation support core ser-
vices.

The purpose of the Configuration Store is to provide a uniform way for Arrowhead
compliant system to manage distribution of configurations. The extent of the config-
urability of a system ultimately depends on the system and therefore the design of this
service is intended to allow different levels of configurations to be transferred using the
same interface, from changes in system parameters to full firmware updates that may
change which services a system is able to produce and consume.

Through this design the decision of how configurable a system should be is left to
the system provider, and not imposed by the framework, while still allowing a uniform
method for configuration management across diverse systems of systems containing sys-
tems with different levels of configurability.

In this design the actual configuration file is not necessarily provided by the Con-
figuration Store, this design was selected to accommodate difference scenarios where
accessibility, storage or file transfer ability may otherwise be limiting the distribution of
configurations. There is however the possibility to have the same system providing both
the Configuration Store service and the appointed file storage.

General deployment procedure

As the Arrowhead Framework is intended to allow cost effective deployment of a very
wide array of devices, all general methods and procedures need to allow for some flexibil-
ity and adaptation to the specific use case. Still, many Arrowhead compatible devices are
expected to be deployed in large numbers using low-cost hardware manufactured identi-
cally in very large numbers. Under these conditions it becomes even more important to
keep the costs for engineering, deployment and commissioning at a minimum.

For the general procedure, the devices are assumed to have identical hardware and
identical software preloaded from a factory, workshop or back office, the only differences
between devices are their network Media Access Control address (MAC address) and their
Serial Number (S/N), or some other individual identifier that has been assigned to them
automatically during the device manufacturing process. The preloaded software contains
the required security measures and to allow the device to connect to the Arrowhead
Framework Core systems and to use a minimal set of services. The basic security may,
for example, consist of a certificate installed as part of the manufacturing process which
certifies that the device is of the brand and type that it claims to be.

To organize the large number of devices into a productive system of systems each
device needs to be assigned a specific task and be configured to perform the task according
to a larger plan. This information describing the different tasks and configurations is store
in the Configuration Store, as described in section 3. In order to allow some flexibility
in network structure, without increasing the engineering or deployment time for each
device, a specific procedure has been developed.

Step-by-step general deployment procedure:
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1. Device is physically connected to the network and turned on.

2. Device connects to the network using DHCP, or a similar standardized technology
applicable for the network in question.

3. Device looks for the Arrowhead core systems [26] at predefined locations. (E.g. on
the local network or a cloud service hosted by the device supplier)

4. Core systems authenticate device as factory configured device with basic authoriza-
tion.

5. Human (operator, electrician, engineer or similar) performing the installation as-
sociates the physical/logical location (location as registered in the core systems
referring to the point where the device is installed) with the MAC address, S/N or
other agreed upon identifier of the device.

This can be achieved through a mobile interface (e.g. laptop, smart-phone or tablet)
where the installer selects the correct location and either reads the identifier from
a bar-code, RFID or similar tag on the device or transfers the identifier from the
mobile interface to the installed device using NFC or similar communication.

6. Device registers with the core systems providing its identifier for identification.

7. Once the identifier is available at both the installed device and at the core systems
a service connection can be orchestrated between the configurable device and the
appropriate configuration store.

8. Once the connection is made between the configuration repository and the identified
device, the complete configuration containing the assigned task is transferred to the
device and installed/executed.

9. Using the received configuration the device is automatically able to start performing
its assigned tasks.

10. A message of success/failure is sent as an event to subscribed user interfaces.

Bootstrapping of Resource Constrained Devices

As an example of how the general procedure may need to be specialized to fit certain
requirements, a more limited procedure has been designed and tested. The purpose of
this is to show how a general procedure may be of use even though the application field
is very diverse and it may be difficult to apply the original procedure explicitly in every
case.

A zero configuration approach for IoT devices requires the use of Bootstrapping tech-
niques. From the point of view of a wireless sensor and actuator (WSAN) node, the first
time that a new node connects to the wireless network it only knows its own IP address
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and the IP address of the gateway; it has normally no information about other services
in the network.

Bootstrapping is a pseudo-configuration service which provides a basic configuration
of the mandatory and essential services that a node requires and needs during the boot
process, examples are; configuration services, authentication services or device manager
service.

As the only information that a node has after connect to the wireless network is the
IP of the gateway, the Bootstrapping service must run on it and should use a predefined
port (this is the unique predefined information). The bootstrapping request can include
information about the IoT device to create a customized and optimized response for the
device; this information can contain a serial number, a predefined ID, MAC address,
internal software name, version, or other information able to identify the device or at less
the device type.

After this process, the device should store all the information in a non-volatile mem-
ory, and use it in case the connection to the bootstrapping service goes down.

The penalty for the utilization of this technology regarding communication is a single
request per boot but also it requires the implementation of a parser on the device, which
can consume valuable memory on resource-constrained devices.

The following example is a bootstrapping profile encoded with JSON (Code E.1), but
it can be encoded with CBOR to reduce the packet size.

Code E.1: Example of Bootstrapping for an IoT node encoded in JSON

1 {
2 "auth": {
3 "ip": "fdfd:0:0:0:0:0:0:0A",

4 "port": 5683,

5 "v": 1,

6 "res": "/Authentication",

7 "resAlt": "/Authorization"

8 },
9 "conf": {

10 "ip": "fdfd:0:0:0:0:0:0:0B",

11 "port": 5682,

12 "v": 1,

13 "res": "/Conf"

14 },
15 "dev": {
16 "ip": "fdfd:0:0:0:0:0:0:0C",

17 "port": 5681,

18 "v": 1,

19 "res": "/rd"

20 }
21 }
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Intended areas of configuration

To illustrated how the configuration approach may provide different possibilities for dif-
ferent areas of application, this section provides a few examples from some of the domains
where Arrowhead is intended to be used.

Control code to PLC’s and IoT controllers

Writing control code is one of the critical aspects of automation systems engineering
process. The traditional approach to program control systems does not fit well within
the paradigm of Cyber-Physical Systems (CPS), where physical systems need to evolve
in intimate and aligned correspondence with their virtual representation [27]. To address
this, the Arrowhead approach propose a data-driven method for control code deploy-
ment, deployable on a number of devices and platforms with embedded data storage and
processing capabilities, for the configuration of automated manufacturing systems.

The proposed architecture is composed of three types of elements (see Figure 3): i)
data model that describes the system structure and the control behaviour, ii) logic engine
that orchestrate system by interpreting description of the system defined within the data
model, and iii) resource specific standard library Function Blocks (FBs) acting as an
interface between the hardware (i.e. sensors and actuators) and the data model.

Figure 3: Control software architecture

In this software architecture, the logic engine is configuration independent as for
any system configuration it remains unchanged while the data model is configuration
dependent as any change in the system, such as sequence, require reconfiguration of
the data model. Resource-specific FBs can remain the same for different control or
hardware configuration, but may need to be changed in some cases (e.g. vendor specific
configuration, actuator type/configuration etc.).

The motivation for this software architecture is to dissociate the key elements required
to achieve the overall device configuration and therefore dissociate the engineering pro-
cesses that support various aspect of the device configuration (e.g. device firmware/logic
engine update, system specific configuration change/update, etc.). This approach also
allows generating the control code using standard library components (i.e. FBs), which
are driven by the control logic defined in the manufacturing process simulation tools to
enable seamless transition from virtual to physical system and feedback of runtime data
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to virtual system to facilitate data model calibration and analytics. As the control be-
haviour is defined in the data model, which can be accessed (i.e. read/write) in runtime,
service visualization and process parametrisation can be attained using human-machine
interface devices.

Configuration of sensors and actuators

Sensor and actuator nodes usually have two types of physical resources: sensors and
actuators; and in the case of IoT systems based on Service Oriented Architecture (SOA)
the configuration can also set the service’s behaviour. Therefore, there are three different
types of configurations.

1. Sensor

• Sample rate

• Inactive periods

• Sensitivity

2. Actuator

• Sensitivity

• Active/Sleep

3. Service

• Service composition

• Filtering

• Data compression

• Output format

• Triggering

Configuration of Building Automation Controllers

Building Automation Controllers (BAC’s) use multiple physical resources: sensors, ac-
tuators and remote i/o units as well as being freely programmable with applications for
monitor & control, communication, HMI and event handling. Therefore, there are many
different types of configuration but they can be divided into functional configurations
(programming, setup, services) and operational configurations (settings), the later often
provided by services in a SOA environment.

4 Use cases and evaluation

The proposed approach is intended to be flexible and to provide different possibilities for
scenarios likely to be encountered in different areas of automation. Some use cases have
been collected to illustrate the benefits, and possible drawbacks of the approach.
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Use case: Building automation

In the field of building automation it is common that many systems in one area are to use
identical configurations, or that there are a few typical configurations that are used for a
large number of systems. This may be the case for an area with apartment buildings that
are all built during the same era and are owned by the same company, here it is beneficial
for the owners from a maintenance and management point of view if the systems are as
similar as possible.

In this case, and similar scenarios, a centralised Configuration store allows manage-
ment and updates of all systems based on one configuration that can be rigorously tested
and monitored for its first deployment. Once the initial deployment has proven successful
it can be applied to all others with low risk of failure.

Additionally, a Configuration store that can keep track of configuration status will
allow easier comparison of similar buildings using different configurations, in order to
optimise or find flaws in the tested versions.

Use case: Manufacturing industry

Due to the growing need to manufacture highly innovative and customized products,
efficient and quick adaptation of manufacturing systems to new product and production
volumes is of significant importance. It has been established that one of the major
obstacles in realising an efficient and reconfigurable production systems is the existing
PLC control code development and deployment approach. The management of PLC
devices configuration is currently completely dissociated from other engineering phases
(such as process planning and mechanical engineering) and from the digital data set
resulting from them.

WMG and FDS is developing a virtual engineering toolset, vueOne, and associated
CPS oriented engineering methods that aim at filling this gap by providing data-driven
control code generation capabilities (described in section III, D) directly from the vueOne
virtual process planning module [27]. In this use case, an engineering scenario focusing on
PLC devices configuration is investigated using Web service and Arrowhead Framework
to enable direct deployment of control software to PLC devices to provide basis for
dynamic and more distinctive configuration scenarios.

Unlike the classical method of PLC device configuration, which requires a direct
connection between the PLC and a laptop running the vendor-specific programming tool,
the PLC devices (or a server module linked to it) subscribes to the Configuration Store.
Any changes in the control configurations are then directly passed from the Configuration
Store to the subscribed PLC device when available. To capture the changes made to in
the control code on the shop-floor, if any local changes are made in the control software,
such as changing some parameters of the data model, the PLC device uploads the latest
configuration to the Configuration Store to update the configuration database.

In an ideal configuration mechanism, the PLC device will retrieve updated configura-
tion if/when available automatically. In practice however, the approach requires access to
proprietary APIs from PLC vendors to allow download access to the PLCs. The Config-
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uration Store consumer software is currently deployed on laptops that control engineers
connect to PLCs in order to update or install control code. However, in case of embedded
controllers the dynamic configuration can be achieved seamlessly using the Arrowhead
framework due to their non-proprietary configuration mechanisms.

Use case: IoT devices

This section is based on experimental results of energy consumption and delays. The
benchmark configuration relies on measures of battery current and voltage externally to
the device; these measurements are done using a 16-bit ADC at 1840 Hz to capture rapid
events such as radio, wakeups, etc. All these measurements are combined to 8 digital
inputs that can be used to recognize in detail the power consumption of each software
module.

The selected IoT platform to do the test was a Mulle from Eistec AB, which is
equipped with an ARM Cortex-M4 at 100 MHz microcontroller and an IEEE 802.15.4
transceiver. It has an onboard 2 MB of flash memory and 256 KB of internal memory on
the microcontroller. The Mulle runs the open- source Contiki OS; so all taken measures
are affected by running an OS on the same device without any isolation to get real
condition data.

As the number of devices increase, so does the need for technologies for large scale
management of systems including hardware devices and life cycle management. The issue
of life cycle management, in particular configuration, is even more complicated when it
comes to managing a very large number of resource constrained, wireless and battery
powered devices in harsh environments.

In this use case, the authors have investigated how advanced configuration can be
achieved in a very efficient manner in terms of communication overhead and energy
usage.

The introduction of the IP technology for Wireless Sensor Networks (WSNs), now
called Internet of Things (IoT) is today a hot topic, the power consumption of applica-
tion’s level protocols was a barrier which hindered a massive expansion of IoT; But in
2014, the standardization of CoAP[28] helped to develop IoT systems. The application
of CoAP was a step forward and changed the behaviour of the WSAN nodes, from sim-
plistic pull-based to more complex event-based communication. Nowadays, each node
can provide services (resources) to other nodes, or to any server/client at Internet. This
enables deployment of smart and efficient IoT systems with advanced features such as;
service composition, event detection, low-power operation, high dependability, etc.

All these new features requires either run-time zero configuration and/or static config-
uration; In order to provide run-time configuration which is a much better approach for
deploying larger networks, the framework must implement both bootstrapping and con-
figuration services. The validation of these services for bootstrapping and configuration
are a direct comparison between the benefits they provide versus their respective per-
formance impact in terms of power consumption, communication overhead and memory
usage.
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The proposed Bootstrapping and Configuration services enable the following features:

• Low-power. The configuration of the previous WSNs was static; that means that
the performance of each device was the same during the life-cycle. But now with
Configuration service, the performance can be adaptive. All variables like sample
rate, type of processing, triggers, etc. can be modified.

• Dependability and Robustness. The bootstrapping nature is dynamic, on each
request, the bootstrapping service creates a customized response; Then if a service
goes down, another one can replace it, just changing the bootstrapping parameters.

• Zero Configuration. With bootstrapping there are no fixed end-points on the device,
one node could be deployed at any WSNs, and it will be able to establish a correct
configuration.

The consumption of these two services (Bootstrapping and Configuration) is not ex-
cessive compared to others as Authentication, Authorization and Device Manager. The
values at Figure 4 can change depending on the complexity of the device configuration.

Figure 4: Comparison of energy consumption between Bootstrapping, Configuration and
other common IoT-WSNs services

Regarding memory, the biggest cost is to parse the incoming configuration profile.
For this experiment, the profile was encoded in JSON format, and the jsmn[29] C-API
was used as the parser. The configuration memory usage represents the memory of
configuring a single service. The bootstrapping memory usage also includes the JSON
parser’s ROM memory usage (see Table 1).
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Bootstrapping Configuration
ROM (bytes) 1126+4382(parser) 840
RAM (bytes) 412 776

Table 1: Memory footprint of Bootstrapping and Configuration

Use case: Process industries

The process industry typically has comparatively static production lines where reconfig-
urability of the production, as commonly described for manufacturing industries, is not
usually sought after. However, another scenario that may require significant configuration
is that of replacement of devices, machines or groups of systems.

In the current environment of process industry automation systems, replacement of
devices or larger systems generally takes place because of one of two reasons.

The first reason is that the existing one is broken, faulty or worn out and should be
replaced with a new, but identical, item. This case is generally considered to be part of
standard maintenance procedures, either reactive or proactive.

The second reason is that the existing item is too old and should be replaced with a
newer part, this may be due to e.g. discontinued support from suppliers and difficulty
to procure replacements, difficulty to attract and retain personnel with the required
expertise in older systems or due to lack of technical features or functionality. This case
is generally considered part of the long term investments in production systems and as
such, replacements are generally planned carefully and in great detail.

While the conditions before the two cases are very different, especially with regards
to the possibility to make preparations, as one is planned and the other is not, there are
also some commonalities in that in both cases the functionality is expected to be exactly
the same as before and that the time for the replacement and commissioning is usually
very limited.

Traditionally these kind of replacement procedures have relied heavily on existing
documentation and backup copies of control code and configurations, however these are
not always kept up to date and may not be fully compatible with updated replacement
devices. This leads to additional engineering work and may in unfortunate cases lead to
unforeseen complications during the critical commissioning work.

As the Configuration store can be used to store the most current configuration for each
device and the deployment procedure allows for a smooth introduction of new devices,
an easier, quicker and cheaper replacement process is expected.

However, the Configuration store does not solve the issue with incompatible config-
urations or software version, but having a backup that is certainly of the most recent
configuration will make engineering work easier and the re-commissioning less uncertain.
If the device manufacturers can be persuaded to use open and standardized configuration
files this would allow more possibilities for conversion and testing of updates ahead of
the physical replacement.
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5 Discussion

The use cases presented are diverse and have significantly different requirements and
potential benefits. The case presented from Building automation highlights the benefits
from a management and maintenance point of view. The use case from a Manufacturing
industry illustrates some of the strong potential once an approach like this is fully inte-
grated in a complete engineering tool chain, something that can be expected to happen
eventually in all areas with significant engineering requirements. However, it also illus-
trates some of the limitations that may occur when existing hardware is not yet capable
to make use of new possibilities.

The IoT case illustrates the drawbacks that can be expected from using the approach
for resource constrained devices. The cost incurred in terms of energy and memory
consumption is not negligible, but for scenarios where a large number of devices are to
be deployed and configured it is likely to be acceptable. At least when compared to
the additional engineering time required to configure all devices individually prior to
deployment. The use case from a Process industry shows that a structured, centralised
management of device configurations can provide benefits to diverse elements of society.
In addition, keeping the records of device configurations automatically updated is likely
to remove some of the additional cost incurred when a device needs to be replaced or
upgraded.

6 Conclusion

In this paper, we have presented the Arrowhead Framework’s approach for advanced
configuration of systems and devices. The proposed approach is designed to be highly
versatile while still being efficient for usage by resource-constrained devices. The ap-
proach has been implemented and tested on a resource-constrained wireless sensor and
actuator platform.

Test results indicates that the overhead from performing bootstrapping and automatic
configuration of a newly deployed device is negligible in terms of energy consumption and
memory usage in relation to the energy spent by the device for sensing purposes during
its lifetime. This shows that advanced run-time configuration is feasible even on small,
battery-powered devices.

7 Future work

Among the possible paths of future advances can be found several interesting options.
Along the path of further implementation lies the tasks of prototype implementations for
configuration of larger, less limited devices.

Further development could include implementations more integrated with engineering
tools. This could be done either by implementing methods for managing the Configura-
tionStore from existing, discipline related engineering tools, or by designing an engineer-
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ing tool centred around the ConfigurationStore and associated processes. The former
implementation would allow for a smooth engineering and deployment process within
the specific domain, while the latter has an advantage of spanning all affected domains
easing e.g. management and maintenance of multi-domain facilities.
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Abstract

Today’s high demands on raw materials like iron ore, copper, and other minerals
puts a high pressure on the mining industry to deliver a steady flow of ore, metals and
minerals. However, since mines are inherently dangerous, there is a strong need for
making mining operations more safe, efficient, and environmentally friendly. Rock bolts
are widely utilized by the mining industry as an approach for increasing mine stability.
One problem is that rock bolts can become damaged by for example seismic activities
such as blasting or mine quakes.

In this paper, we present an architecture based on OMA LWM2M, IPSO Smart Ob-
jects and the Arrowhead Framework for IoT in industrial applications. The paper also
presents results from two feasibility aspects: performance and lifetime. By utilizing (In-
dustrial) Internet of Things technologies, it is possible to drastically improve monitoring
of mining activities and thereby providing workers with a safer working environment.

The architecture supports low-power operation, zero-configuration networking, in-
teroperability, security and authentication mechanisms. This shows that standardized
protocols such as 6LoWPAN, IPsec, LWM2M, and IPSO Smart Objects can be used in
the Industrial Internet of Things.

1 Introduction

The mining industry has been an important contribution to recent years development of
new types of products and businesses. A good supply of cost-efficient raw materials has
resulted in strong economic growth within the European Union and around the world.
As mines are starting to operate at increased depths, mining operation is getting more
and more hazardous for the workers. Last year’s drop in ore prices also put higher
requirements on higher operation efficiency. Safety and efficiency are two very important
factors for the mining operation.

These facts show the need for low-cost, massive online monitoring of mine opera-
tions. Today, best practice in mines make use of very accurate and expensive sends for
online monitoring. One problem though is that today’s solutions often requires a fixed
infrastructure for power supply and data communication. This is one main reason for
mining companies to not being able to install sensors at the same rate is tunnels are
being excavated.
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In 2011, the concept of Industry 4.0 was first introduced. This concept builds upon
the last generation of industrial monitoring and control systems, but enables an even
finer level of interaction between shop-floor devices and high-level enterprise systems. In
Industry 4.0, the state of the art technologies like Internet of Things (IoT) and Cyber-
physical Systems (CPS) are utilized. This opens up for new strategies in terms of global
plant optimization, minimized energy consumption, safety, and security, etc. In for exam-
ple [1], IPSO Smart Objects was used to interface a lighting application. Of course, when
more complex communications stacks are being deployed even on resource-constrained
sensors and actuators, new challenges and problems that must be handled are introduced.
One of the most critical challenges is security [2]. When more and more devices are net-
worked, it opens up vulnerabilities for remote network-based attacks. Earlier systems
could only be configured by someone actually on the factory floor, but when Internet
protocols are used it can allow users to change settings and configuration from anywhere
on the planet.

The use of IoT in industrial applications has been used for some time, see e.g. [3] and
[4]. In [5, 6], the use of Internet-connected rock bolts was first proposed by the authors.
This approach enables mining companies to monitor critical infrastructure in near real-
time and to be able to detect possibly dangerous changes in tunnels and other cavities.
This paper extends the work presented in [5] with an updated and holistic architecture,
plus a comprehensive performance evaluation. The architecture presented in this paper
makes use of the Arrowhead Framework for distributed collaborative systems [7].

In this paper, we present the state of the art in terms of rock bolt monitoring using
an architecture for Industrial Internet of Things technologies. The paper also presents
resulted regarded sensing performance and anomaly detection and low-power operation
characteristics. The use of standardized protocols always come with a higher overhead
that using customized and fine-tuned proprietary protocols. However, by basing the
architecture exclusively on open standards and protocols a high level of interoperability
is made possible. When integrating state of the art IIoT systems with existing industrial
monitoring and control systems, a high level of interoperability is, of course, important.

This paper is structured as follows; Section 2 provides related work and a state of the
art review of Internet of Things and wireless sensor and actuator networks. Sections 3
and 4 presents the proposed networked and system architectures. Following that comes
Sections 5 and 6, which presents laboratory and field test experiments, results and a
theoretical discussion on feasibility. Finally, the paper’s conclusions and suggestions for
future work are presented in Sections 8 and 7, respectively.

2 Background and Related work

This section provides an overview of how industrial process monitoring and control sys-
tems have evolved, and how the mining industry today is measuring rock stability to
provide a safe working environment.
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Process monitoring and control

Modern industrial production and manufacturing systems have evolved in basically four
generations. The first generation that enabled the industrial revolution dates back more
than 200 years or so. The use of e.g. steam-powered machines allowed mass production
of goods such as clothes, equipment, and many other products starting around 1850.

In the second generation, the use of efficient pneumatic systems became a widely
adopted solution for mass-production. The combined use of pneumatic valves and sensors
enabled automatic production systems to be used in industrial applications.

The third generation systems used electrical motors. Sensors and actuators were
now also connected to new types of monitoring and control systems like Distributed
Control Systems (DCS) and Supervisory Control And Data Acquisition (SCADA). The
hierarchical approach of device-level, DCS, and SCADA (known as ISA-95), soon became
the de-facto architectural style for how industrial productions systems were designed and
deployed. The use of IoT technologies is also starting to be widely accepted in industrial
applications, see e.g. [8].

Mining monitoring

Mine activity monitoring is today usually performed using a type of sensors called geo-
phones. Geophones are extremely sensitive devices that can be used to detect anomalies
in for example mine tunnels [9]. Today, geophones are typically network connected and
can be used for remote monitoring of mines. Data from geophones are typically processed
off-site.

Rock bolts have been used for reinforcing tunnels and over cavities in mining for
over 100 years. Rock bolts are widely used in the mining industry for increasing tunnel
stability. Each year, between 10-100 million bolts are installed around the world. This
shows that rock bolts are a vital component for underground mines. However, rock bolts
can become damaged due to seismic event lick earth and mine quakes as well as by regular
mining activities such as blasting. When this happens, rock bolts may loose some or all
of their load-bearing capacity. This can lead to disasters in terms of injuries and even
deaths as well as economic losses. Damages are not always visible from the tunnel since
a large majority of a rock bolt is inside tunnel walls and ceilings. Today, there are no real
technologies for low-cost, large-scale and real-time monitoring of installed rock bolts.

Internet of Things

Estrin et al. presented opportunities for wireless sensing in [10] already in 2001. Back
then, the term Wireless Sensor Networks (WSN) was used to describe an ecosystem
comprised of a potentially very large number of low-power, wireless sensor platform
collaborating in sensing their environment. Today, we are seeing this vision being real-
ized. Due to technological breakthroughs in battery technologies, micro-controllers, and
wireless communication capabilities, the Internet of Things is now foreseen to include
billions of devices the net decade or so. In [11], Breivold and K. Sandstrom compares



192

”traditional” Internet of Things with Industrial requirements. When comparing IIoT
to more consumer-based application scenarios such as home automation, security and
sports monitoring, there are many requirements that exist in the industrial domain that
is non-existent or at least not a primary concern in the consumer world.

- Scalability. In industrial process monitoring and control, there can be up to tens
of thousands of devices in e.g. a factory floor process. This adds requirements
on network scalability, robustness, and plug and play operation. In industrial
applications, it is most likely not the price of a device that with dominate the
overall ownership costs but rather a deployment and configuration costs. In a
domestic home, there is usually no costs for deployment since the house owner will
install the device himself.

- Security. An intrusion in a home automatic scenario can be annoying for the owner.
But an intrusion in a factory monitoring system there can be severe consequences
in terms of economical loss and downtime. A large deployment is also more suscep-
tible to intrusion attacks from professorial hackers compared to a household. The
Stuxnet attack [12] showed that cyber warfare can cause severe consequences.

- Configuration. Cirani et al. showed in [13] the need for methods and tools for
large-scale maintenance and especially configuration of IoT devices. As industrial
installations will be of a considerate size in terms of sensor- and actuator plat-
forms as well as gateways, there are clear needs of mechanisms for minimizing (or
even eliminating) human interaction when deploying devices and maintenance and
configuration during their life cycle.

- Interoperability. In an industrial application, there is often a multitude of different
systems in operation simultaneously, often from different vendors. In order to
enable seamless integration with as many systems as possible, it is important that
new systems use standardized protocols and technologies. The industry today
generally avoids vendor lock-in effects and proprietary solutions as they can become
very costly in the long run.

- Lifetime. In the consumer market, devices tend to be replaced after a few years,
especially if the price of new devices is low. On the contrary, in industrial ap-
plications, there is a clear need of long system lifetimes due to high installation
costs. Therefore, it is important that the devices, systems and technologies tat are
installed will be able to operate for many years.

Today, there are a number of protocols and technologies for Internet of Things and
Cyber-physical Systems such as SigFox, DASH7, LoRA, Wireless HART, and others.
There is a very large market being foreseen which drives technology development for
newer and improved solutions for wireless communication, sensing, processing etc.

For more consumer-based markets, ZigBee Alliance, Thread group, and Z-wave hold
strong positions. IPv6 and 6LoWPAN, which enables true IP-based communication is the
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Figure 1: Communication architecture

base for Thread is supported by ZigBee has not yet been a widely adopted in consumer
products. Yanzi Networks is one provider of 6LoWPAN-based devices for the Internet of
Things.

3 Network infrastructure

This section presents a description of the communication architecture, including the
sensor and actuator platform in use, wireless communication, used protocols and security
considerations.

Wireless sensor and actuator network

The communication architecture is outlined in Figure 1. This represents a traditional
setup with 6LoWPAN-enabled wireless devices connected to a 6LoWPAN border router
(gateway). The gateway, in turn, is connected to a local network. The architecture also
features data storage services that can either be hosted inside the local network or on
the public Internet.

Figure 3 shows the communication stack that is used between the rock bolts and the
gateway. This stack uses an 868 MHz IEEE 802.15.4 wireless network with 6LoWPAN,
RPL, and IPv6. Currently, ContikiMAC [14] is used to provide low power consumption
when the radio is on. IPsec provides encrypted communication and authentication of
valid peers on the network. All sensor nodes run the Contiki operating system on the
Mulle wireless sensor and actuator platform, shown in Figure 2.
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Figure 2: Eistec’s Mulle sensor- and actuator platform
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Figure 3: Communication stack

Gateways

The gateways provide several functions, such as conversion between 6LoWPAN and Eth-
ernet, data storage, local wireless time synchronization, configuration and basic visual-
ization. The use of monitoring and control features on the gateway also allows sensor
network to be deployed even without any network connectivity. This approach also en-
ables the entire system to operate even if there is a network failure. When network
connectivity is restored, the gateway starts to replicate data against cloud data storage
services.

The gateways also use encrypted VPN tunnels when establishing the connection with
their data storage servers. This, together with IPsec, enables encrypted communication
between rock bolts and gateway, and gateway to the cloud. The gateway currently
supports solutions like OpenVPN as well as Cisco AnyConnect.
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Security and access control

The network allows communicating each node to each other and external devices, under
this situation and especially on wireless networks, protect the communications is one of
the first tasks. The communication needs to guarantee the veracity of the data to prevent
intruders to inject data (man-in-the-middle attack), and also protect each transfer to be
read by third parties (sniffing attack). The use of IPsec can protect the communications
at this level, encrypt the communication and adds authentication, but only at a peer-
to-peer level. In fact, with the use of IPsec, the Application layer (OSI model) can
not distinguish between protected and unprotected communications. A similar problem
occurs with DTLS; it does not provide the fine-grained access control which is needed to
customize the access to each single service on the nodes. For this reason, a new Access
Control method is required.

The implemented Access Control [15] is based on the use of Tickets. A Ticket is a
group of bytes, 8 bytes in this case, which have to be included in all the requests of the
system. The Ticket is unique and is generated by the Authentication and Authorization
Server, which is the responsible to verify them. When a node, which is acting as a server,
receives a request from a new client, the node must contact to the Authentication and
Authorization Server and check the Ticket validity and timeout. This Access Control
mechanism, protects the alert services, preventing to none authorized nodes to use it.
The capability to integrate this mechanism to other standard authentication systems,
like RADIUS and DIAMETER, helps to merge an Industrial solution to this network.

4 System Architecture

The proposed architecture consists of several components. The core of the architecture
is an Internet of Things-based rock bolt. Many smart rock bolts can form a low-power
wireless mesh network. In order to connect the low-power, often sub-GHz, network with
existing infrastructure gateways is used. Finally, in order to be able to perform data
processing of large amounts if sensor data, a back-end system used. However, the work
presented in this paper is focused on the lower levels of the proposed architecture, from
sensors, networks and gateways to cloud-based systems for data storage, basic processing,
and visualization. Mine monitoring systems are for example not considered to be a part
of the proposed WSAN architecture itself.

The foundation of the proposed architecture is the smart rock bolt, shown in Fig. 4.
The smart networked rock is comprised of a multitude of on-board sensors and actuators,
signal processing capabilities and low-power wireless communication.

The current generation smart rock bolts used to collect experimental data uses three
main sources of environmental information; namely strain, bolt breakage and seismicity
(vibrations). These three sensors provide important information about the condition
of each monitored rock bolt. In order to be able to warn nearby workers of imminent
danger, the smart rock bolt is equipped with high-power LEDs that can be used to blink
in different colors, patterns, and combinations.
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Figure 4: Smart rock bolt in tunnel wall

OMA Lightweight M2M

OMA Lightweight M2M (LWM2M) [16] is a standard for device management from the
Open Mobile Alliance. LWM2M provides features for example security, bootstrapping,
over the air firmware upgrades, device and resource registry, to mention a few.

In the Smart Rock bolt architecture, OMA LWM2M is used to enable plug and play
capabilities, device management, etc. The Resource Directory is a key component to
allow the gateway to automatically discover new devices and to read manufacturer ID,
serial numbers, battery voltages, etc. To test the LWM2M implementation, both Eclipse
Leshan (in Java) and Wakaama (in C) was used.

IPSO Smart Objects

In the Smart rock bolt architecture, IPSO Smart Objects is utilized for data models and
CoAP communication for sensor and actuator interaction. All sensors and actuators,
except the vibration sensor, are available as IPSO objects. This enables the lightweight
SCADA system on the gateway to easily read and control all parameters of the rock bolt
monitoring system.

The use of standardized interfaces and data models also enables a streamlined inte-
gration with other systems since there is no vendor or technology lock-in. For Internet of
Things to be an interesting approach to industrial applications, interoperability is one of
the key features to support. To test the IPSO implementation, Eclipse Leshan (in Java)
was used.
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Arrowhead Framework

The Arrowhead Framework is a comprehensive framework for IoT in the area of industrial
process monitoring and control. This framework provides a Service-oriented Architecture
(SOA) for features like device and service discovery, orchestration, configuration, security
and data storage. The framework has been developed within the Artemis Arrowhead
project.

The Arrowhead Framework is used in combination with OMA LWM2M and IPSO
Smart Objects in order to provide a higher level feature such as access control, data
storage, service orchestration and data processing.

5 Results

This section provides experimental data of the embedded sensors and the ability to sense
phenomena in the surrounding environment, power consumption data and latencies in
the communication. Since many industrial applications are time-critical, it is impor-
tant for a monitoring and control application to support low-latency communication.
The experiments have been divided ito two categories: mining monitoring and process
monitoring.

Mining monitoring - rock bolts

Below are the results from vibration sensing in field tests and strain gauge output in a
laboratory environment on a 22mm rock bolt. Some experiments have also been reported
in previous work by the authors [6].

Detecting falling rocks

Figure 5 shows the vibration signature that occurs when rocks fall from e.g. a tunnel
ceiling and hit the floor. These spikes in vibration happened when a rock of a weight of
2 kg. was dropped from approx. 2 meters height at three meters distance from a rock
bolt.

Strain

Figure 6 shows the output from the rock bolt’s strain gauge when being subject to severe
load in a test rig. 4.3 minutes into the experiment, it is clear that the measured force
(in red) shows a a deviation when the steel in the rock bolt reaches the plastic region.
The derivative of the force drops as the steel’s has reached the maximum load for it to
function properly. At 6.0 minutes, the strain gauge is broken due to the severe elongation.
At 25 minutes in, the rock bolt is torn in half which is clearly detected by the reference
instrument (the line in blue), i.e. the force are now at 0 due to no load.
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Figure 5: Falling rocks detection

Figure 6: Strain (load) sensing

Process monitoring

This experiment was performed with the presented sensing platform in order to monitor
the state of a compressor.

Compressor state monitoring

A vibration sensor was attached to the compressor and its vibrations was measured in
four different state: off, starting, on, and stopping. Figure 7 shows the envelope of one
vibration experiment’s vibration signal when the compressor cycled through its states.
from this output, a state detector was implemented in order to detect the various state
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Figure 7: Compressor state monitoring

transitions.

Energy consumption

The energy consumption of a rock bolt depends on the configuration of the sampling
rate and the triggers to notify a vibration. Therefore, a consumption profile of each
involved part is crucial. The benchmark configuration to get that data was based a 16-
bit ADC at 1840 Hz to capture rapid events combined with 8 digital inputs that can be
used to recognize each software module. On vibration sensing, there are three modules:
acquisition, processing and notification. The last one is called only if a vibration is
detected. As an example, Figure 8 represents the data from the ADC during a vibration
detection.

To simplify the analysis, the use of 4 digital signals help to recognize each software
module and the Figure 8 can be represented as Figure 9, which is easier to understand.
At this point, a more detail explanation about the internal functionality of each module
helps to understand better why the consumption has that profile.

- Acquisition. The rock bolt needs to activate a 3-axis accelerometer and start to
take 128 measurements at 400 Hz, which only the measurement takes 320 ms. The
process does not require a high level of energy because there is no high processing
cost.

- Processing. The simplest detection can be done with the use of RMS, maximum and
minimum values per axis; this process requires more computation than Acquisition,
but with a 100 MHz micro-controller it can be done in just a few milliseconds.
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Figure 8: RAW power consumption during an vibration measurement, detection and
notification
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Figure 9: Average power consumption and representation of each action during the
vibration detection

- Notification. This module is the responsible to, in case that a vibration is detected,
send a notification to the corresponding devices. The energy consumption of No-
tification includes all the software to do the communication as well as the radio
transceiver.

The results of the benchmark are shown in Table 1. Note that the processing is
performed in pure software, utilizing the DSP features in the Freescale Kinetis MCU
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would likely reduce the consumed energy even more.

Action Power (mW) Time (ms) Energy (mJ)
System 0.25 - -

Acquisition 1.21 376.1 0.46
Processing 160.8 1.16 0.19
Notification 197.6 5.83 1.15

Table 1: Consumption of phases during vibration sensing.

As shown in Table 1, the radio communication has the highest cost in terms of energy.
This is well in line with similar papers on energy consumption for sensor nodes. With the
assumption that each sensing period will not occur a radio notification being generated,
we can conclude that by duty cycling the vibration sensing by for example 10 activations
(and one notification) per minute, the average system plus sensing energy cost would be
around 22 mJ per minute which equals to 0.38 mW average power consumption.

A system that does not perform any sensing or communication, the battery life is
more than 3 years on a 2000 mAh battery, which gives us the upper limit of system
lifetime.

IPSO Challenge 2015

The architecture presented in this paper was submitted to IPSO Alliance’s competition
IPSO Challenge in 2015. The submission contained a holistic platform composed on rock
bolts with embedded sensors, signal processing, actuators, low-power wireless communi-
cation and a web-based monitoring system. In competition with over 50 other entries,
the Smart rock bolt received first place [17].

6 Discussion

The results in terms of sensing, processing and low-power operation that has been pre-
sented in this paper show that very a very traditional and simplistic object such as a
reinforcing bar (rebar) can be equipped with sensors and (Industrial) IoT communication
capabilities in order to enable real-time monitoring of structural health.

From the presented graphs, as well as other experiments it is possible to conclude
that the sensing performance of modern sensors like MEMS accelerometers and strain
gauges is sufficient for low-power, low-cost rock bolt monitoring.

Input on lifetime requirements from experts in the mining industry indicates that
there are basically three different types of lifetime requirements;

- Short-term. Short term lifetime is up to six months near tunnel faces where blasting
and mining happens. This is the most dangerous place in a mine due to rock
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instability, moving machinery, etc. Devices that can life for up to six months can
be used here. After that, the face has been moved further away into the rock
masses.

- Medium-term. This span is up to 2 years. Normally, if no problem has been
detected within two years after a rock bolt has been installed, there is very little
likelihood that something will happen. Most collapses occur within this time span.

- Long-term. Tunnels and other cavities are used for storage, transportation must be
monitored for a very long time span. Here experts indicate that up to 20 years is
desired. Today’s battery technologies can achieve up to 10 years or more using state
of the art chemical compositions. However, when adding the power consumption
of wireless devices and self-discharge of modern batteries, it is difficult to reach
20 years of lifetime. Two solutions though are either to keep rock bolts that must
operate for 20+ years powered by cables, or by manually replacing drained batteries.

7 Future work

In the work presented in this article, we have focused on developing technologies, tools
and methods for low-power operation of IoT devices in a smaller network. More research
is needed to enable very large scale networks with potentially thousands of devices per
gateway. For example, consumers are much more willing to adopt and try new tech-
nologies, where the industry tends to rely on more field proven products and services.
Another issue to address is the use of wireless communication under severe interference
[18].

The radio environment in mines is also more like a thin chain than a mesh since
tunnel walls cannot be penetrated by radio signals. We must, therefore, investigate
new technologies for long thin mesh networks with a large number of hops. One such
alternative worth investigation is 6TiSCH [19].

Another interesting approach for distributed anomaly detection, e.g. proposed by
Khan in [20], could be suitable for minimizing power consumption and network traffic.

8 Conclusion

As mining is conducted on increasing depths, more sensors are needed to monitor cav-
ities, pillars and tunnels in the search for potentially hazardous phenomena. In this
paper, we have presented a system for distributed real-time monitoring of seismic ac-
tivities, and strain in rock masses. The system’s architecture is based on (Industrial)
Internet of Things by the use of low-cost and low-power sensors, wireless communication,
battery powered electronics and distributed sensing and processing. At the core of the
architecture, we find the Smart rock bolt. A smart rock bolt is composed of a standard
rock bolt, equipped with sensors, actuators, processing, storage and low-power wireless
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communication. The smart rock bolt can monitor its own strain (load), as well as seis-
micity (vibrations). Any deviations from normal operation are detected using on-board
signal processing. Alarms and sensor data are sent using technologies such as CoAP, the
Arrowhead Framework, and IPSO Smart Objects.

Since the rock bolts are designed to be battery powered, power consumption is of
utmost importance. The current generation electronics enables operation lifetimes in the
range of 1-2 years depending on environmental aspects, e.g. level of seismicity, desired
sample rates, network topology, etc.

When deploying wireless sensor and actuator networks in industrial applications, se-
curity is a very important feature since intrusion could lead to great economical losses.
The rock bolt architecture, therefore, supports strong encryption using IPsec between
wireless devices and gateways, and VPN tunnels between gateways and cloud systems.

As seen in the Results section, by duty-cycling radio, sensors, and micro-controller,
it is possible to reach months of operational lifetime. Using duty-cycle levels of 10-50%
would enable a rock bolt to operate for up 2 to 4 years using a 2000 mAh Lithium battery.
This is well in line with the requirements of the industry regarding the required lifetime.

The target deployment level now is that between 1 and 5% of all rock bolts could
be of the smart type. Having every bolt smart would be relatively expense in terms of
obtained performance. Therefore, 2-10% is sufficient in order to be able to detect changes
in strain and vibrations in cavities and tunnels. The use of self-monitoring rock bolts
with wireless connectivity can be one enabling technology for the deep mine of the future.

With the reported low-power operation, zero-configuration networking, interoperabil-
ity, security and authentication mechanisms, the proposed architecture meets identified
requirements from an industrial view. This shows that standardized protocols such as
6LoWPAN, IPsec, LWM2M and IPSO Smart Objects can be used to build Industrial
Internet of Things applications in different environments such as mining and processing
monitoring.
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Applications
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Abstract

Internet of Things devices can be a valuable complement for condition monitoring in
industrial processes. These devices offer new possibilities for industrial applications due
to; low-cost deployments, no wiring required and easy integration with existing systems.
However, resource-constrained IoT devices also come with several drawbacks. The most
prominent are the low processing capability, limited memory and storage, low bandwidth
(especially on wireless networks), and battery life (on battery-powered devices). These
issues impose some limitations.

When deploying IoT technologies in industrial application, there are a few significant
differences compared to the most traditional usage of IoT such as home automation,
etc. An industrial application requires robustness, scalability, security and feasibility.
To provide that the usage of concepts like zero configuration, adaptative performance,
dynamic service deployment, access control, etc. need to be included in the framework.

This paper proposes a new framework for Industrial condition monitoring with IoT
technology. Analyzing in detail the impact of energy and delays of each functionality
involve in the IoT devices.

1 Introduction

The introduction of Internet Protocol (IP) on Wireless Sensor and Actuator Networks
(WSANs) started at the middle of 90s. There were few implementations and designs
of architectures to provide IP technology to the sensor- and actuator nodes, as shown
by Corson et al. [1] in 1999. The implantation of IP technology had severe limitations
for the nodes of the network, which were extremely constrained resource devices. The
application protocol at that point, to run over TCP/IP, was the Hypertext Transfer
Protocol (HTTP). The complexity of this protocol was too high for those nodes with
limited memory and processing capabilities; in fact, if the nodes could work with, the
power consumption was a limitation for the battery capabilities of that age, counting the
lifetime of the device in hours. Another factor was the memory consumption to handle
HTTP messages.

The shortage of Application protocols to run over IP was quickly covered by RESTful
HTTP [2] in 1997, MQTT [3] in 1999, Jabber in 1999 which was the precursor of XMPP
[4] in 2004, WebSocket [5] in 2011 and finally CoAP [6] in 2014. At the same time,
the link-layer also evolved with the introduction of 6LoWPAN [7], enabling IPv6 to low
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power wireless networks. Both evolutions and a natural hardware development drove
the rapid growth of IoT. Modern technologies, therefore, allow to deploy CoAP-based
WSANs with Internet connectivity, where the nodes can actuate as CoAP servers, being
able to offer services (i.e. resources) to other nodes, users, or other machines on the
network.

This increase of interoperability, and especially on Industrial IoT network, also in-
creases the number of issues to address like; security, access control, scalability, depend-
ability and energy efficiency, as reported by Stankovic [8]. For this reason, new low-power
mechanisms to address these problems are necessary.

Industrial applications which require the use of IoT can have different lifetime, from
weeks to years, being the last one the most critical situation for a wireless and battery
power device. A battery replacement in the industrial environment usually is not easy,
and represent an increment of the economic cost. To reduce the number of replacements
or to avoid that, the IoT devices must be efficient.

IoT systems need to protect the communications and services, and the use of cryp-
tographic mechanism is the solution, but it can compromise the balance of performance
and low-power. An access control method protects the services against malicious users
but also provides the tools to create customized services. Today’s standard solutions like
Kerberos, RADIUS, etc. require the use of a particular protocol, and some of them are
not optimal for low-power devices. For a CoAP-based system, the devices must imple-
ment an additional protocol for access control, increasing the memory and processing.
The use of additional communication and big size packets is other of the problems of
using modern standardized access control mechanism. Therefore, a new access control
mechanism for low-power CoAP-based networks is needed. Another challenge for IoT sys-
tems in Industrial applications is the dependability. Today, there is no commonly used
standardized solution for this type of network which requires low-power mechanisms.

This paper addresses this technological gap, to make IoT CoAP-based technologies
feasible for Industrial applications. Presenting in this paper new results in the following
areas; a) device life-cycle management: including bootstrapping and configuration, b)
security, and c) a feasibility analysis of the use of standard IoT technologies in industrial
applications.

This paper is structured as follows: Section 2 presents the background and related
work. Section 3 presents an overview of Industrial Internet of Things. Sections 4 presents
experimental results, followed by suggestions for future work. Finally, the paper’s con-
clusions are presented in Section 7.

2 Background and Related work

This section introduces a brief background of Service Oriented Architecture (SOA) and
industrial IoT aspects, concepts that are broadly used in the paper.
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Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) bases on a group of entities providing services to
other entities. In this architecture, each entity can be designed as a separate system,
splitting all the architecture’s desing into small parts (Loose Coupling). This division
increases the flexibility to design each part, reducing the complexity of the implementa-
tion. It allows to reduce and locate possible problems in the complete system improving
the scalability and reusability.

The introduction of CoAP into IoT enables the possibility to deploy services (re-
sources) on each node, providing the data as service, this architectural design is con-
sidered a Service Oriented Architecture. In the past, most of the WSANs have been
based on client nodes sending data to a centralized server; the use of SOA enables the
possibility to the deployment of customizing services, data transmission on demand with
the introduction of event-based services, etc.

One of the biggest challenges to enable SOA on resource constrained IoT devices is
the security. The services require protection against malicious users to protect privacy
and integrity. The use of encryption increases the processing overhead, and therefore,
energy consumption and delays.

Industrial Internet of Things

The term ’Wireless Sensor Networks’ (WSN) has been used for the last 15 years to
describe the technology composed a potential number of low-power, wireless sensor nodes.
These nodes, together with gateways, performing some sort of sensing application. As
WSN:n evolved, the next natural step was to not only to connect them to the Internet
using a gateway but actually to utilize Internet technologies such as TCP/IP down on
the nodes [9]. Today, new generations of resource-efficient protocols such as 6LoWPAN
and CoAP, EXI and CBOR are now enabling true Internet of Things networks.

The use of (wireless) sensor and actuator platforms has also be embraced by the
industry. Modern technologies, for example, Wireless HART, has been widely deployed
at industrial sites.

In 2013 at the Hannover Fair, the German working group Industry 4.0 presented
their report for the future fourth generation production and manufacturing. Industry 4.0
includes technologies such as (Industrial) Internet of Things and Cyber-physical Systems.

Industrial usage of Internet of Things adds more requirements than the consumer
market. Most notable differences are;

• Scalability - Systems for industrial process monitoring and control can be composed
of tens of thousands of sensors.

• Security - A security breach in a factory can cause damage to the environment,
humans, and inflict major costs.

• Interoperability - A factory system most often uses a number of different systems
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and technologies, This complicates information exchange as mediators or transla-
tions must be used.

The issues above are usually not found or not as severe in smaller, consumer-based,
installation for home automation, security, sports, etc. Security is of course always
important, however in an industrial facility, the costs for a security breach can be much
higher compared to a home-automation system.

3 Proposed Industrial IoT framework

This section provides a detailed description of the proposed framework for industrial
monitoring and control applications. The framework consists of a network architecture,
services with data models as well as tools. The framework also provides security mecha-
nisms for fine-grain access control and authentication.

Network Architecture

This framework was designed for resource constrained IoT Wireless Sensor and Actuator
Networks, a mesh network topology will affect the performance, bandwidth, range, power
consumption, etc. At this point, the design of the architecture is a compromise between:

• The area to cover: the size and the environment will demand to deploy more access
points (gateways). For wireless networks the range is a technology limitation, each
access point can cover a portion of the total area, then there is a direct relation
between the total area to cover and the number of access points to deploy. On
the other hand, there is an environmental/physical limitation. The allocation close
to walls, pipes, tunnels, water tanks, other networks, high-voltage networks, high
temperature, radiation, etc. can affect the range and the quality of the network, so
in these cases, a reinforce with more gateways will be needed.

• Lifetime, crucial only on battery powered devices, and expected data rate: must
be a balance between these two aspects, and increment of data rate affects the
duration of the battery power devices. The data rate requisites determine the type
of wireless technology to use. Examples of radio technologies for wireless sensing
are IEEE 802.15.5, WiFi, WirelessHART, Z-wave, etc.

The proposed network topology is represented in Figure 1, the communication be-
tween each gateway and its nodes is a tree with a minimized number of hops. This
limitation is because sometimes the wireless range between a gateway and a node is not
enough and is better to have a hop between both. Each hop-node increases the power
consumption because it needs to address its traffic and also the traffic of other nodes.

The communication between gateways and nodes is a wireless network based on the
network stack shown in Figure 2. It consists of a 6LoWPAN layer over IEEE 802.15.4
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Figure 1: Proposed network topology

to enable the IP protocol; the IP protocol also supports IPsec to protect the communi-
cations, but can include other encryption mechanism like TLS/DTLS, MAC encryption,
etc. The application protocol is CoAP, which provides the deployment of services/re-
sources on each node.

Application

JSON/CBOR

CoAP NTP

UDP

IP / IPsec

6LoWPAN

IEEE 802.15.4

Figure 2: Proposed network stack
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The communication between the gateways and the servers is not part of this research,
in our proposed network it can be done by wireless or cable technologies because the power
consumption is not relevant at gateway’s level.

Functional Architecture

Each element type of the topology has a different role; this section describes the func-
tionalities of each type.

Nodes

The Nodes are resource constrained devices with wireless connectivity and usually battery
powered. The connectivity allows them to communicate with other nodes, servers or
clients by the wireless connectivity provided by the gateway. The essential task of a node
is to sense a physical variable and use an actuator to produce a physical environmental
change. With the improvement of the microcontrollers, the resource constrained devices
can run complex tasks, like analyze and evaluate the data with filters, find relevant
profiles, apply adaptable triggers, etc.

Configure each node manually in an Industrial environment is not feasible, for that
reason each node can ask for its configuration during the boot time; even if the config-
uration changes in runtime, the node must be able to reconfigure itself. This process is
described in more detail in Section 3.

The communication usage changed from the past; the Nodes are not only clients.
In fact, with the use of CoAP, each Node can create dynamically services and provides
customized services, to do it the use of access control is mandatory.

On the proposed platform a single node can provide services based on collective data,
like average of temperature of closed nodes, or take actions based on data from other
nodes. In other words, the nodes can create systems of systems, to implement that a
direct communication machine to machine (M2M) is mandatory.

Gateways

The Gateways are embedded computers with mainly two different tasks: provide the
wireless connection to the nodes, acting as a standard gateway and running a lightweight
Supervisory Control and Data Acquisition (lw-SCADA). The lw-SCADA is the respon-
sible to register each connected node to the Device Manager (DM), provide the Boot-
strapping, Configuration, Authentication, and Authorization, for the Access Control. All
these services are a replication of the services on the Internal Server, to decentralize and
work even if the connection to the Internal Server goes down. Each service is described
in detail in Section 3.

The Gateways create a 6LoWPAN connection to the nodes and an Ethernet/Wifi
connection to the Internal Server. Therefore, the communication between Gateway and
Nodes is with CoAP and the communication between Gateway and Internal Server with



3. Proposed Industrial IoT framework 215

HTTP/HTTPs. The Gateways also extends the IPv6 network of the nodes to the internal
network, so the Internal Server can also communicate directly with each Node.

Internal and External Servers

The Servers are not part of this paper research, but a little definition of the functionality
is needed to understand better the platform. There are no differences between Internal or
External Servers; even an External Server can act as Internal with a VPN connection to
the internal network. The name is a tag to distinguish between exposed or not exposed
Servers to external links like The Internet. Servers act as Gateways with more power
of computation, memory, and connections. The light weight limitation disappears, and
Servers actuate as complete SCADA systems. The biggest difference between a Server
and a Gateway is that a Server can provide the communication between nodes of different
Gateways.

Security

Each device with processing, memory and communication capabilities is susceptible to be
an attack target. Industrial IoT is a very attractive environment, with hundred thousands
of devices connected offering a high rate of relevant data flowing and access to thousands
of actuators. Then, an attack can steal data and even modify some actuator, producing
even bigger issues. In this context, a security breach can represent a significant economic
loss for a company. For these reasons, the Security and Privacy must be one of the topics
with relevance for the platform’s design, as was demonstrated by Sadeghi et al. in [10]
and Roman et al. in [11]. This protection can be achieved with the usage of Encryption
and Access Control Systems.

Encryption

During the last two decades, Internet Protocol has been broadly used, and Nowadays
there are many solutions to protect the communications; most of them designed for
computers which are not resource constrained devices as IoT. Even solutions designed
principally to IoT communications like [12] and [13] are not feasible for resource con-
strained devices because of the power consumption and delays.

Hennebert et al. analyze in [14] the standard options to protect an IoT device with a
communication stack based on 6LoWPAN, and also according to Alghamdi et al. [15], the
options to protect the communication are IPsec and DTLS. The performance between
both was analyzed previously by De Rubertis et al. [16] with a minor overhead for
IPsec, but nowadays with DTLS header’s compression like proposed by Raza [17] the
performance between both is similar.

For final application point of view, the usage of DTLS is taking more relevance than
IPsec; it is easier to integrate with servers, and the application layer can recognize when
a communication is secure, which does not happen with IPsec. In contrast, IPsec encap-
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sulates all the IP packet, protecting UDP and TCP communications and it also enables
the possibility of tunneling the communications.

Access Control

The use of Access Control methods is mandatory for many reasons; all the communication
layers bellow CoAP are not able to implement a fine-grained access control, which is
needed to enable for example different ranks of privileges per service like administrator,
users, guests, etc. allowing different actions depending on the rank level. Therefore, each
device must know the access policies for each new client request. IKEv2 can provide an
authentication by device name to initiate the communication, but not control at service
and method levels. IPsec can provide authentication of the device, but not control at
service and method levels. Even the use of DTLS can not provide an access control at
service and method level.

IPsec can control who access to the IoT device, but are not able to monitor the access
to each single service, or even worst, it does not share information with the application
layer, so the application can not recognize the user as a particular user. On the other
side, DTLS shares access information about the user to the application layer. But there
is no information regarding service’s permissions. For these reasons, a fine-grained access
control is required.

Today’s solutions like RADIUS [18], Diameter [19] or Kerberos [20], require the use
of other protocols, increasing the communication stack and the memory on each node.
Kerberos solution is based on the use of tickets, but the complexity of a complete authen-
tication process is too high for a low-power IoT device (high communication overhead).

Mandatory Services

This section describes all the mandatory services that the proposed platform must have
to cover all the requirements of an IIoT network.

Bootstrapping

The bootstrapping service compliant the LWM2MOMA Bootstrapping [21], this provides
information to the IoT devices about essential instances like Access Control, Configura-
tion and the LWM2M Server.

The bootstrapping service must run on the Gateway and should use a predefined port,
because this is the required information that a node can have during the first boot. In
other words, the bootstrapping service must be accessible for any other IoT device who
joins the network.

When a device starts the bootstrapping request, it can includes on the request some
extra information like serial number, MAC address, internal software name or version,
etc. With this information the framework can distribute the IoT devices between different
Access Control, Configuration or LWM2M Servers; this can help to balance the overload
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between different servers or to include devices with different versions and keep both
minimizing conflicts.

The use of the bootstrapping increases the stability and robustness of the framework
if a service is down it can be replaced by another just changing the IP or port on the
bootstrapping response. Also, it supports multiple endpoints for the same service, and
in the case that one is down the device can use the next one. And in the case that one
node is connected to another wireless network, with different services or different network
routes, everything will work as usual.

The penalty for the use of this technology regarding communication is a single request
per booting but also it requires the implementation of a parser on the device, which
consumes some memory.

The following example is done with JSON (Code G.1), but it can be implemented in
CBOR reducing the packet size.

Code G.1: Bootstrapping example

1 {
2 "auth": {
3 "ip": "fdfd::0A",

4 "port": 5683,

5 "v": 1,

6 "res": "/Authentication",

7 "resAlt": "/Authorization"

8 },
9 "conf": {

10 "ip": "fdfd::0B",

11 "port": 5682,

12 "v": 1,

13 "res": "/Conf"

14 },
15 "dev": {
16 "ip": "fdfd::0C",

17 "port": 5681,

18 "v": 1,

19 "res": "/rd"

20 }
21 }

JSON: 305 bytes - CBOR: 147 bytes

Configuration

WSANs uses sensors and actuators, the role of a sensor is to take measurements of physical
variables and the role of an actuator is to take actions on physical variables. The Configuration
service sets the parameters of how that measurement are done, how should be the data analysis,
and decides which actions must take if some under certain conditions. For example, set the
sample rates, triggers, set filters dynamically, send alert to other devices, collaborative analysis,
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etc.

The configuration also sets the services that must be active on the device, based on the task
to develop. This creation of services on demand improves the performance and the reusability
of each node. But also, it can be used as security countermeasure and as a way to reduce the
power consumption.

Several are benefits of the use of Configuration services, and mainly all of them are focused
to optimize at maximum each device and to create collaborative applications. The power
consumption of each device can be reduced, but the complexity of how to program the services
rises, this complexity has direct negative impact on the program’s size.

Code G.2: Configuration example for a Temperature IoT device

1 {
2 "Services": [

3 {
4 "name": "TempService",

5 "type": "temperature",

6 "source": "sens1",

7 "interface": {
8 "GET": {
9 "active": true,

10 "return": "sens1"

11 },
12 "POST": {
13 "active": false

14 },
15 "PUT": {
16 "active": true,

17 "receive": "trigger",

18 "return": "trigger"

19 },
20 "DELETE": {
21 "active": false

22 },
23 "OBSERVABLE": {
24 "active": true,

25 "period": 120,

26 "return": "sens1"

27 }
28 }
29 }
30 ],

31 "Actuators": [],

32 "Sensors": [

33 {
34 "name": "sens1",

35 "period": 60000,
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36 "triggered": "yes"

37 }
38 ]

39 }

JSON: 692 bytes - CBOR: 268 bytes

Access Control

The implemented Access Control on the framework is based on the ticket based authentication
and authorization that Puñal et al. presented in 2014 [22]. This implementation addresses the
issue discussed in Section 3, providing an efficient fine-grained access control mechanism.

Required features

This section presents an overview of some of the required features that are vital for the frame-
work to operate properly.

Device Manager

Have listed all the network devices and detect when a new device is connected are part of
the task of a Device Manager. The Open Mobile Alliance (OMA) proposed the use of OMA
Lightweight Machine to Machine (LWM2M) [23] protocol to address the device management.
Today there are two widely used solutions: Leshan [24] and Wakaama [25]. Both are supporting
a wide variety of standard LWM2M features.

Supervisory Control and Data Acquisition (SCADA)

The SCADA system running on the gateway is the responsible to detect when a new node
connects, providing all the services for Bootstrapping, Configuration, and Authentication. Once
a node is registered, the SCADA system recognizes the services running on the node, and it
starts to subscribe to all of them. At this point, the SCADA will receive the data from the
node when an event happens, and can analyze and save the data in a logger. In fact, if the
SCADA detects that an action is needed, it will communicate that to the appropriate service
on the corresponding node.

4 Test and Results

This section provides an overview of all performed experiments and obtained results.

Test scenario

The test scenario is a real condition test, with a gateway running the lightweight SCADA
software and a single node connected to it. The test does not include the radio effects for other
nodes as well as the network traffic effects.
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Figure 3: Framework behaviour

Test setup

This section is based on experimental results of energy consumption and delays. The benchmark
configuration relies on measures of battery current and voltage externally to the device; these
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measurements are done using a 16-bit ADC at 1840 Hz to capture rapid events such as radio,
wakeups, etc. All these measurements are combined to 8 digital inputs that can be used to
recognize in detail the power consumption of each software module.

The selected IoT platform to do the test was a Mulle from Eistec AB[26], which is equipped
with an ARM Cortex-M4 at 100 MHz microcontroller and an IEEE 802.15.4 transceiver. It has
an onboard 2 MB of flash memory and 256 KB of internal memory on the microcontroller. The
Mulle runs the open-source Contiki OS [27]; so all taken measures are affected by running an
OS on the same device without any isolation to get real condition data. Those effects involve
operating system’s energy consumption with peaks of internal queues, communications, internal
timeouts, and events, etc. which in turn affects the error level of the measurements.

Results

As was discussed in previous sections, Security is a crucial feature for IoT communication. To
analyze in detail the energy consumption and delays of the IPsec ESP different configurations
have been tested. The settings for ESP are AES128-CTR and AES-XCBC. Figure 4 compare
the energy consumption (a) and delays (b) off communication with different CoAP payloads of
none protected communication and IPsec with and without hardware acceleration (AES 128)
for two CPU speeds (96 MHz and 48 MHz).
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Figure 4: Analysis of IPsec-ESP communication in energy consumption and delays

A more detail analysis of the data can provide the overhead in energy and delays for trans-
missions (a and b) and delays (c and d) on Figure 5.

The next step is to compare the overheads of all the services that the nodes need to use.
The configuration of each service is as follow:

• Internet Key Exchange v2 (IKEv2). The key exchange has two steps: Initialization and
Authentication, for that reason both are analyzed separately. The IKEv2 configuration
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Figure 5: Analysis of IPsec-ESP communication in overheads

is AES128-CTR + AES-XCBC + SHA1 + ECP192.

• Bootstrapping. The analysis includes the overhead of the Bootstrapping request and
parsing of the code (similar to Code G.1).

• Configuration. The analysis includes the Configuration request, parsing of the configu-
ration (like Code G.2), the configuration of the sensing and service deployment.

• Authentication. The analysis includes the Authentication request, the Challenge Request-
Response, and the parsing of the Ticket and attributes.

• Authorization. The analysis includes the first authorization request and the parsing of
timeouts and permission.
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• Device Manager. The analysis includes the registration of the node into the OMA
LWM2M Server.

Figure 6 shows the energy consumption and delays of each service for two CPU speeds (96
MHz and 48 MHz). The Table 1 offers the values of the experiment.
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Figure 6: Analysis of each service in energy consumption and delays

Service Power (mW) Delay (ms) Energy (mJ)
Speed (MHz) 96 48 96 48 96 48
IKE INIT 195,74 158,65 2145,63 3789,22 419,99 601,15
IKE AUTH 209,85 168,19 3916,53 10650,12 821,88 1791,25
Bootstrapping 68,00 65,23 56,40 55,85 3,84 3,64
Configuration 170,90 134,73 81,94 84,29 14,00 11,36
Authentication 197,99 158,69 188,46 232,83 37,31 36,95
Authorization 74,80 71,76 56,96 56,41 4,86 4,05
Dev. Manager 113,76 90,89 72,81 71,87 8,28 6,53

Table 1: Analysis of power consumption, delays and energy overheads per service

Summary

Figures 4 and 5 show an erratic performance with small payloads; this is the effect of having the
Contiki OS running on the device. With small payloads, the consumption is reduced; Therefore,
a variation in the OS consumption has a bigger effect on the measurement. For payloads over
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200 bytes, it is possible to see a constant overhead, which must be the number that we need to
use as the reference.

5 Discussion

According to the results, this paper concludes that there are three types of energy consumption:
Initial, Constant, and Event.

• The Initial consumption represents the energy consumption that a device needs to initiate
all the modules, such as Bootstrapping, Configuration, initial key negotiation, etc. This
overhead is static and only can be reduced deactivating those services. Based on the
experimental data, the Initial consumption is practically irrelevant compared with the
consumption in a long term test.

• The Constant consumption represents the energy consumption that a device needs to
work properly over the time without events, in other words, it is the energy that a device
needs to be alive. The Constant consumption depends directly on the final application,
and it is extremely configurable, it depends on awake-sleep cycles, sensors’ configuration,
actuators’ configuration, IKE configuration (timeouts, encryption type, etc.), authenti-
cation and authorization (ticket timeouts), etc.

• The Event consumption represents the energy consumption that a device needs to detect
and notify an event to the clients (SCADA or other nodes), the Event consumption
directly depends on the detection algorithm, triggers, and especially the environmental
conditions.

The three types of energy consumption are represented at Figure 7, where the Initial con-
sumption is represented by light-gray color, Constant consumption by medium-gray color and
Event consumption by dark-gray color.
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Figure 7: Energy consumption profile of a typical IoT device

As was demonstrated at Section 4 (Figure 6), the IKE negotiation is the elements with
highest power consumption of all the system and it is part of the Constant consumption. So,
the balance between security and power consumption is mandatory; In other words, if a system
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is refreshing quite often the keys the energy consumption rise and the battery’s lifetime of the
device is compromised. The same balance is required for Authentication and Authorization;
the timeout of the tickets is also configurable, but in this case, the consumption is not critical.

One of the biggest problems for event-based WSANs is that the events depend on the
environment, and it is not predictable, so create smart nodes with high logic level to determine
when a relevant event occurs is crucial. This area is a possible way for future work, to integrate
for example low-power neural networks to improve at maximum the data veracity.

6 Future work

A possible continuation of this work can include an analysis of a complete system with Boot-
strapping and dynamic configuration to deploy on the nodes dynamic collaborative services.

Another suggestion for future work is the design of an IoT-version of the IKE protocol.
Even though the overhead of IPsec is reasonable, IKE imposes a significant problem regarding
energy consumption and time-consuming key negotiation. A light-weight version of IKE de-
signed specifically for resource-constrained embedded devices would improve the overall IPsec
performance substantially. As a part of the evaluation of IoT-IKE, it would be interesting to
perform a holistic performance evaluation between DTLS vs the new IPsec-based eco-system.
As a part of this evaluation, we propose that application scenarios involving device to device,
device to the gateway as well as device to external communication.

7 Conclusions

In this paper, an efficient framework for (Industrial) Internet of Things system has been pre-
sented. The framework includes features for low-power wireless communication, security mech-
anisms, bootstrapping and advanced run-time configuration.

A secure interoperability between nodes is feasible regarding power consumption and delays,
and enables distributed and collaborative services in IoT networks.

Regarding power consumption and delays, there is one clear conclusion; ”The use of hard-
ware acceleration for encrypted communications should be mandatory in an IoT device”. These
results demonstrate that the use of IPsec for IoT is feasible, as the overhead is low, and is a
recommended solution if the device needs to protect both UDP and TCP communication pro-
tocols. If not, DTLs is a better option because of the easier integration to cloud servers and
because the application layer has access to the DTLS and it can distinguish between secure and
unsecure communications.

The tested device (Mulle mk6) with Contiki OS consumes 0.25mW with no communication
and no sensing processes. Regarding the results of this paper, with the use of a standard battery
(3.7V at 2000mAh), the battery life can be up to 2 years with the following configuration:

• daily keys negotiation

• hourly authentication

• ten encrypted event reports per hour (application dependant)

• daily re-configuration
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In summary, the proposed framework offers protection for communication (IPsec+IKEv2),
an access control mechanism with easy integration with already standard solutions like RA-
DIUS, zero-configuration operation, dynamic services, secure interoperability node-to-node, and
reconfiguration at runtime with a multi-year battery’s lifetime. This shows that standard IoT
technologies are feasible for use in the Industrial Internet of Things.
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