

Development of an Internet of Things architecture

framework based on Sensing as a Service

A thesis submitted for the

Master of Science in Information Systems

by

Patrick Nitschke

Student ID: 209210074

E-Mail: nitschke@uni-koblenz.de

Faculty 4: Computer Science

Institute for IS Research

University of Koblenz-Landau, Germany

Supervisors:

Prof. Dr. Susan P. Williams

Prof. Dr. Petra Schubert

Koblenz, February 2017

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group iii

Declaration/ Erklärung

I declare that,

This thesis presents work carried out by myself and does not incorporate without acknowledgement

any material previously submitted for a degree or diploma in any university. To the best of my

knowledge, it does not constitute any previous work published or written by another person except

where due reference is made in the text.

--

Ich versichere,

dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden. Der Veröffentlichung dieser

Arbeit im Internet stimme ich zu.

Patrick Nitschke

Koblenz, March 2017

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group v

Abstract (English)

The Internet of Things (IoT) is a network of addressable, physical objects that contain embedded

sensing, communication and actuating technologies to sense and interact with their environment

(Geschickter 2015). Like every novel paradigm, the IoT sparks interest throughout all domains both in

theory and practice, resulting in the development of systems pushing technology to its limits. These

limits become apparent when having to manage an increasing number of Things across various contexts.

A plethora of IoT architecture proposals have been developed and prototype products, such as IoT

platforms, been introduced. However, each of these architectures and products apply their very own

interpretations of an IoT architecture and its individual components so that IoT is currently more an

Intranet of Things than an Internet of Things (Zorzi et al. 2010). Thus, this thesis aims to develop a

common understanding of the elements forming an IoT architecture and provide high-level

specifications in the form of a Holistic IoT Architecture Framework.

Design Science Research (DSR) is used in this thesis to develop the architecture framework based on the

pertinent literature. The development of the Holistic IoT Architecture Framework includes the

identification of two new IoT Architecture Perspectives that became apparent during the analysis of the

IoT architecture proposals identified in the extant literature. While applying these novel perspectives,

the need for a new component for the architecture framework, which was merely implicitly mentioned

in the literature, became obvious as well. The components of various IoT architecture proposals as well

as the novel component, the Thing Management System, were combined, consolidated and related to

each other to develop the Holistic IoT Architecture Framework. Subsequently, it was shown that the

specifications of the architecture framework are suitable to guide the implementation of a prototype.

This contribution provides a common understanding of the basic building blocks, actors and relations of

an IoT architecture.

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group vii

Abstract (German)

Das Internet der Dinge (IoT) ist ein Netzwerk bestehend aus adressierbaren, physikalischen Objekten,

die Sensor-, Kommunikations- und Aktuator-Technologien bereitstellen und mit ihrer Umwelt

interagieren (Geschickter 2015). Wie jedes neue Konzept, hat auch IoT Interesse über jeden

Anwendungsbereich hinweg, sowohl in Theorie als auch Praxis, geweckt und die verfügbaren

Technologien an ihre Grenzen gebracht. Diese Grenzen machen sich insbesondere dann bemerkbar,

wenn die Anzahl von Dingen (Things), die über verschiedenste Anwendungsbereiche hinweg verwaltet

werden müssen, steigt. Um die neuartigen Anforderungen zu erfüllen, wurde eine Fülle von

verschiedenen Systemen entwickelt, die alle ihre eigenen Interpretationen einer IoT Architektur und

ihrer jeweiligen Komponenten anwenden. Dies hat dazu geführt, dass IoT aktuell eher ein Intranet der

Dinge als ein Internet der Dinge ist (Zorzi et al. 2010). Daher ist es Ziel dieser Arbeit, ein einheitliches

Verständnis der Komponenten, die eine IoT Architektur bilden, zu erlangen und generische

Spezifikationen in Form eines Ganzheitlichen IoT Architektur Frameworks zur Verfügung zu stellen.

Diese Arbeit verwendet Design Science Research (DSR), um die genannte Architektur auf Basis der

einschlägigen Literatur zu entwickeln. Die Entwicklung des Ganzheitlichen IoT Architektur Frameworks

umfasst die Nutzung zwei neuer Perspektiven auf IoT Architekturen (IoT Architecture Perspectives), die

während der Analyse von IoT Architekturen in der Literatur identifiziert wurden. Die Anwendung dieser

neuen Perspektiven führte zur Erkenntnis, dass eine weitere, ebenfalls neuartige, Komponente in der

Literatur implizit erwähnt wird. Die Beschreibungen der Komponenten von verschiedenen IoT

Architekturen wurden vereinheitlicht und mit der neuen Komponente, dem Thing Management System,

in Beziehung gesetzt, um das Ganzheitliche IoT Architektur Framework zu entwickeln. Weiterhin wurde

gezeigt, dass die Spezifikationen der Architektur als Vorlage für die Implementation eines Prototypen

geeignet ist.

Der Hauptbeitrag dieser Arbeit ist ein vereinheitlichtes Verständnis der einzelnen Komponenten sowie

deren Interaktionen einer IoT Architektur.

 Table of Contents

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group ix

Table of Contents

Declaration/ Erklärung ... iii

Abstract (English) .. v

Abstract (German)... vii

Table of Contents ... ix

List of Abbreviations .. xi

List of Figures ... xiii

List of Tables.. xv

1 Introduction ... 1

1.1 Problem Statement ... 1

1.2 Research Aim, Objectives and Questions .. 4

1.3 Outline of the Thesis ... 7

2 Research Design ... 9

2.1 Methodology ... 9

2.2 Research Method .. 11

2.3 Data Sources and Collection Methods .. 13

2.4 Scope and Basic Theory ... 14

2.5 Research Steps and Methods for Analysis .. 19

3 Theoretical Foundations .. 23

3.1 Internet of Things .. 23

3.2 IoT Platforms ... 29

4 Developing the Holistic IoT Architecture Framework ... 35

4.1 Sensing as a Service as a Baseline ... 35

4.2 IoT Architecture Perspectives and Components ... 42

4.2.1 IoT Architecture Perspectives... 42

4.2.2 IoT Architecture Components .. 52

4.3 Thing Management – An underdeveloped component .. 67

4.3.1 Differences between Network- and Organisational IoT Architecture
Perspectives and Conclusions .. 67

4.3.2 Utilising Principles of Identity Management for Thing Management in IoT 70

4.3.3 Development of the Thing Management System .. 72

4.3.4 Revising and discussing the Gateway´s Roles and Relations 103

4.4 Holistic IoT Architecture Framework based on S2aaS .. 105

5 Implementation of the Prototype ... 111

5.1 Thing Management System ... 113

Patrick Nitschke

x © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

5.2 Publisher .. 116

5.3 Service Provider ... 118

5.4 Evaluation Results .. 120

6 Summary and Conclusion... 123

6.1 Research Questions ... 123

6.2 Research Contribution ... 125

6.3 Limitations ... 126

6.4 Future Work ... 127

References .. 129

Appendix... 135

Appendix 1: Source code of the prototype .. 135

Appendix 2: Overview of the icons used in the illustrations ... 136

 List of Abbreviations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group xi

List of Abbreviations

IoT Internet of Things
WoT Web of Things
S2aaS Sensing as a Service
PaaS Platform as a Service
IS Information System
DSR Design Science Research
GDC General Design Cycle
AGDC Aggregated General Design Cycle
IDM Identity Management
PAD Personal Identification Device
EPC Electronic Product Code
RFID Radio Frequency Identification
BLE Bluetooth Low Energy
M2M Machine to Machine
SDK Software Development Kit
API Application Programming Interface
IaaS Infrastructure as a Service
PaaS Platform as a Service
MQTT Message Queue Telemetry Transport
CoAP Constrained Application Protocol
TMS Thing Management System
CA Customer Attribute
FR Functional Requirement

 List of Figures

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group xiii

List of Figures

Figure 1. Research objectives with associated research questions (own illustration) 7

Figure 2. Knowledge Contribution Framework (adapted from Gregor & Hevner 2013) 10

Figure 3. Relationship between Entity, Identity and Identifier (adapted from Sarma & Girão

2009) ... 16

Figure 4: Federated Identity Management Model (adapted from Jøsang & Pope 2005) 17

Figure 5: User Centric Identity Management Model (adapted from Jøsang & Pope 2005) 18

Figure 6: Research steps (own illustration) ... 20

Figure 7: Perspectives of IoT (adapted from Atzori et al. 2010) .. 25

Figure 8: Categories of Things in the Thing Oriented Vision of IoT (own illustration, concept

based on Mazhelis et al. 2013; International Telecommunication Union 2005) ... 26

Figure 9: Ideal M2M platform model (adapted from Kim et al. 2014) .. 31

Figure 10: Ideal M2M platform architecture (adapted from Kim et al. 2014) 33

Figure 11: Sensing as a Service Cloud (adapted from Sheng et al. 2013) 36

Figure 12: Refined S2aaS architecture (adapted from Perera, Zaslavsky, Liu, et al. 2014) 38

Figure 13: Sensor classification based on ownership (adapted from Perera, Zaslavsky, Christen,

et al. 2014) .. 39

Figure 14: IoT Architecture Perspectives combined with Visions of IoT and five layer IoT

architecture (own illustration, b) based on Khan et al. 2012; c) based on Atzori et

al. 2010) .. 44

Figure 15: IoT Smartphone Gateway Architecture (adapted from Zachariah et al. 2015) 46

Figure 16: Heterogeneous Network Architecture (adapted and simplified from Jo et al. 2015) .. 47

Figure 17: Cloud of Things Architecture for S2aaS (adapted from Abdelwahab et al. 2015) 49

Figure 18: Mobile Device as a Sensory Service Mediation (adapted from Chii Chang et al. 2015)

 .. 50

Figure 19: Mobile Phone Sensing as a Service Business Model (adapted from Mizouni & El

Barachi 2013) .. 51

Figure 20: Preliminary generic IoT architecture applying the Organisational IoT Architecture

Perspective (own illustration) ... 65

Figure 21: Preliminary generic IoT architecture applying the Network IoT Architecture

Perspective (own illustration) ... 66

Patrick Nitschke

xiv © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 22: IoT Architecture Perspectives on different scenarios based on the Owner´s degree of

control in the deployment environment (own illustration) 68

Figure 23: Relationship between Things and Owners in terms of IDM (own illustration) 72

Figure 24: Relationship of domains, mapping and design space in axiomatic design (adapted

from Suh & Do 2000)... 73

Figure 25: Component diagram for TMS based on FRs (own illustration) 89

Figure 26: High level design matrix for the TMS (own illustration) ... 102

Figure 27: Revised roles and responsibilities of Gateways for the Holistic IoT Architecture

Framework (own illustration) ... 104

Figure 28: Holistic IoT Architecture Framework (own illustration) .. 110

Figure 29: Use case diagram of the Thing Management System (own illustration) 114

Figure 30 Class diagram of the Thing Management System (own illustration) 115

Figure 31: Use case diagram of the Publisher (own illustration) ... 116

Figure 32: Class diagram of the Publisher (own illustration) ... 117

Figure 33: Use case diagram of the Service Provider (own illustration) 118

Figure 34: Class diagram of the Service Provider (own illustration) .. 119

 List of Tables

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group xv

List of Tables

Table 1: IoT Architecture Component Descriptions based on the Generic IoT Architecture Layers

and component requirements (own listing) ... 58

Table 2: Customer Attributes and a first set of preliminary requirements for the TMS (own

listing) .. 76

Table 3: Functional Requirements and Customer Attribute mapping for the TMS (own listing) .. 93

Table 4: Overview of the components of the Holistic IoT Architecture Framework (own listing)

 .. 106

 Introduction

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 1

1 Introduction

The first chapter of this thesis provides a brief introduction. The chapter begins with the problem

statement which motivates the research conducted throughout and presented in this thesis.

Subsequently the research aim, objectives and questions are presented to systematically guide the

study of this thesis. An overview of the structure of this thesis is provided in the last section of this

chapter.

1.1 Problem Statement

The Internet of Things (IoT) is a network of addressable, physical objects that contain embedded

sensing, communication and actuating technologies to sense and interact with their environment. This

network creates ecosystems that contain various services and applications (e.g. communication-,

sensing, data analysis -services) (Geschickter 2015). Like every novel paradigm, the Internet of Things

sparks interest throughout all domains both in theory and practice. Ever since IoT was added to

Gartner´s Hype-Cycle of emerging technologies in 2011, it was either considered as “on the rise” or “at

the peak of inflated expectations” (Fenn & LeHong 2011; 2012; 2013; 2014). In both hype-cycle-states

IoT received high media coverage and an increasing number of companies started to assess how the

Internet of Things could be integrated into their business strategies (Linden & Fenn 2003). Due to the

novelty of this new paradigm many first-generation products were created under the label of IoT.

However, neither businesses nor researchers have agreed upon a common, holistic understanding of

the term Internet of Things during the hype (Wortmann & Flüchter 2015). These first-generation

products are prone to negative publicity and technical issues. This is mainly due to the technology being

far from mature and pushed to its limits. In fact, most IoT related projects and applications can still be

considered as prototypes. The design of these prototypes may very well have been intuitively guided by

the idea to create a network of humans and things alike – “(…) experimentation at essentially full scale”

(Vaishnavi & Kuechler 2007 p. 10).

In the case of IoT, these limits became visible when having to manage increasing amounts of different

things and ensuring connectivity among them and to other internet services (Lee & Lee 2015). By trying

to incorporate a plethora of different things into a global network, issues regarding scalability,

heterogeneity, interoperability, and standardisation arise (Perera, Zaslavsky, Liu, et al. 2014; Atzori et

al. 2010; Moreno-Vozmediano et al. 2013). Additionally, the abstract nature of the value IoT can provide

proved to be an issue for starting IoT initiatives in the first place. According to Gartner, the ignorance

regarding the value of data provided by IoT applications hampered the adoption of IoT in some cases

(Velosa et al. 2015). These issues as well as the insights gained through the first prototyping phase led

to a special circumstance of IoT in Gartner´s Hype-Cycle of emerging technologies. Despite the removal

of the overall concept of IoT from the Hype-Cycle in 2016, several sub-concepts of IoT have been added

in 2015 and quickly reached the brink of the “peak of inflated expectations” in 2016 (Velosa et al. 2015;

2016b). This “split” is a special circumstance of a technology in Gartner´s Hype-Cycle, where a

Patrick Nitschke

2 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

technology is split into several sub-concepts (Linden & Fenn 2003). The newly emerged technologies are

“Internet of Things Architecture” and “Internet of Things Platform”. Both technologies aim to tackle the

above-mentioned issues. IoT architecture tries to pave the way for future IoT applications. It deals with

developing networks and their architecture to support and manage increasing amounts of things. While

businesses try to gain a competitive advantage by preparing themselves for IoT, e.g. by reassessing their

business models for IoT or gathering knowledge (Velosa et al. 2015), researchers try to provide generic

architecture models for the Internet of Things. For example, Khan et al. (2012) propose a generic IoT

architecture consisting of five layers, namely business-, application-, middleware-, network- and

perception-layer. They assigned each layer to specific tasks, responsibilities and requirements, e.g. the

perception-layer is responsible for gathering data regarding the environment. This architecture research

tries to introduce a common understanding of the Internet of Things, because all efforts of deploying

the Internet of Things on a global scale is futile without a well-defined architecture (Mashal et al. 2015).

IoT platforms aim to enable secure connectivity between things, be it humans, sensor-devices or

services of some sort, and are regarded as an integral part of any IoT architecture (IoT Analytics 2015;

Mineraud et al. 2016). These platforms provide software suites and various cloud based services to

facilitate the operation of “IoT endpoints” to enable communication between various, different devices.

Currently available IoT platforms provide functions for device and application management (PaaS), data

aggregation, transformation, storage and management as well as some means to analyse and visualise

data streams (Velosa et al. 2015; Mineraud et al. 2016). However, if a user wants to use the

functionalities of any IoT platform he must adhere to some constraints imposed by IoT platforms.

Applications built on top of an IoT platform need to adhere to the requirements of that very platform.

However, applications adhering the requirements of a specific platform created with a toolkit provided

by that platform are tied to that specific IoT platform (IBM 2016a). In order to be able to access and

manage things through an IoT platform users must create an application specific “IoT endpoint” on the

platform and configure their devices to communicate with that endpoint. The communication (e.g. data

format, communication technology/ protocol, etc.) are dictated by the IoT platform (Ishaq et al. 2013).

These constraints of IoT platforms lead to several lock-in effects. The platform specific application

requirements lead to the use of proprietary solutions (e.g. toolkits, protocols, data formats, etc.), which

leads to difficulties regarding communication and migration between different IoT platforms (Mosser

et al. 2012; Yasrab & Gu 2016; IBM 2016a). Thus, applications developed for one IoT platform are often

not portable between platforms. This effect is called data lock-in (Mineraud et al. 2016). Another

consequence of IoT platforms relying on proprietary solutions is the vendor lock-in. To provide a

seamless integration of sensors and devices into an IoT platform, gateways and sensors must often be

from the same vendor. Additionally, vendors are forced to make their devices compatible to the

proprietary interfaces dictated by IoT platforms (Velosa et al. 2015). This results in specific IoT platforms

only supporting devices from specific vendors (Ahmad et al. 2016). These lock-in effects are created due

to the predominant lack or competition of standards in IoT and lead to two additional issues (Lee & Lee

2015; Yasrab & Gu 2016).

 Introduction

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 3

Firstly, although it is simple for users to create an IoT endpoint, register and configure their things for

that endpoint and create IoT applications (e.g. most IoT platforms provide tools for visual application

development), the applications and device management functionalities lack dynamics. For example, it

is not possible to dynamically add and remove endpoints and devices to applications created with

currently available IoT platforms (IBM 2016b).

The reason for this lack of dynamics lies in the low level of abstraction of IoT application development

required by current IoT platforms. On the one hand, users have visual tools (e.g. node based and visual

development tools) to create an application. On the other hand, users need to directly address devices

(e.g. provide a one-to-one mapping of an “IoT endpoint” node to a device talking to that endpoint).

Thus, adding a new device requires creation of a new node on the respective application, provision of a

device-node mapping, manually normalising of the retrieved data and redeploying the application on

the IoT platform (IBM 2016a).

Secondly, applications built on top of IoT platforms cannot communicate with applications, devices or

services from other IoT platforms in a simple fashion. This problem is called the “IoT Gateway Problem”

and was addressed by Zachariah et al. (2015). According to Zachariah et al., each different type of device

(e.g. sensors, wearables, etc.) requires a different gateway to be connected to the internet or other

services. A gateway is either a device or an application (e.g. an application installed on a smartphone)

which handles and normalises communication near the network edge. The reason for this lack of inter-

device or cross-platform is two sided. The first reason lies in the fact that there are no uniform data

formats available, which are usable across platforms and different types of devices (Mineraud et al.

2016). To cope with these issues of data heterogeneity, data scheme identification and fusion, Mineraud

et al. (2016) suggest that IoT platforms should provide catalogues containing semantic indexes and

uniform interoperable data models which can be used to identify and manage data schemes. Without

these functionalities users are currently required to manually identify data schemes, normalise,

transform and store the data retrieved by their devices. Thus, each IoT applications database will likely

contain different data structures which makes inter-application and cross-platform communication

difficult. However, the second and more severe reason is the lack of actual communication

functionalities provided by IoT platforms. Lee and Lee (2015) state that there are currently many

different competing standards in the domain of IoT, whereas each enterprise building an IoT platform

tries to introduce their preferred standards. Various researchers state that the introduction of standards

is critical for the adoption of IoT on a global scale (Atzori et al. 2010; Mashal et al. 2016; Mineraud et al.

2016). Despite the need for standardisation, some researchers (e.g. Katasonov et al. 2008; Tima et al.

2009) argue that semantic technologies are a better approach to cope with the heterogeneity of devices

and protocols than enforcing a common standard.

In order to improve system dynamics of IoT platform applications and to remove cross-platform

communication barriers, a common understanding of the elements forming an IoT architecture is

required. Furthermore, the required functionalities of IoT platforms which are an essential element

within an IoT architecture must be defined. Researchers have proposed a plethora of IoT architecture

Patrick Nitschke

4 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

models (Sheng et al. 2012; Mizouni & El Barachi 2013; Zaslavsky et al. 2013; Al Nuaimi et al. 2012) and

component definitions (Zachariah et al. 2015; Ha et al. 2015; Petrolo et al. 2017; Serdaroglu & Baydere

2016) to overcome the mentioned issues.

Among these architectures Sensing as a Service (S2aaS), proposed by Sheng et al. (2012), has sparked

interest in particular. This architecture combined with various proposals for IoT components (e.g.

middlewares, gateways, services, consumers, etc.) will form the basis for the overall research aim of this

thesis. The thesis aims to increase the abstraction level of IoT application development by examining

S2aaS´s conceptual components and proposing a holistic architecture framework which can be

implemented.

This architecture framework aims to combine the various IoT architecture proposals to a common

denominator. Based on this holistic framework literature proposing implementations, technologies or

behaviours for each component of the architecture can be examined and the definition of each

architectural component can be refined.

An increased level of abstraction in the development process addresses both issues of IoT development

platforms mentioned previously. The lack of system dynamics (e.g. because a user cannot simply add

new IoT endpoints with respective devices on-the-fly) is reduced by introducing and specifying high level

architectural elements. These high-level elements, their behaviour, interfaces, roles and data structures

are to be defined by the holistic architecture framework. These high-level elements could then be used

by users in the development process. An exemplary element may be responsible for managing and

detecting sensors based on specific rules (e.g. a gateway-element). Furthermore, by relieving users of

the onerous task to manually handle and transform different data structures and enforcing a common

data format through the high-level architecture itself (e.g. common specifications for data elements and

communication interfaces), barriers hampering cross-platform communication can be removed

(Zachariah et al. 2015).

1.2 Research Aim, Objectives and Questions

By introducing a holistic high-level architecture framework, a common understanding of IoT and its

respective elements, actors, roles and responsibilities is to be achieved. Based on this common

understanding, barriers of cross-platform communication and issues regarding systems dynamics in IoT

application development on IoT platforms can be addressed. To achieve the fundamental research aim

of this thesis, which is to increase the abstraction level of IoT application development by examining

S2aaS’s conceptual components and proposing a holistic architecture framework which can be

implemented, several research objectives must be fulfilled. As stated before, there are many proposals

for IoT architectures and descriptions of specific components. Among these architecture proposals

Sensing as a Service (S2aaS) (Sheng et al. 2012; Perera, Zaslavsky, Christen, et al. 2014) has been selected

as a foundation, as it describes core concepts, actors and components of IoT on a high level of

abstraction. Furthermore, many architecture proposals either aim to provide the application

 Introduction

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 5

environment for S2aaS or basically describe the very same components of S2aaS (Al Nuaimi et al. 2012;

Abdelwahab et al. 2014). S2aaS is mostly considered a cloud service which heavily relies on the

interaction with other services (e.g. sensor services, data services, etc.). Therefore, it requires a suitable

environment (Zaslavsky et al. 2013). In order to achieve a common understanding of S2aaS along with

its components, actors and perspectives the first research objective (RO1) must be fulfilled.

RO1 To identify, synthesise and evaluate Sensing as a Service components, requirements

and perspectives.

To achieve RO1, components of S2aaS which are discussed in the pertinent IoT architecture literature

must be identified. Since there are multiple architecture proposals relating to Sensing as a Service,

whether implicitly or explicitly, common features of these elements must be identified. Additionally,

architecture proposals differ regarding their perspective on the Internet of Things. The perspective of

the architecture proposal might be rather technical or on a business level and consequently influence

the naming, description and nature of the architectures elements. However, the components of the

various proposals and perspectives are to be combined into common requirements of architectural

elements. Thus, to achieve RO1 the following research questions must be answered.

RQ1.1 Which components of S2aaS are addressed in the pertinent IoT architecture

literature?

RQ1.2 Which perspectives on the components of S2aaS are to be considered?

RQ1.3 What common requirements for S2aaS components can be defined?

After having achieved RO1, research regarding IoT components is examined to identify already existing

systems, services and concepts which fully or partially fulfil the component´s requirements worked out

in RO1. By providing a mapping between architecture components and existing concepts, systems and

services, the rather abstract descriptions of the architecture components can be refined. This is

achieved by incorporating the specific descriptions and specifications of these existing services,

concepts and systems into the definitions of the architectural components created in RO1. In order to

be able to select these existing concepts a mapping between services/concepts/systems and

architectural components must be realised (e.g. the concept of an IoT gateway or middleware is mapped

to an architecture component). Thus, the next objective is to provide a mapping between existing IoT

services, systems and concepts and S2aaS architectural components.

RO2 To map architectural components of S2aaS to existing IoT services, systems and

concepts.

To accomplish RO2 two research questions must be answered. The first question aims to find out how

existing services, systems and concepts can be mapped to architectural components of the Sensing as a

Service architecture. This mapping should be able to classify services, systems and concepts (e.g.

gateways, middlewares, etc.) and assign them to the respective S2aaS architecture element(s). Based

on this mapping some existing services, systems and concepts will be identified and mapped onto

architecture elements to answer the second research question of RO2.

Patrick Nitschke

6 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

RQ2.1 How can existing services, systems and concepts be mapped to components of S2aaS?

RQ2.2 Which existing services, systems and concepts can be mapped to components of

S2aaS?

Based on the high-level S2aaS components and their likewise high level requirements from RO1 and the

mapped systems, services and concepts as a result of RO2 a detailed specification of the S2aaS

components is to be achieved. Based on the refined descriptions and requirements for each system,

service or concept in RO2, which are likely to be much more detailed than the high-level specifications

of the components from Ro1, and the mapping between different levels of abstraction the fulfilment of

the next research objective becomes possible.

RO3 To propose detailed specifications for the components of IoT architecture framework.

This research objectives can be achieved by simply answering RQ3.1.

RQ3.1 What are the specifications for each component?

Based on the outcome of RO3 existing technologies can be identified which might fully or partially

support the required functionalities of each component of the proposed holistic architecture

framework. Therefore, the following and last research objective is to be achieved.

RO4 To find technologies supporting the implementation of the proposed architecture

framework.

RO4 is achieved firstly by identifying criteria for selecting technologies. These criteria are drawn from

the requirements developed in RO1 and the detailed specifications from RO3. Secondly, existing

technologies (e.g. communication protocols, existing applications, code libraries, etc.) need to be

selected based on the previously defined criteria.

RQ4.1 Which criteria are important for the selection of technologies that support the

implementation of the proposed architecture framework?

RQ4.2 Which technologies are suitable to implement components for the proposed

architecture?

By accomplishing RO1 to RO4 and answering the respective research questions (see Figure 1) a common

understanding of IoT and its elements can be achieved, and thus the overall research aim.

 Introduction

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 7

Figure 1. Research objectives with associated research questions (own illustration)

1.3 Outline of the Thesis

This section provides an overview of the structure of this thesis. The thesis consists of six chapters, which

are briefly described in the following paragraphs.

Chapter 1 provides a brief introduction, consisting of the problem statement and the research aim and

objectives guiding the further research conducted throughout this thesis.

Chapter 2 elaborates on the research design that provides the basis for the research which was carried

out in this thesis. The chapter begins with the description of Design Science Research, which is used as

the methodology (see section 2.1.), followed by a description of the research methods used in each

phase of Design Science Research in section 2.2. The following sections discuss the data sources and

collection methods (section 2.3) as well as the scope and basic theory (see section 2.4). The chapter

concludes with an illustration of the individual research steps performed in this thesis.

Chapter 3 introduces the Internet of Things (see section 3.1) and specifically describes IoT platforms in

section 3.2 to provide supplementary information for the following chapters.

Chapter 4 represents the main part of this thesis. It describes Sensing as a Service in section 4.1, followed

by the development of IoT Architecture Perspectives and of the components of the Holistic IoT

Architecture Framework (see section 4.2). Based on the components and perspectives developed in the

previous section, a novel component for the Holistic IoT Architecture Framework is developed in section

4.3. The chapter concludes with the combination of the components developed in section 4.2 and

section 4.3 which forms and finalises the Holistic IoT Architecture Framework (see section 4.4).

Patrick Nitschke

8 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Chapter 5 documents the prototype implementation of the components of the Holistic IoT Architecture

Framework in sections 5.1 to 5.3. The chapter finishes with an evaluation of the implementation of the

prototype application of the architecture framework in section 5.4.

Chapter 6 is the final chapter of this thesis and provides summarised answers to the research questions

(see section 0) and discusses the research contribution in section 6.2. The last two sections discuss the

limitations of the research conducted throughout this thesis (see section 6.3) and possible topics and

challenges for potential future work (see section 6.4).

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 9

2 Research Design

In this chapter the research design used throughout this thesis is presented. This chapter deals with the

methodology (see section 2.1), the research method (see section 2.2), the data sources and collection

methods (see section 2.3) as well as the scope and basic theory (see section 2.4). The chapter concludes

with an overview of the research steps and the corresponding methods for analysis in section 2.5.

2.1 Methodology

This thesis aims to achieve a common understanding of IoT architecture elements. To accomplish this,

a holistic architecture framework is to be developed. The development of the framework is based on

the analysis of existing architecture proposals for the Internet of Things. Thus, the phenomenon of

interest as well as the desired outputs of this thesis are elements of the area of Information Systems

(IS) and artificially created (Vaishnavi & Kuechler 2004). The analysis and development of the

architecture framework focusses on achieving and answering the research objects and respective

research questions stated in section 1.2. The technical and organisational interdependencies and

elements of IoT architectures are the phenomenon of interest. The new holistic IoT architecture

framework is to be created to improve the knowledge and understanding of IoT and to address the

issues, such as system dynamics of IoT platform applications, mentioned earlier in this thesis (see

section 1.1). Based on the phenomenon of interest and the desired output of this thesis, Design Science

Research (DSR) is used to develop the IoT architecture framework as an artefact and evaluate it. This

methodology is deemed to be especially suited for developing IS artefacts and provides a framework

for performing said tasks (Vaishnavi & Kuechler 2007). The General Design Cycle (GDC), described by

Takeda et al. (1990) and Vaishnavi & Kuechler (2007) i.a., is an integral part of DSR and can be used to

structure the research process.

This cyclic model consists of five individual process steps. Research or design using this model begins

with the awareness of problem. In this step a problem is to be identified, whether intentionally or not.

This first step is the most unstructured part of the GDC. A problem can arise during literature research

or in practical engagements with an already existing IS artefact (Vaishnavi & Kuechler 2007). In the

original GDC model Takeda et al. (1990) suggest that the designer or researcher becomes aware of a

problem, which is taken from a known or unknown set of existing problems, and decides whether this

problem is to be solved. The problem addressed in this thesis, which is the lack of a common

understanding of IoT architecture elements, responsibilities and related problems (see section 1.1),

became clear during the initial and preliminary literature research and analysis as well the explorative

use of IoT platforms. In the second process step of the GDC, the suggestion, existing knowledge of the

problem domain is used to abductively draw suggestions for solving the problem. Alternatively, the

suggestion can also be developed by using appropriate research methods or patterns of DSR (Vaishnavi

& Kuechler 2007). The result of the second process step of the GDC is a tentative design which in turn

guides the development of a new artefact. In the development step of the GDC most of the design tasks

Patrick Nitschke

10 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

are performed. The tentative and likely incomplete design is further refined and continuously improved

and a new artefact is developed. The nature of the artefact depends on the phenomenon of interest

and can range from actual implementations of software systems to rather abstract manifestations in

form of models or other constructs (Vaishnavi & Kuechler 2004). The next process step of the GDC

consists of an evaluation of the artefact. Usually the tentative design already contains some evaluation

criteria, whether explicit or implicit. The result of the evaluation are insights regarding the performance

of the artefact and its capability of solving the problem state in the first step (awareness of problem).

The three steps suggestion, development and evaluation are often repeated multiple times and the

results and insights gained in each evaluation and development step are used as input for the next

cycle´s suggestion step to further improve the artefact (Vaishnavi & Kuechler 2004). The last process

step of the GDC, the conclusion, marks the end of a DSR project as well as the GDC. Additionally,

Kuechler et al. (2005) suggest an extension of the GDC which links multiple instantiations of a GDC

associated to different research projects and domains together. The result and insights of one GDC is

used as a starting point for another research and design project. This extension is called Aggregate

General Design Cycle (AGDC). However, this thesis only utilises one instance of a GDC.

Figure 2. Knowledge Contribution Framework (adapted from Gregor & Hevner 2013)

The kind of knowledge contribution of a DSR projects depends on two factors (see Figure 2), the

maturity of problem and solution domain (Gregor & Hevner 2013). The problem domain is the domain

in which the problem has been identified during the process step of the GDC awareness of problem. In

this thesis, the Internet of Things constitutes the problem domain. The solution domain, from which

existing knowledge is used to draw conclusions and create a tentative design that guides the subsequent

steps, is Identity Management and will be thoroughly explained in section 2.4.

The knowledge created throughout a DSR project can be classified as part of one of the following classes

of outputs: constructs, models, frameworks, architectures, design principles, methods, instantiations

Adaption

S
o

lu
ti
o

n
 D

o
m

a
in

 M
a

tu
ri
ty

high

h
ig

h

Problem Domain Maturity

Invention

Routine Design

Improvement

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 11

and design theories. For a detailed explanation of each of these classes refer to Vaishnavi and Kuechler

(2004). The desired outputs of this thesis are constructs, which are the common components required

by RO1 and RO3, as well as models defining the relationship between these components. An

instantiation should then operationalise the previously defined constructs and models to aid the

evaluation step of the GDC.

2.2 Research Method

The methodology chosen and presented in the previous section inevitably guides the selection of

appropriate research methods. However, due to the fact that the IS research community is considered

a multi-paradigmatic research community, the research method can be chosen relatively freely

(Vaishnavi & Kuechler 2007). As already stated, this thesis applies Design Science Research as its

research methodology. For each process step of the GDC mentioned previously different research

methods or patterns can be applied. This thesis utilizes the patterns presented by Vaishnavi and

Kuechler (2007) as research methods or at least as supporting guidelines for performing each process

step of the GDC.

The conducting of the first process step of the GDC, awareness of problem, is guided by the meta level

pattern “Questioning Constraints” presented by Vaishnavi and Kuechler (2007). This pattern is labelled

as a meta level pattern because Vaishnavi and Kuechler state that it is applicable during each process

step of the GDC. This pattern aims to identify research gaps by questioning constraints imposed on a

research problem. It does not matter if these constraints are implicitly or explicitly mentioned by the

research community dealing with the research problem (Vaishnavi & Kuechler 2007). This pattern is

especially suitable when a researcher starts to work in a new field and thus is able have an unbiased

view on the field. In addition, the researcher should have some knowledge on adjacent research fields

and related technologies that might have impact on the constraints.

The second and third process step, suggestion and development respectively, of the GDC are directed

by the suggestion and development patterns Theory Development and Problem Space Tools and

Techniques also presented by Vaishnavi and Kuechler (2007). The pattern theory development can be

applied when the researcher intends to draw theory from his work. Theory, according to Vaishnavi and

Kuechler (2007), can be new models, concepts and conceptual frameworks i.a. As this thesis intends to

create an IoT architecture framework based on existing IoT architectures to provide a common

understanding of IoT´s elements, this pattern can guide the development of such theory. Specifically,

the incremental theory development described by Vaishnavi and Kuechler guides the development of

theory, the subsequently created artefact, it´s evaluation and influence on the refinement of the theory

(Vaishnavi & Kuechler 2007). The pattern problem space tool technique guides the researcher in finding

appropriate tools to solve the research problem. These tools, which are applied to the problem domain,

then guide the researcher in subsequent tasks. Vaishnavi and Kuechler (2007) state that the researcher

should utilise his general knowledge of existing research tools and techniques to identify an appropriate

candidate and apply it to the problem domain.

Patrick Nitschke

12 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

The third process step, the development, of the GDC will additionally utilise another research method.

Gero (2000) proposes axiom based design research as a research method for developing IS or design

artefacts. This research method allows the creation of IS artefacts by first specifying several axioms and

then deriving their logical consequences. Suh (2000) further elaborates this method in context of the

design of software systems. Designing software systems, and any other design task, is based on the

independence- and information axiom as well as the customer-, functional, physical- and process-

domain and a mapping between these domains. This design framework requires the designer or

researcher to adhere to two axioms. The independence axiom states that functional requirements must

not interfere with each other. Each functional requirement should be satisfied by a design parameter.

Depending on the requirements or dependencies between different design parameters a specific design

can be classified as an uncoupled-, a decoupled or a coupled design, whereas an uncoupled design is

considered the best solution (Suh & Do 2000; Park 2007). By using the design matrix, a supporting

method mentioned by Suh (2000), the dependencies between functional requirements and design

parameters can be displayed. Furthermore, Suh describes specific steps for designing a software system

with axiomatic design.

In the first step the functional requirements are derived from the customer domain. In the next step a

design parameter is assigned to each functional requirement that satisfies that functional requirement.

Suh (2000) notes that there can be many different designs, which are mappings between different

domains, that can satisfy the independence axiom equally. To be able to select the “best” design among

a set of existing designs, Suh introduces the information axiom. The axiom states that the best design is

the design that contains the least information. In the context of software systems Suh considers

information as the complexity of the system. Thus the least complex design is the best design according

to Suh (2000). Having selected the best design, the next step presented by Suh requires the

decomposition of functional requirements. When the functional requirements are unclear or sufficiently

complex, they need to be decomposed into sets of simpler requirements. After having decomposed

each requirement, new design parameters must be assigned to the simple requirements and new more

detailed design must again be evaluated according the information principle. The steps one to three are

repeated until each functional requirement and associated design parameter of the design can be

implemented without further decomposition (Suh & Do 2000; Park 2007). This procedure ensures that

the resulting design or software system is highly modularised. As this thesis aims to create a holistic IoT

architecture framework, it is desirable that this framework is highly modularised.

As described in section 1.2, RO3 aims to provide a detailed description of each architecture element. By

applying axiom based design as a research method during the development step of the GDC, the

elements of the IoT architecture shall be considered encapsulated, not as further decomposable

elements. Thus, a separation of concerns between each element of the IoT architecture framework can

be ensured.

The evaluation step of the GDC will apply the demonstration pattern mentioned by Vaishnavi and

Kuechler (2007). The intent of this pattern is to demonstrate that the IoT architecture framework

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 13

developed through is thesis is indeed implementable. During the implementation, the creation of an

instantiation, further insights regarding the practicability and limitations of the architecture framework

might be gained.

2.3 Data Sources and Collection Methods

During the initial phase of this thesis a literature research was conducted to become familiar with the

new area of IoT. This literature research pattern described by Vaishnavi and Kuechler (2007) can be used

after a research domain has already been identified. In this thesis, the research domain of interest is

IoT. Vaishnavi and Kuechler suggest that researchers should review internet resources, literature on the

research domain of interest as well as attend conferences of that domain. However, reviewing literature

regarding IoT in general is deemed sufficient to become familiar with the topic in this thesis. For the first

literature research the databases SpringerLink1, ACM Digital Library2, IEEE Xplore Digital Library3,

Science Direct 4as well as ResearchGate 5and Google Scholar6 are used. This initial literature research

was focused on IoT in general and on IoT test beds or simulation environments. Therefore, the following

groups of keywords were used. The first group contained the keywords “Internet of Thing*” and “IoT”,

whereas the “*” represents that the keyword may be stemmed (e.g. “Internet of Thing” or “Internet of

Things” may be used). The next group contains “Simulation*” and “Testbed*”. The third group consists

of the keywords “Information*” and “Context”. The groups are combined with “and” and each keyword

in a group are combined with an “or” operator.

The result of this first literature research yielded 33 articles, ranging from 1990 to 2016 (year of

publication). When reviewing these articles three loosely connected time periods stood out. The first

period, ranging from 1990 to 2006 contained articles that dealt with the foundations of simulation

techniques in general. The second period, from 2006 to 2011, focussed on low level issues regarding

simulation and network environments. This period aimed to provide the basis for management and

implementation of Wireless Sensor Networks (WSN), their simulation and other networking issues. The

last period, from 2012 to 2016, mainly contained articles dealing with high level and architectural issues

regarding large sensor or device networks, management of information as well as the value and trust of

this automatically generated and processed information. During the first two periods, mainly technical

issues were addressed in literature. The third period additionally tries to incorporate humans into the

1 http://link.springer.com/

2 http://dl.acm.org/

3 http://ieeexplore.ieee.org/

4 http://www.sciencedirect.com/

5 https://www.researchgate.net/

6 https://scholar.google.de/

http://link.springer.com/
http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com/
https://www.researchgate.net/
https://scholar.google.de/

Patrick Nitschke

14 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

newly proposed applications and architectures, so that information, privacy, trust, and security became

apparent and important topics.

Among the articles assigned to the third period, was an article by Sheng et al. (2012) that presented a

novel architecture model for IoT. This particular architecture, further extended by Perera et al. (2014)

combined with the above described issues becoming nascent during the first exploratory use of IoT

platforms is responsible for the shift in focus regarding the literature search of this thesis.

The subsequent literature research focusses on articles on IoT architectures, their corresponding

elements and related concepts, systems and services. The keyword groups used to obtain articles

dealing with the said topics are as follows. The first group again consists of “Internet of Thing*”, “IoT”

and “Web of Service*”. The second group contains the keywords “architecture*”, “framework”,

“model”. The third group consists of the keywords “mobile phone sensing”, “sensing service”. This

second literature search yielded several articles, from which six articles where specifically dealing with

IoT architectures. The articles and respective architecture proposals, element descriptions and

containing systems, services and concepts form the basis for the analysis of IoT architecture frameworks

and the identification of common elements, as required for accomplishing RO1, RO2 and RO3.

2.4 Scope and Basic Theory

Based on the articles proposing or describing IoT architectures, single elements or other concepts,

systems or services discovered as part of the second literature search described in the previous section,

an analysis and comparison of the IoT architectures is to be conducted. The analysis focusses on the

architecture elements and their relations (e.g. interfaces with other elements). Since this thesis aims to

provide a high-level architecture framework, aspects regarding the detailed inner workings of elements

(e.g. energy efficiency or context detection techniques for gateways) are not taken into account for the

intended analysis.

The basic theory that shall be incorporated into the construction of the IS artefact by applying the GDC

is Identity Management (IDM). Although it is often stated that IDM has no clearly defined meaning,

especially in the digital world, a preliminary definition can be built upon the commonly agreed

constructs of IDM (Jahankhani et al. 2010). In essence, IDM deals with issuing credentials to users during

the registration phase and subsequently identifying these users with the identifiers to grant or refuse

access to systems, services or other digital systems (Jøsang & Pope 2005). This superficial definition also

contains the common constructs used in IDM. Users are considered as Entities, credentials as Identities

and a single attribute of these credentials (e.g. username, password or other information) as Identifier.

The set of identifiers that are used to identify a user in a system is considered an Identity Domain, which

imposes certain criteria on the selection of identifiers (Jøsang & Pope 2005). These constructs are then

used by an Identity Management System, which provides several services (e.g. authorisation,

authentication, enterprise directory, etc.) to users or entities (Jahankhani et al. 2010). The constructs

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 15

and their relationships as well as requirements for an Identity Management System are explained

subsequently.

The core of identity management consists of entities, identities and identifiers (see Figure 3). An entity

represented by one or more identities, whether completely or partially. Entities can be real-life persons,

enterprises or other legal bodies or digital services/ things (Jøsang & Pope 2005). Entities can be

represented by multiple identities (Bhargav-Spantzely et al. 2006). There also exists the concept of

shared entities, where several individual entities act as a single entity in a specific context. An example

for this are families or companies. They consist of individual entities (e.g. family members, employees),

which in turn can have multiple identities themselves, but act as a single entity in certain contexts,

where an outsider cannot tell which “sub-entity” he is dealing with (Jøsang & Pope 2005). Entities are

then described or represented by Identities. Identities are context specific, thus an entity has different

identities in different contexts, e.g. an identity of an entity in a social network might significantly differ

from the identity provided by the passport (Jahankhani et al. 2010). Furthermore, identities can describe

their corresponding entity only partially or completely, again depending on the context or application

domain. The identity consists of a set of characteristics referring to the entity. Only the complete set of

characteristics (e.g. the required fields in a registration form) assemble an identity in a context or

application domain. Depending on the context, an identity can be unique or ambiguous (Jøsang & Pope

2005). Identifiers, or characteristics, are the building blocks of identities. Each identifier is a claim of the

corresponding entity that is not necessarily verified or certified by a third party, they are merely

assertions that an entity has a specific characteristic (Bhargav-Spantzely et al. 2006; Cameron 2005).

Identifiers have several properties. They are either transient or permanent (e.g. a student-number is

transient, a social security number is permanent).

An identifier can be self-selected or issued by an authority (e.g. usernames are self-selected, social

security numbers are issued) (Jøsang & Pope 2005). Which identifiers are required and/ or used to

uniquely identify an identity depends on the identity domain or context the identity is in. In an identity

domain, all identities are unique. It is a namespace which enforces a one-to-one relationship between

identifiers and identities. Thus, not every kind of identifier is suitable to build a namespace, e.g. the date

of birth usually does not provide a one-to-one mapping. Designing such a namespace is challenging and

the problem scales with the size of the identity domain. Additionally, identifiers selected for the

namespaces must usually be easy to remember, because they are primarily used by humans (Cameron

2005). Identity domains, containing identities uniquely identified by a namespace are an integral part

of Identity Management Systems. These systems manage identities and provide authentication,

authorisation and directory services. Entities authenticate with the system by using the identifiers

defined by the namespace of the identity management system´s identity domain. After being

authenticated entities are authorized to use specific services according to roles they have been assigned

to or according to some rules defined otherwise. These roles or rules are stored in the enterprise

directory of the identity management system (Jahankhani et al. 2010).

Patrick Nitschke

16 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 3. Relationship between Entity, Identity and Identifier (adapted from Sarma & Girão 2009)

According to Cameron (2005), identity management systems must adhere to the “Laws of Identity” that

specify requirements for dealing with identities. The first law states that the end-user should always

stay in control and must be asked for his consent when exposing any kind of information. The second

law, the law of minimal disclosure, states that only a minimum amount of information must be shared

with third parties. The third law requires that the third parties, with whom the information is shared,

must have a necessary and justifiable requirement for obtaining that information. The fourth law

requires that the mode of use for the identifiers must be able to be specified. This means that a user

must be able to define in which contexts a specific identifier of one of his identities can be used. The

fifth and sixth law require heterogeneity and human usability respectively. The seventh and last law

states that the handling of identities must provide the same user experience across contexts (Cameron

2005).

Additionally, the research domain of identity management distinguishes between User Centric-,

Federated Identity Management Models and User Centric Federated Identity Management Models,

which is a mixture of both. However, Bhargav-Spantzely et al. (2006) note that these terms and

especially User Centricity lack a common understanding.

A Federated Identity Management Model shares and maps the identifiers and identities provided by

users (entities) among service providers. Normally, each service provider would have its own identity

domain. In a federated identity management model however, the service providers have agreed upon

a set of standards and technologies to share the identity information (Jøsang & Pope 2005). This creates

a single shared identity domain. As soon as a user is authenticated with one service provider who is

member of the identity federation, he is authenticated with all other service providers as well. However,

due to the implicit sharing of identity information, the federated identity model violates the first three

Entity

Sub-Entities

Identifier Identity
Designation

Identity Domain

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 17

laws of identity in favour for a certain degree of “ease of use” for the user (Cameron 2005; Bhargav-

Spantzely et al. 2006).

Figure 4: Federated Identity Management Model (adapted from Jøsang & Pope 2005)

The User Centric Identity Management Model comprises the idea that the user should always be in full

control over transactions containing his identity. Bhargav-Spantzely et al. (2006) distinguish between

two different types of user centric identity management, namely relationship- and credential-focussed

identity management. In a relationship-focussed identity management approach a user, or entity,

merely maintains a relationship with the identity management systems that has issued his credentials.

The identity management system, sometimes called identity provider, is invoked in every transaction

made with these credentials. The identity management system then handles the communication of

identity information with the respective service provider used in the transaction. A good example

provided for this type of user centric identity management is given by Bhargav-Spantzely et al. (2006).

Credit cards, issued by a bank, are considered as a relationship between the issuer (the bank) and the

holder (customer of the bank). These credentials/ identifiers used to identify the customer, or the entity,

are usually the credit card number, the card validation code and a signature. The customer is in full

control over his credentials and invoked in every transaction. When the customer uses the credit card

to make a transaction to a service provider (i.e. when he wants to pay with the credit card), the bank

must first validate the card and thus needs to identify the holder by using the provided credentials.

Upon successful validation and authentication, the bank then handles the transaction of the relevant

identity information to the respective service provider (Bhargav-Spantzely et al. 2006). A credential-

Service
Provider 1

Service
Provider 2

Service
Provider 3

ID 1 ID 2 ID 3

ID 1

Service Provision

S
e

rv
ic

e
 A

c
c
e

s
s

Identity Mapping

Authentication
Credential

User Identifier

User

Identity Domain

Patrick Nitschke

18 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

focussed identity management approach aims to obtain permanent credentials. These credentials are

managed by the user (or entity) and can be used in transaction without invoking the identity

management system that has issued these credentials (Bhargav-Spantzely et al. 2006). Jøsang and Pope

(2005) suggest to use a Personal Identification Device (PAD) to locally store and manage credentials (see

Figure 5).

Figure 5: User Centric Identity Management Model (adapted from Jøsang & Pope 2005)

In this case the PAD is responsible for storing different credentials for accessing different service

providers, whereas each has a different identity domain. However, the PAD can also be used to store

long term credentials. Again, Bhargava and Spantzely (2006) provide an example for a credential-

focussed identity management model where the example of credit cards need to invoke the

corresponding identity managemen system. In contrast, passports are valid on their own. Passports are

also issued by an identity management system, usually the government of the country a person lives in,

and contains a set of identifiers to identify the holder of the passport without invoking the country´s

government. All identifiers are stored locally, the user is also invoked in every transaction requiring his

identity information and he is also in full control of this information (Bhargav-Spantzely et al. 2006).

The concepts provided by identity management are used in the development phase of the GDC

described in chapter Error! Reference source not found. of this thesis. Since, the internet of things i

ncorporates a vast number of devices, or things, and each of these devices has inevitably an owner in

Service
Provider

Service
Provider

Service
Provider

ID 1 ID 2 ID 3

Personal
authentication

Device

Personal Domain

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 19

the real world, one can conject that each of these things can be regarded as an identity representing its

associated entity (Mazhelis et al. 2013). When a family decides to install various smart sensors in their

house, each of these sensors exposes characteristic information, an identifier, regarding that family, be

it simple temperature sensors or advanced cameras tracking and recognizing faces. Contrastingly, smart

things can also act as service providers, where identities can be authenticated to perform certain

actions. Fremantle et al. (2014) describe the scenario of a smart lock where the owner can grant access

to the lock so that multiple persons, which are authenticated via their identities of the smart lock’s

identity domain, can unlock it. Additionally, some rules, such as access in a predefined period of time,

can be defined. Thus, things can be both identities and service providers in terms of identity

management.

2.5 Research Steps and Methods for Analysis

Since this thesis aims to create an implementable high level IoT architecture framework by applying

design science research and the corresponding general design cycle as the research methodology, the

selected method for analysis is the demonstration pattern as described in section 2.2.

For an overview of the research steps see Figure 6. In the first and second step of the GDC a tentative

design based primarily based on academic literature and IoT platform reviews is created. As described

in section 2.1, the awareness of problem and suggestion step of the GDC result in the research problem

as well as a suggestion for the solution for that problem, which was suggested in section 1.1. The

research problem that motivates this thesis is the lack of a common understanding of IoT architecture

elements and resulting problems, such as a lack of system dynamics and insufficient interoperability due

to heterogeneity issues. Thus, this thesis suggests to synthesise different IoT architecture proposals into

a holistic IoT architecture framework. The research problem and the tentative design are elaborated on

in section 1.1 and section respectively 1.2.

Patrick Nitschke

20 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 6: Research steps (own illustration)

Based on the tentative design, literature research on IoT architectures and Sensing as a Service (S2aaS)

is performed to answer both RQ1.1 and RQ1.2. The data sources and methods of collection for the

literature research is described in section 2.3. Based on the answers of RQ1.1 and RQ1.2, which are the

S2aaS perspectives and common elements respectively, the actual component requirements are to be

created in the next research step. This research step aims to answer RQ1.3. Having completed this step,

RO1 is achieved and a first sketch of the high level IoT architecture framework is achieved. Knowing the

requirements for each element, the next research objective can be addressed. Based on the component

requirements (see RO1) and a literature research on IoT systems, concepts and services a mapping

between existing IoT systems, concepts and services and the previously identified components is to be

achieved in the next research step. This step aims to answer RQ2.1 as well as RQ2.2 and thus to achieve

RO2. Now having detailed information of the relationships and perspectives of the architecture

elements as well as an understanding about which existing IoT systems, services and concepts can be

mapped to these elements, this information can then be combined to create detailed component

specifications of the high level IoT architecture framework (see RO3). The last research objective (RO4)

is achieved by conducting a review of suitable implementation technologies that could support the

 Research Design

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 21

prototypical implementation of the high level IoT architecture framework and the detailed component

specification which are the result of achieving RO3. Based on the identified technologies, selection

criteria are created and subsequently, based on these criteria and the detailed component specification

suitable technologies are selected. The selected technologies are then used to create the prototype

implementation of the high level IoT architecture framework. During the development of the

architecture as well as the prototype several implicit evaluation criteria are likely to occur. After the

development, the evaluation step of the GDC will make these implicit criteria explicit and evaluate the

architecture framework as well as the prototype.

 Theoretical Foundations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 23

3 Theoretical Foundations

This chapter gives a definition of the Internet of Things, presents its history and different perspectives

in section 3.1. Furthermore, this chapter provides a brief definition of IoT platforms in section 3.2.

3.1 Internet of Things

The Internet of Things is deemed to have a high impact on every aspect of everyday life (Barnaghi et al.

2012). It is envisioned to be the integration of the physical world into the digital world or vice versa

(Fleisch 2010). Enterprises and countries alike have already assessed the importance of IoT and started

to move into strategically advantageous positions to exploit the most value of IoT. For example, the

National Intelligence Council (2008) sees IoT as one of the Five Disruptive Civil Technologies, which has

a potentially important impact on the country´s interests out to 2025. Gartner (2015) advises

enterprises to start or keep focussing on augmenting their business processes and models with IoT

solutions and obtain expert knowledge as soon as possible. Gartner (2016a) also speculates that by 2020

the majority of new business processes will be supported by IoT technologies and solutions in one way

or another. At the same time, Gartner (2016a) predict that by 2020 more than 20 billion devices are

connected to the internet. On a side note, Gartner (2016a) also assumes that by 2020 there will be a

black market worth of five billion US$ for fake sensor data, which emphasises the need for information

reputation and evaluation techniques in IoT. For IoT to be successful, a trust environment has to be

established (Botterman 2009). As already elaborated on (see section 1.1) and highlighted again in this

chapter, IoT can very well be considered as a hyped technology (Fenn & LeHong 2011; 2012; 2013; 2014;

2015; 2016b). With IoT being a relatively new concept and under high coverage of both media,

businesses and researchers it is not surprising that the term itself and related research field lack a

commonly accepted and established definition. The commonly mentioned core ideas of IoT are the

seamless integration of virtual and physical objects into a network, their contextual interaction and

cooperation to reach common goals and their pervasive as well as ubiquitous presence in the real and

digital world (Atzori et al. 2010; Mazhelis et al. 2013; Barnaghi et al. 2012; Fleisch 2010).

The very first idea that led to today’s concept of IoT was the goal to integrate physical things into digital

systems. The development was driven by the idea to enhance supply chains, trade and inventory

management by applying Electronic Product Codes (EPC) to products and items. These EPCs can be used

to store and share information regarding the items and products they are attached to. The information

is shared by using standardised interfaces and utilizes Radio Frequency Identification (RFID) as well as

the internet and related communication systems. Early research and efforts regarding standardisation

were performed by EPCglobal (2009), which aims to introduce a global standardised architecture for

EPC, and by the Auto-ID Labs (Auto-ID Lab 2017), which focusses on research regarding RFID networks

and emerging sensor techniques (Atzori et al. 2010). Objects or Things equipped with RFID tags, usually

consisting of an antenna and a microchip storing information, can be tracked by RFID readers which can

read the information stored in the RFID tags. Thus, computer systems can obtain information of the real

Patrick Nitschke

24 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

world, i.e. of physical objects. The term Internet of Things is attributed to the Auto-ID Labs (Ashton 2009)

and was later formally defined by the International Telecommunications Union (2005). As previously

mentioned, the driving idea behind this early development stage of IoT was the goal to mesh the

physical and the digital world. Atzori et al. (2010) theorise that this early research is guided by the Thing

Oriented Vision of IoT, which will be elaborated on later in this chapter.

However, Atzori et al. (2010) also say that IoT can and will not merely be a global EPC system based on

RFID. More different and kinds of things will be added and connected by using different communication

technologies (e.g. NFC, Bluetooth Low Energy (BLE), etc.). Things will need to be managed and organised

into networks (e.g. Wireless Sensing and Actuating Networks (WSAN)). The upcoming heterogeneity

was already considered in the formal definition of IoT provided by the International

Telecommunications Union (2005). The definition states that the internet cannot only connect anyone

at any time and any place but anything at any time and any place. This view focusses more on the

networking aspect of IoT and Atzori et al. (Atzori et al. 2010) name it the Internet Oriented Vision of IoT.

Having agreed upon these ideas and with IoT gaining significant interest, both research and industry

tried to develop relevant use cases for IoT. Among others, advantageous use cases in supply chain

management, logistics and inventory management were identified. Apart from that, the smart fridge

presented by LG in the year 2000 is used as a prominent example of IoT for consumers (Sone 2001;

Rothensee 2008). With decreasing costs and increasing availability of relevant IoT technologies (e.g.

RFID tags, low energy sensors and BLE, etc.), the number of things connected to the internet increased

and rapidly outgrew the number of addressable devices used by the current addressing scheme of the

internet (IPv4). With the introduction of IPv6 to accommodate a practically inexhaustible number of

addressable devices in 2011 and the introduction of IoT to Gartner´s Hype Cycle of Emerging

Technologies in the same year, the concept of the Internet of Things finally became visible for the broad

public (Fenn & LeHong 2011; Madakam et al. 2015). Gartner considered IoT at this time as an Innovation

Trigger, thus many prototype products, systems and supporting technologies were developed (see

section 1.1) (Fenn & LeHong 2011). With a vast number of connected things, issues regarding

information search, organisation and storage became apparent. As already noted, IoT inevitably implies

a certain degree of heterogeneity. Therefore, traditional means of managing and searching information

are rendered impractical (Atzori et al. 2010). Semantic technologies (e.g. Resource Description

Framework (RDF), Web Ontology Language (OWL), etc.) are regarded as a potential solution for these

challenges. This is why the Semantic Oriented Vision of IoT emerged (Atzori et al. 2010).

 Theoretical Foundations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 25

Figure 7: Perspectives of IoT (adapted from Atzori et al. 2010)

As mentioned earlies in this chapter, IoT is said to lack a commonly accepted and established definition

due to high media coverage and interest from all different domains as well as the novelty of the research

domain. Each of these domains or groups of interest, which focus on different aspects of the core ideas

of IoT and enter different stages of the “rise of IoT”, can loosely be assigned to one of the mentioned

Perspectives of IoT (Atzori et al. 2010). These perspectives are the Thing Oriented -, Internet Oriented -

and the Semantic Oriented Perspective of IoT (see Figure 7). In the following paragraphs, each

perspective will be explained in more detail.

Thing Oriented Vision of IoT

As already mentioned, this perspective can be regarded as the first perspective of IoT. Focussing on

RFID, WSANs and Smart Items it considers Things, along with their identity, functionality and

information as the core of IoT (International Telecommunication Union 2005). According to Atzori et al.

(2010) the core technologies of this vision are RFID and NFC, which provide wireless short to medium

range communication. Everyday objects are then enhanced with these technologies to become Spimes.

Spimes are theoretical objects that can be tracked throughout space and time, beginning from their

manufacturing until their disposal (Atzori et al. 2010). A Spime is associated with an owner and contains

information regarding their previous owners and their contents (e.g. which materials it is made of, etc.)

(Sterling 2005). Furthermore, these objects are uniquely identifiable. This requires advanced addressing

schemes, capable of maintaining great numbers of objects (Atzori et al. 2010). The concept of Spimes is

RFID

UID

Spimes
Smart

Items

NFC

WSAN

WISP

Everyday

Objects

Connectivity

for everything

Communicating

things

Smart

Semantic

Middleware

IPSOS

Web of

Things

Internet ø

Semantic

Technologies

Reasoning

over data

Semantic execution

environments

Context

Thing Oriented Visions

Semantic Oriented
Visions

Internet Oriented
Visions

Patrick Nitschke

26 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

rather theoretical, however it already has practical application in form of Smart Items. Smart Items are

devices with sensing-, storing-, (wireless-) communication- and elaboration capabilities. Moreover,

Smart Items should be capable of autonomous actions based on contextual awareness and collaborative

communication (Botterman 2009). These requirements for Smart Items are in line with the previously

mentioned core ideas of IoT. Additionally, Mazhelis et al. (2013) state that the concept of a Thing doesn’t

have to be limited to physical items, they argue that virtual entities can also be a Thing. The IoT

Architecture Reference Model, proposed by Bassi et al. (2013), backs this idea by allowing entities to

either be physical or virtual. Things are responsible for gathering, (short term) storing and transmitting

information and can be categorised according to their purpose (see Figure 8) (Mazhelis et al. 2013).

Identifying Things assign a unique identity to an object and thus assign it to an addressing scheme.

Sensing Things are not only identifiable but are also able to gather information regarding their

environment and convert, store and communicate this information. Embedded Things have access to

this sensed information and can process it and may be able to act upon the processed information. As

Things must not necessarily be physical objects, Embedded Things can be some kind of service (Mazhelis

et al. 2013). In conclusion, the Thing Oriented Vision of IoT focusses on the nature, purpose and use of

the basic element of IoT, the things.

Figure 8: Categories of Things in the Thing Oriented Vision of IoT (own illustration, concept based on

Mazhelis et al. 2013; International Telecommunication Union 2005)

Identifying Things

Sensing

Things

Embedded

Things

 Theoretical Foundations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 27

Internet Oriented Vision of IoT

This vision of IoT aims to incorporate existing developments of the current internet into the new

infrastructure for IoT or vice versa. IoT can be very well considered as merely an extension of the current

internet, with prosumers7 being not necessarily humans anymore. However, with the inevitable

heterogeneity of IoT, the current internet must adapt to be able to not only connect to anyone at any

time and place, but to anything (International Telecommunication Union 2005). The majority of devices

being connected to the internet will be constrained in either power consumption, computing power or

data storage and will very likely need to rely on opportunistic communication availability. With the

TCP/IP stack requiring relatively large amounts of power and computing capacity, connecting

constrained devices to the internet via IP is a challenging task. Hence, one of the core ideas of this vision

is to simplify the IP-stack to accommodate constrained devices (Atzori et al. 2010). Furthermore, this

vision favours “IP over anything”. Both the IP for Smart Objects Alliance (IPSOS) and Internet Ø aim to

propagate the use of the IP stack as a light weight communication protocol for all kinds of devices

(Mazhelis et al. 2013). Hui et al. (2009) argue that IoT vendors have embraced the use of proprietary

protocols to connect their constrained devices, which creates the “Gateway Problem” as described in

section 1.1 (Zachariah et al. 2015). One solution, that will exploit the already existing infrastructure,

which is the aim of the Internet Oriented Vision of IoT, is the adoption of 6LoWPAN, which can be

deployed on constrained devices due to its novel adaption layer (Atzori et al. 2010; Hui & Corporation

2009). In conclusion, the Internet Oriented Vision of IoT aims to use the internet and its related

technologies as the drivers and solutions for IoT networking issues.

Semantic Oriented Vision of IoT

With interfaces mainly designed for humans or “simple”, well defined and known services, the current

architecture of the internet faces challenges when dealing with many kinds of interfaces or actors. The

large amounts of devices further increase the difficulty of this challenge. Thus, the Semantic Oriented

Vision of IoT focusses on semantic technologies to represent, search and store information in IoT.

Furthermore, this vision aims to use semantic descriptions for interfaces, services, things and their

corresponding identities (Mazhelis et al. 2013; Atzori et al. 2010). Bottermann et al. (2009) consider

ontology languages, flexible storages (e.g. schema-less databases) and reasoning engines as important

key technologies for this vision. The use of these technologies promotes semantic interoperability of IoT

resources and the use of information models and semantic annotation of data (Barnaghi et al. 2012).

Another focus of this vision is the use of semantic execution environments or context and semantic

middlewares. Semantic middlewares are capable of negotiating between different kinds of devices with

each device possibly having different data or information models (Katasonov et al. 2008; Botterman

2009). The use of context, for example the provisioning of services based on environmental information

7 With the current internet (Web2.0) being focussed on collaboration, the borders between producers of content
and consumers of content are blurred. Hence, prosumers create and consume information/ content (Ferna et
al. 2015; Vazquez & Lopez-de-ipina 2008).

Patrick Nitschke

28 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

(e.g. location, weather, etc.) for a user or contextual collaboration based on common tasks, also relies

on semantic annotations and descriptions (Atzori et al. 2010).

Having briefly described the history of IoT along with the interwoven development of the different

visions of IoT, one can now better understand why different researchers emphasise different aspects in

their respective attempts to define the Internet of Things. Mazhelis et al. (2013, p.9) consider IoT as “A

world-wide network of interconnected objects uniquely addressable based on standard communication

protocols” (INFSO D.4 Networked Enterprise et al. 2008, p.6). This definition can be associated with both

the Thing Oriented- as well as the Internet Oriented Vision of IoT. In fact, Atzori et al. (2010) suggest that

each vision overlaps in certain areas with other visions. In the case of this definition the focus is on

communication objects and the suggested use of standardised communication protocols. Another

definition provided by EpoSS (2008, p.6) states that “Things having identities and virtual personalities

operating in smart spaces using intelligent interfaces to connect and communicate within social,

environment, and user contexts.”. While this definition specifies the nature of Things, it further

emphasises the need for communication and intelligent interfaces tied to environments or contexts.

Hence this definition can be associated with both the Thing Oriented – as well as the Semantic Oriented

Vision of IoT. A definition aimed to encompass all three visions given by Tarkoma and Katasonov (2011,

p.6) states that IoT is “A global network and service infrastructure of variable density and connectivity

with self-configuring capabilities based on standard and interoperable protocols and formats. IoT

consists of heterogeneous things that have identities, physical and virtual attributes, and are seamlessly

and securely integrated into the Internet.”.

 Theoretical Foundations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 29

3.2 IoT Platforms

IoT platforms aim to simplify communication, storage, transformation, processing and control of data

as well as devices that gather this data (Efremov et al. 2015). As stated in section 1.1, IoT platforms are

considered an integral part in IoT architectures because they act as the middleware, translating and

orchestrating communication between devices and (on-platform-) applications (Mineraud et al. 2016).

Kim et al. (2014) propose an “ideal Machine to Machine (M2M) platform model” (see Figure 9) that

addresses various business models for the platforms as well as meets most requirements for IoT

platforms identified in the literature. The terms IoT platform and M2M platform can be used

equivalently. Mineraud et al. (2016) specify requirements for IoT platforms in order to perform a gap

analysis of current IoT platforms. These platform requirements are presented in the following

paragraphs, followed by the description of the “ideal Machine to Machine platform model”.

Security and privacy

Enabling secure communication between devices and platforms is one key requirement IoT platforms

need to meet. Hence, IoT platforms must include security and privacy mechanisms (Mineraud et al.

2016). This requirement is especially difficult to fulfil because IoT currently lacks communication

standards (Perera, Jayaraman, et al. 2014). To meet these requirements, an IoT platform must provide

means of device authentication, privacy of physical devices and communication, protection of data

storage and devices, trust management, governance and fault tolerance. To authenticate devices IoT

platforms mostly use keys that are transmitted with every communication to authenticate and identify

the devices (Mineraud et al. 2016). The authentication of users can be handled by using the OAuth 2.0

as a standardised protocol. Additionally, IoT platforms should provide different levels of granularity for

authorization e.g. for stored data or devices.

Integration of sensing and actuating technologies

As IoT platforms aim to simplify communication between heterogeneous devices, they need to provide

toolkits and Software Development Kits (SDK) supporting a pool of standardised communication

protocols (Mineraud et al. 2016). Due to the lack of standardised protocols in the current stages of the

development of IoT, the platform should offer as many protocols as possible to accommodate as many

different types of devices as possible. Mineraud et al. (2016) relate the value of an IoT platform to the

variety of supported devices, which highlights the requirement to support many kinds of devices.

Furthermore an IoT platform should make the integration of devices as simple as possible and provide

the respective owner of the device with full control over the device by means of device management

(Mineraud et al. 2016; Kim et al. 2014).

Patrick Nitschke

30 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Data ownership

Data generated by devices attached to an IoT platform must be owned by the user of the respective

data generating device. Large volumes of data, being an important aspect of IoT and having potentially

high financial value, are of utmost importance for the users of IoT platforms (Mineraud et al. 2016;

Perera et al. 2013). Users must have full control over the data collected by their devices and must be

able to decide with whom the data is shared. Furthermore, it must be legally guaranteed that the data

is in their possession. Unfortunately, Mineraud et al. (2016) state that the data ownership is rarely

guaranteed among current IoT platforms.

Data processing and sharing

With various kinds of devices, each collecting and transmitting data in different formats with different

and sometimes unknown quality, an IoT platform must provide some means of processing and

transforming this data (Mineraud et al. 2016). Additionally, it must be possible to share this data with

other users, services or entities, so that this requirement is related to the data ownership requirement.

In addition, processing and transforming data must be able to handle large bandwidths to process the

vast amounts of data collected (Mineraud et al. 2016). In addition to sharing the data or data streams,

users must be able to search for data and data streams. This requires that the data is annotated and the

IoT platform provides some means of searching (daCosta 2013).

Application Development

IoT platforms must provide standardised application programming interfaces (APIs) that facilitate the

development of IoT applications. These APIs should provide high-level access to the functionalities of

the IoT platforms (e.g. querying data streams, requiring access to data or devices, retrieving data, etc.)

(Mineraud et al. 2016). Ideally, these APIs should be uniform across different platforms. Fortunately,

Mineraud et al. (2016) find that most IoT platforms provide APIs that follow the same principle, which

are RESTful8 APIs. However, the data models and specific characteristics of each API differs between

each platform (Mineraud et al. 2016).

8 Representational state transfer (REST or RESTful) is an architectural principle that uses a predefined set of
stateless operations. These state transfer operations are usually tied to request methods of HTTP and
abbreviated as CRUD (Create, Read, Update, Destroy) operations.

 Theoretical Foundations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 31

Figure 9: Ideal M2M platform model (adapted from Kim et al. 2014)

The “ideal Machine to Machine platform model”, proposed by Kim (2014), aims to meet the previously

described requirements. The model is used by service users, which can be either customers, businesses

or governmental bodies. The service users gain access to the functionalities of the platform via web- or

mobile-applications. Additionally, the IoT platform provides a means of direct communication between

service users and devices or things. The web- and mobile-application as well as direct API access to the

platform is achieved by using a RESTful API. Service and Software providers may use RESTful APIs as well

provide pre-built applications or additional, possibly external services or consumer data. The entities an

IoT platform consists of are device management along with device searching, user management, data

& service management, user access and network management. In general, service users register their

devices with the platform. The devices can then be shared with other users and transmit their data to

the platform in various intervals, when events occur or continuously (Kim et al. 2014). The transmitted

data is then converted into meaningful knowledge that can be accessed by using dedicated services over

the web- or mobile-application. Devices or things can be either individually addressed or are managed

in M2M Area Networks and accessed via gateways which in turn are special devices registered with the

platform. The functionalities offered by the proposed platform model are shown in more detail in Figure

10. The modules or groups of functionalities are explained in the following paragraphs.

Device Management

The Device Management part of an IoT platform provides the means for registering, managing,

monitoring and searching for devices. It consists of the modules Device Profile Management, Device and

M2M Area Network Management and Device Searching. The Device Profile Management module allows

users to register devices. Information regarding the registered devices is stored in a database.

Additionally, users can manage the profiles of the devices. The profile of a device contains information

regarding its status, its owners, the type of data, access limitations and location. To ensure security, the

Internet

Gateway

Device Management

(Device Searching)

User Management

Data & Service

Management

User Access (Web, App)

App-device Mapping

Network Management

RESTful RESTful

Device Provider ISP Platform Provider

Service User

Service Provider

Software Provider

M2M Area Network

Thing

Business Model (B2C,

C2C, B2B, B2G)

P2P Communication

Patrick Nitschke

32 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Device Profile Management can provide devices with authentication keys and a authentication-key

management system (Kim et al. 2014). The Device and M2M Area Network Management monitors the

status of devices and controls them (e.g., it ensures connectivity between devices or performs low-level

network organisation tasks). By having all device information stored in a database, the Device Searching

module can execute queries to search for devices (Kim et al. 2014).

User Management

The user management entity of an IoT platform consists of the modules User Profile Management,

Authentication and Charging and closely interoperates with the Device Management. The User Profile

Management module allows users to register, modify their profiles and manage access to (shared-)

devices and data. Users who registered devices are the owners or administrators of these devices and

can grant or revoke access to their devices (e.g. direct P2P connection, access over IoT platform, etc.).

The Authentication module is responsible for authenticating users and authorizing access according to

their respective rights and roles. The Charging module monitors which resources users have consumed

(e.g., which applications, services, etc. they used) and charges the users accordingly. Most IoT platforms

facilitate the pay-as-you-go approach for charging (Perera et al. 2015; Mosser et al. 2012).

Application Management

The Application Management entity of IoT platforms is responsible for Data Collection and Control,

Services and Mash-up Management as well as Connection Management. It provides access to a variety

of services which either can be created by users, provided by external service and software providers

(see Figure 9) or built-in into the IoT platform (Kim et al. 2014). The Data Collection and Control modules

are responsible for collecting and reasoning over data. Based on the data collected by the devices

connected to the IoT platform, these modules suggest appropriate services. The service and mash-up

management module manages the services provided by the IoT platform. As the platform is either

considered as an Infrastructure as a Service (IaaS) or as a Platform as a Service (PaaS), users can allocate

instances of services (e.g. data storage, data processing, reasoning engines, etc.) or computing capacity

for custom applications (Kim et al. 2014). The connection management module is responsible for the

seamless integration into the various networks (see Figure 9 and Figure 10).

Access Platform

The purpose of the Access Platform is to provide users with access to the platform by either using a web

application, a mobile application or an open RESTful API.

 Theoretical Foundations

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 33

Figure 10: Ideal M2M platform architecture (adapted from Kim et al. 2014)

Core Network

Device Management

(Device Searching)

Device and M2M area

network Management

Device Searching

Device

User Profile

Management

Authentication

Charging

User

Data Collection

Data Control

Service & Mash-up

Management

Connection

Management

Application

App Management

App Searching

Web Portal

Access

M2M Service Platform (M2SP)

M2M area
Network

M2M area
Network

Access Network WCDMA Wi-Fi Ethernet LTE . . .

. . .

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 35

4 Developing the Holistic IoT Architecture Framework

This chapter covers the development process of the Holistic IoT Architecture Framework. It begins with

a discussion why S2aaS was selected as a baseline in section 4.1. Subsequently, both IoT Architecture

Perspectives and IoT Architecture Components are identified and discussed in section 4.2. Based on the

findings and insights gained in section 4.2, a novel IoT Architecture Component is developed in section

4.3. The last section of this chapter concludes with the presentation of the Holistic IoT Architecture

Framework.

4.1 Sensing as a Service as a Baseline

This section introduces the Sensing as a Service (S2aaS) architecture which is used as a baseline for the

analysis of existing IoT architecture proposals as well as the development of the holistic IoT architecture

framework to be performed in the subsequent sections. Furthermore, this section highlights why S2aaS

was selected as the baseline in the first place.

Sensing as a Service is a novel concept first presented by Sheng et al. (2013) to refine existing,

proprietary mobile phone sensing applications and propose a generic, reusable and extendable

architecture for mobile phone sensing applications. Mobile phones as a sensing platform have become

popular due to their widespread availability and the extensive sensor array built in to most of them.

Abdelwahab et al. (2016) state that with today´s availability of smartphones and the population density

in urban areas very high densities of sensors per square kilometre can be achieved (e.g., it is suggested

that the smartphone-sensor-density in London could exceed 14000 sensors per square kilometre, based

on an approximation of Abdelwahab et a. al (2016, p.1) , which is based on the assumption that London

has 4000 inhabitants per square kilometre while the smartphone penetration in the UK reaches 55%).

With today’s smartphones being a powerful platform for a variety of applications, outsourcing the

collection of data to smartphones is a reasonable concept to quickly collect large amounts of location

specific data. However, Sheng et al. (2012) state that mobile phone sensing applications are mainly

designed for a single purpose or domain. To collect a variety of data, in diverse contexts or locations

and for different “customers” would require smartphone users to install a plethora of different

applications to perform sensing tasks. This issue motivated Sheng et al. (2013) to propose a new model

for mobile phone sensing. In addition, this new model aims to leverage the advantages of the cloud

computing model. Sheng et al. (2013) state that the core component of their model are smartphone

users, which can perform both the roles of a content consumer and cloud service. Smartphone users

act as a cloud service when they accept and perform sensing tasks and act as content consumers when

they issue sensing tasks. Figure 11 illustrates a S2aaS cloud as envisioned by Sheng et al. (2013). Cloud

users issue sensing requests by using a web application or some other application having access to the

cloud´s external API. These sensing requests are then pushed to smartphone users who fulfil the sensing

task and send the collected data back to a sensing server which stores the sensing data. The data can

Patrick Nitschke

36 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

then be sent back to the cloud user who issued the request. During this process the task of issuing

sensing tasks is both crucial and complex.

Figure 11: Sensing as a Service Cloud (adapted from Sheng et al. 2013)

The S2aaS architecture considers two paradigms of mobile phone sensing, participatory and

opportunistic sensing. Participatory sensing lets smartphone users decide when, where and what data

they want to gather. Smartphone users actively participate in the sensing network by accepting or

declining sensing tasks or offering their sensing services (Burke et al. 2006). Opportunistic sensing aims

to involve smartphone users as little as possible when accepting and performing sensing tasks. Thus,

this paradigm requires either the smartphone or the sensing server, who issues the sensing requests, to

determine when, where and under which circumstances which smartphone user automatically should

perform which sensing tasks. Furthermore, the sensing server must consider smartphone user

preferences as well (e.g. active hours, locations, battery thresholds, etc.). While this automation is a

complex task, it is the least impairing approach, in the sense that smartphones users don’t get distracted

from their everyday tasks. However, it basically gives the smartphone user only a limited control in

selecting sensing tasks (Campbell et al. 2008). Regardless of whether participatory or opportunistic

sensing is used to assign sensing tasks, the underlying incentive mechanism must be considered during

the assignment of sensing tasks as well (Yang et al. 2012).

Sheng et al. (2013) state that S2aaS heavily relies on smartphone users to perform sensing tasks and

transmit their data. When depending on such a crowdsourcing solution smartphone users must be

Sensing
Server

Web Server
Database

Server
Load

Balancer

Sensing
Server

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 37

sufficiently motivated or rewarded for performing sensing tasks. Smartphone users use their energy,

their devices and their own time to gather the information, hence incentive mechanisms are important

(Yang et al. 2012). These mechanisms determine how and which smartphone users are selected to

perform a sensing task and how much they are rewarded. Yang et al. (2012) mention two paradigms of

incentive mechanisms, a platform centric and a user centric incentive mechanism. In the platform centric

incentive mechanism approach, a platform (e.g. the sensing server), publishes a sensing task. The

sensing task specifies how long, where, when and which kind of data is to be sensed and how much

reward is provided. Users in turn try to maximise their reward by being willing to provide a specific

amount of time and energy for performing the task, however they also try to minimise their amount of

time and energy. The platform then tries to find the optimal reward which allows the maximum sensing

time. Yang et al. (2012) provide an exemplary mechanism using the platform centric approach in the

Stackelberg game, where the platform is the leader and users are followers. In the user centric incentive

mechanism approach, a set of sensing tasks is published. Each of these tasks again contains information

regarding required time and energy. Additionally, each task has a value for the platform (e.g. for the

sensing server). Users then select tasks and their individual costs for performing the tasks. The platform

then tries to maximise the number of tasks to be performed and minimise the required rewards for the

tasks (Yang et al. 2012). In the original S2aaS architecture envisioned by Sheng et al. (2013) the sensing

server is responsible for issuing the sensing tasks while taking the incentive mechanisms, energy

consumption and sensing paradigms into account.

Based on the need for a variety of incentive mechanisms and the assumption that a S2aaS cloud should

support both participatory and opportunistic sensing paradigms as well as the requirement that the

S2aaS cloud must support a wide array of different sensor devices (e.g. different smartphones with

different operating systems and different sensors), Sheng et al. (2013) established a set of general

requirements for a S2aaS cloud:

• A S2aaS cloud must be general in the sense that it supports both opportunistic and participatory

sensing paradigms.

• A S2aaS cloud must support a variety of different sensors and mobile phones.

• A S2aaS cloud must be quickly and easily reconfigurable (e.g. to change algorithms incorporated

into the architectural elements).

• A S2aaS cloud should minimise energy consumption when issuing sensing tasks.

• A S2aaS cloud must support various incentive mechanisms to foster smartphone user

participation.

Beside the already explained requirements to support different sensing paradigms, incentive

mechanisms and types of sensors and devices, the requirement to be able to quickly reconfigure the

inner workings of a S2aaS cloud´s component is interesting in particular. In order to comply with this

requirement, the behaviour exposed to the “outside” must be meticulously specified (Sheng et al. 2013).

One advantage of this approach is that the detailed inner workings can then be omitted. By following

Patrick Nitschke

38 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

this behaviour driven9 approach one could concentrate on the high-level aspects of the architecture

while indirectly providing a set of criteria for the inner workings of each component. These implicit

criteria for the inner workings of the conceptual components yielded by this approach may be helpful

for achieving RO2 (see section 1.2).

Sheng et al. (2013) mention three different high level components of S2aaS, namely mobile phone users,

S2aaS cloud and cloud users. The components mobile phone user and cloud user can be performed by

the same entity as mentioned earlier. Mobile phone users, or smartphone users, collect data and are

recruited by the S2aaS cloud. The S2aaS cloud, consisting of web applications and frontends, databases,

and sensing servers (see Figure 11), manages sensed data and acts upon the sensing tasks issued by the

cloud users. These components are further refined by Perera et al. (2014) (see Figure 12).

Figure 12: Refined S2aaS architecture (adapted from Perera, Zaslavsky, Liu, et al. 2014)

Perera et al. (2014) distinguish between sensor owners, sensor publishers, extended service providers

and sensor data consumers. The sensor owners in Perera et al.´s (2014) architecture can be mapped to

mobile phone users in Sheng et al.´s (2013) architecture. The same applies to sensor data consumers

and cloud users. However, Perera et al. (2014) distinguish between sensor publishers and extended

service providers while Sheng et al. (2013) combine these single components into their S2aaS cloud. The

sensing server and the web server in the architecture by Sheng et al. (2013) are the sub-components

providing the respective functionalities. While Sheng et al. (2013) focus on mobile phone sensing, where

all sensing tasks are performed by mobile phones or smartphones, Perera at al. (2014) do not limit these

tasks to mobile phones but address sensors in general by including the additional component sensor

publisher. The next paragraphs will provide a brief overview of the components envisioned by Perera et

al. (2014) for a S2aaS architecture (see Figure 12).

9 This behaviour driven approach for the development has great similarities with the behaviour driven development
(BDD) pattern used in software development, as this pattern encourages focussing one the structured
specification of the behaviour of a software system to be developed (Solis & Wang 2011).

Sensors and
Sensor Owners

Sensor Publishers Extended Service
Providers

Sensor Data
Consumers

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 39

Sensor owner

Sensor owners have full control over sensors they are owning, thus the name of this component.

Essentially this component consists of two elements, the sensor owners and the sensors. Sensors are

devices or things that can measure physical phenomena (Perera, Zaslavsky, Christen, et al. 2014).

Furthermore, multiple sensors can be attached to the same physical object which in turn can be owned

by a sensor owner. This relation between physical objects is in line with the description of things from

section 3.1 and Figure 8. Sensors, regardless of whether attached to or built into objects, are always

owned by some entity, which is either a person, private organisation or public organisation (Perera,

Zaslavsky, Christen, et al. 2014). However, ownership of sensors can change over time. The fact that

sensors always have an identifiable owner and that they contain information regarding the data they

gather, their type etc., supports the conclusion that a sensor in Perera et al.´s (2014) definition shares

many characteristics with the concept of spimes mentioned in section 3.1 (Sterling 2005). Sensors are

classified according to the type of their corresponding owner (see Figure 13).

Figure 13: Sensor classification based on ownership (adapted from Perera, Zaslavsky, Christen, et al.

2014)

Sensors owned by private entities, such as natural persons or households, are classified as personal and

household sensors. These sensors may be built into other devices, such as mobile phones, laptops or

other consumer electronic devices. In short, every sensor of which ownership can be attributed to a

single person or family can be classified as a private and household sensor (Perera, Zaslavsky, Christen,

et al. 2014). Before sensors become personal and household sensors they have very likely been owned

by a private organisation. All objects belonging to a private organisation with built-in sensors that

cannot be attributed to a single person can be classified as a private organisation sensor. This includes

sensors built in or attached to any other object the private organisation owns (e.g. real estates, offices,

factories, products). When a private organisation manufactures products with built-in sensors, the

organisation is responsible for these sensors. However, when these products are sold, these sensors

change ownership and are considered personal and household sensors (Perera, Zaslavsky, Christen, et

Personal and Households

Personal and Households

Private Public

Commercial
Sensor Data

Providers

Patrick Nitschke

40 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

al. 2014). The new owner of the sensor can then decide if the data of the sensor is published or not.

Sensors built into public infrastructures, such as bridges, streets, and other public installations, are

classified as public organisation sensors. A special category of sensors and sensor owners are the

commercial sensor data providers. These are private organisations that own, deploy and manage large

sensor networks. The gist of the business model of these commercial sensor data providers is to gather

and sell sensor data on a large scale. Regardless of the type of sensor owner, each sensor owner is

responsible for the data each of the sensors gathers in his possession (Perera, Zaslavsky, Christen, et al.

2014). Thus, reputation and value of a sensor´s data is related to its respective owner. Sensor owners

form contracts with sensor publishers who offer the sensor´s data on behalf of his owner.

Sensor publisher

Sensor publishers are responsible for detecting sensors, determining the respective sensor owners and

communicating with them. Furthermore, sensor publishers request permission to access and publish

the data sensed by the sensors. Sensor owners form a contract with sensor publishers. Upon forming

this contract, the sensor publisher gathers metadata (e.g., sensor type, data scheme, information model,

owner preferences, availability, etc.). This metadata is later used to determine if a sensor belonging to

a sensor owner is suitable to perform a specific sensing task (Perera, Zaslavsky, Christen, et al. 2014).

When a sensing task is received by the sensor publisher, the task is being forwarded to the respective

owner of the sensor. Sensing tasks are usually issued by extended service providers. A sensor publisher

negotiates between extended service provider and sensor owner, thus it can ensure privacy and security.

The owner of a sensor must not necessarily be known to the entity that issued a sensing task. When a

sensor owner receives a sensing task, he can decide if he wants to accept the terms of the task. Upon

accepting the sensing task, the corresponding sensor publisher transmits the sensed data to the

requesting extended service provider (Perera, Zaslavsky, Christen, et al. 2014).

Extended service provider

Extended service providers provide value added services to sensor data consumers. Perera et al. (2014)

consider this component of S2aaS as the most “intelligent” one, as it provides a wide variety of different

services, where each requires different methods, technologies and approaches to transform the

requirements set by sensor data consumers to sensing tasks and analyse as well as present the resulting

data. One of the main tasks of an extended service provider is to formalise the informal sensing requests

of sensor data consumers into sensing tasks. These tasks must be generic and universal, so that each

sensor publisher can understand and handle the task (Perera, Zaslavsky, Christen, et al. 2014).

Additionally, extended service providers need to be able to support different sensing paradigms as well

as incentive mechanisms. While Sheng et al. (2013) assigned these tasks to the sensing server, these

tasks are to be performed by the extended service provider in Perera et al.´s (2014) architecture.

Additionally, Perera et al. (2014) note that a sensor publisher as well as an extended service provider can

be realised by the same entity (e.g. a business offering both services). An existing example for an

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 41

extended service provider envisioned by Perera et al. (2014) is the Azure Data Market 10mentioned by

Mineraud et al. (2016). On this market, businesses can publish data streams, which essentially are

sensors. Access to these data streams can then be purchased for a specified amount of time. However,

the Azure Data Market does not support creating specific sensing tasks at all. It basically combines the

sensor data base of a sensor publisher and the service model of an extended service provider.

Sensor data consumer

The Sensor data consumer is the component which creates sensing tasks. These tasks will be created on

a higher level of abstraction (e.g. “Air pollution in a period of time in some city”). These high-level sensor

task descriptions are transformed by the extended service providers as mentioned before (Perera,

Zaslavsky, Christen, et al. 2014). However, sensor data consumers can also directly communicate with

sensor publishers when they have sufficient technical abilities and capabilities. Directly communicating

with sensor publishers can be a difficult task because the sensor data consumer needs to transform his

high-level sensor task manually (e.g. measuring “air pollution” requires different sensor types, time

periods must be specified and geo-fences must be created to find sensors in a city). Before an entity can

become a sensor data consumer it must obtain a certificate that certifies their identity. This identity is

embedded into the respective sensing task and forwarded to each sensor owner, who then can decide

if he accepts the task or not. According to Perera et al. (2014) the majority of sensor data consumers are

mostly governments, businesses and academic or scientific institutions.

Both S2aaS architectures, the mobile sensing focussed approach proposed by Sheng et al. (2013) and

the extensions suggested by Perera et al. (2014), specify behaviours and relationships between

components. Furthermore, they define responsibilities and tasks for these components and suggest

patterns, approaches and concepts (e.g., incentive mechanisms, sensor search techniques, sensing

paradigms) that should be embedded into these components. However, they do not restrict or define

the inner workings of each component in detail. Both approaches merely require that new concepts

must be able to be “plugged in” to the respective components (Sheng et al. 2013). This high level of

abstraction used to design the S2aaS architecture is one reason why it was selected as a baseline for

further analysis in this thesis. Furthermore, S2aaS is an architecture that focusses on participation and

considers both commercial sensor data providers as well as single users and the sensor-enabled devices

they own. Besides regarding the different characteristics, intentions and requirements of personal-,

private-, and public owned sensors, the S2aaS architecture does allow users to assume both the roles

of data consumers and producers. Especially the focus on private sensors (e.g. sensors in mobile phones)

is notable, because it facilitates dealing with concerns of privacy and trust management.

In conclusion, the S2aaS architecture was selected as a baseline for the further analysis and

development performed as part of this thesis, because it is an extendable, high level architecture which

focusses on participation of every kind of actor (e.g. data producer or consumer, mediating business

10 http://datamarket.azure.com/browse/data

Patrick Nitschke

42 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

entities). In addition, it addresses a wide array of concerns ranging from privacy and trust to energy

efficient sensor search techniques and economic sensor task scheduling without limiting the

architecture through too much detail.

4.2 IoT Architecture Perspectives and Components

This section marks the beginning of the development step of the GDC described in section 2.2. It

elaborates on both the development of the IoT architecture perspectives and components on which the

further development of the holistic IoT architecture framework is based. As a first step, the IoT

architecture perspectives, which were identified based on the literature, are presented (see section

4.2.1). As a second step the components and conceptual elements of various IoT architecture proposals

are analysed and uniformly described (see section 4.2.2). Both steps rely on a literature review of which

the collection method was described in section 2.3 and 2.5.

4.2.1 IoT Architecture Perspectives

In contrast to the IoT visions presented in section 3.1, which distinguish between the Thing Oriented-,

Internet Oriented- and Semantic Oriented Vision of IoT, the analysis in this section uses another

approach to determine architectural perspectives. The interpretation of IoT Architecture Perspectives

is based on a combination of both the Visions of IoT presented by Atzori et al. (2010) and the Generic

IoT Architecture proposed by Khan et al. (2012). The five layer architecture proposed by Khan et al.

(2012) consists of the layers Perception-, Network-, Middleware-, Application-, and Business Layer (see

Figure 14b). The Perception Layer consists of physical objects, Things, and is responsible for gathering

environmental data and providing object related information. How the information is gathered, stored,

and later transmitted to the Network Layer depends on properties of each individual Thing (e.g.

communication technology and protocols)(Khan et al. 2012). The Network Layer is responsible for

transmitting data that is provided by the Perception Layer. The communication and networking

technology used in this layer varies and depends on the technologies supported by the Things of the

Perception Layer. Both the Perception- and Network Layer are closely connected and highly fragmented

according to the variety of communication technology. Establishing and maintaining reliable

communication with a variety of different types of Things using different communication technologies

(e.g. Wi-Fi, Bluetooth, etc.) and different protocols (e.g. MQTT11, CoAP12) is a challenging task as

highlighted by Zachariah et al. (2015). The Middleware Layer is built on top of the Network Layer. The

main task of this layer is to provide uniform communication end-points used by the Application Layer

by combining the fragments of the Network Layer (Mashal et al. 2015). Besides these mediating tasks,

11 Message Queue Telemetry Transport (MQTT) is a lightweight publish-subscribe communication protocol
especially suited for constrained and unreliable environments (Stanford-Clark & Nipper 2017).

12 Constrained Application Protocol (CoAP) a lightweight RESTful based communication protocol designed for the
use on highly constrained devices (ARM Limited 2017).

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 43

some proposals for IoT architectures and models do not only use this layer to cover mediating tasks but

also to represent the capability to store data, process and normalise data streams, to reason over data,

and to manage services (Mashal et al. 2015; Khan et al. 2012). However, some of these requirements

for middlewares in the context of IoT can be considered inappropriate when referring to the original

concept and definition of middlewares (Naur & Randell 1968; Emmerich et al. 2008). Originally, the

concept of a middleware was introduced in Naur & Randell (1968) as an additional abstraction layer to

decouple applications from underlying operating system and thus to manage heterogeneity issues

(Emmerich et al. 2008). Hence the requirement to store data in databases, as stated by Mashal et al.

(2015) inter alia, may require further explanation. The applications which are part of the Application

Layer, consume the normalised web services and API endpoints exposed by the Middleware Layer to

provide actual IoT applications that can be used by users or other services (Mashal et al. 2015). IoT

applications in general revolve around data-acquisition, -integration, and -representation as well as

autonomous actions based on the gathered data. The Business Layer is on top of the Application Layer

and manages an IoT system, its related services and business models (Khan et al. 2012; Miao Wu et al.

2010). Additionally, Wu et al. (2010) consider the Business Layer as a driver for the development of IoT

applications. They argue that the development of successful business models facilitates the

advancement of IoT related technologies. In conclusion, the responsibilities of each layer of the five

layer IoT architecture is as follows (based on Miao Wu et al. 2010; Khan et al. 2012; Mashal et al. 2015).

• Perception Layer, gathers environmental data and annotates/ identifies physical objects with

digital properties.

• Network Layer, transports information through various channels with various technologies.

• Middleware Layer, normalises heterogeneous data and exposes uniform interfaces.

• Application Layer, provides domain specific applications which use sensed data.

• Business Layer, drives application development and defines “value” for information obtained

through processed and sensed data.

Patrick Nitschke

44 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 14: IoT Architecture Perspectives combined with Visions of IoT and five layer IoT architecture

(own illustration, b) based on Khan et al. 2012; c) based on Atzori et al. 2010)

Based on the responsibilities and tasks assigned to each layer and the focus of each IoT vision mentioned

in section 3.1 a mapping between the layers and visions can be performed. With the Perception Layer

consisting of a multitude of different sensory devices and dealing with the collection of environmental

data or identification of real world objects, its aspects resemble the focus of the Thing Oriented Vision

of IoT. As mentioned, this vision focusses on Things as the basic building blocks of IoT (Atzori et al. 2010).

Providing addressing schemes, enabling Things to transmit data and to enrich everyday objects with

digital properties are additional topics the Thing Oriented Vision of IoT addresses. However, the Thing

Oriented Vision of IoT additionally aims to deal with heterogeneity and networking issues. As illustrated

in Figure 7, both the Thing Oriented- as well as the Internet Oriented Vision of IoT share the common

topics of enabling things to communicate with each other (Mazhelis et al. 2013). With the heterogeneity

of Things and the resulting variety of supported communication technologies and protocols, the Thing

Oriented Vision of IoT additionally shares topics, tasks and responsibilities with the Network Layer. The

Internet Oriented Vision of IoT aims to incorporate the novel requirements and technologies into the

current internet. It mainly addresses communication technology and protocol issues, e.g. it aims to

facilitate the use of 6LoWPAN as a communication technology for constrained devices. With the

Network Layer being responsible for ensuring the transportation of data from the Perception Layer / the

Things to the Middleware Layer, both the Internet Oriented Vision of IoT and the Network Layer share

common tasks and goals. Additionally, the Internet Oriented Vision of IoT partly addresses issues or

responsibilities of the Middleware Layer, as both aim to cope with heterogeneity (e.g. with the gateway

problem mentioned in section 1.1 and 3.1). The Semantic Oriented Vision of IoT also tries to specifically

Business Layer

Business
Models

Flow Charts Graphs
System

Management

Application Layer

Smart Applications and Management

Middleware Layer

Info Processing
Ubiquitous
Computing

Database

Service
Managemen

t

Decision
Unit

Network Layer

Secure Transmission
3G, UMTS, Wi-Fi, Bluetooth,

Infrared, ZigBee, etc.

Perception Layer

Physical Objects
RFID, Barcode, Infrared

Sensors

O
rg

a
n

is
a

ti
o

n
a

l
Io

T
 A

rc
h

it
e

c
tu

re
 P

e
rs

p
e

c
ti

v
e

N
e

tw
o

rk
 I
o

T
 A

rc
h

it
e

c
tu

re
 P

e
rs

p
e

c
ti

v
e

Thing

Oriented

Vision

of IoT

Internet

Oriented

Vision

of IoT

Sematic

Oriented

Vision

of IoT

A B C

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 45

address heterogeneity issues, however it utilises a different approach. While the Internet Oriented

Vision of IoT suggests using the existing internet architecture, modifying it where necessary (e.g.

6LoWPAN), and using it as a standardised communication approach for all new devices and scenarios,

the Semantic Oriented Vision of IoT suggests using semantic technologies to deal with heterogeneity

issues. For example, this means that this vision of IoT proposes to use “semantic adapter components”

as suggested by Katasonov et al. (2008). In essence, instead of relying on syntactical standards to ensure

heterogeneous communication and interaction, the semantic representations of devices, data and

services are used to dynamically create interfaces to access the respective devices, data and services

(Katasonov et al. 2008). The Semantic Oriented Vision of IoT can additionally be assigned to the

Application Layer, especially the intention of this vision to promote the development and use of context

aware applications and reasoning over data is relevant for this layer. The relations between each vision

of IoT and the respective layers of the generic IoT architecture are illustrated in Figure 14b and 14c.

Based on the visions of IoT and the layers of the generic IoT architecture, an additional type of

perspective became apparent during the analysis of IoT architecture proposals presented in the

literature obtained through the literature search described in section 2.3. The architecture proposals

regarded in this thesis can either be assigned to the Organisational IoT Architecture Perspective or the

Network IoT Architecture Perspective (see Figure 14a).

The Network IoT Architecture Perspective is focussed on establishing network communication between

devices or things. Devices or things are considered as network nodes in this perspective and are

decoupled from other aspects like ownership, identity, privacy, security, or reputation. Architecture

proposals implicitly using this perspective address issues on the Perception-, Network- and on the

Middleware Layer and are likely using either the Thing Oriented- or Internet Oriented Vision of IoT.

Zachariah et al. (2015) discuss the “gateway problem”, which is a heterogeneity issue of IoT. They state

that most constrained devices rely on low power wireless communication (e.g. BLE) instead of using Wi-

Fi or other more well connected technologies (Zachariah et al. 2015). These constrained devices require

an application layer gateway to communicate with the internet (e.g. a smartwatch needs to be

connected to a smartphone to be able to download updates from the internet). This connection

between a constrained device and a gateway is usually achieved by using a device specific proprietary

application. For each different constrained device a new application must be installed on the gateway,

which is usually a smartphone, in order to connect the constrained device to the internet (Zachariah et

al. 2015). Zachariah et al. (2015) define this multitude of different, proprietary gateways with a narrow

application context as the IoT Gateway Problem.

Patrick Nitschke

46 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 15: IoT Smartphone Gateway Architecture (adapted from Zachariah et al. 2015)

To solve this problem, Zachariah et al. (2015) propose a smartphone-centric architecture (see Figure

15). Constrained devices should be connected to the internet by using a smartphone as a general-

purpose gateway. Constrained devices communicate with the smartphone via BLE, while the

smartphone uses cellular networks to connect to the internet. Zachariah et al. (2015) suggest two

possible communication mechanisms to be used in this architecture. The first mechanism considers the

smartphone as a temporary IPv6 router, which forwards all communication to the connected IPv6

enabled constrained devices. This mechanism allows a direct communication between IPv6 enabled

constrained devices and the internet. However, for these constrained devices to be directly addressable,

they need to be able to run a full IPv6 stack which requires relatively much computational power

(Zachariah et al. 2015). However, 6LoWPAN, as a simplified approach for IPv6 communication, is

deemed to be a suitable solution for enabling constrained devices for IPv6 (Hui & Corporation 2009).

Alternatively, Zachariah et al. (2015) suggest an approach based on the “web of things” paradigm, that

aims to use device metadata to expose RESTful endpoints. In this approach, the constrained devices

send additional metadata (e.g. which kind of data they provide, their location, the address where sensed

data is to be sent to, etc.) to the smartphone which currently acts as the gateway for the constrained

device. The gateway then transforms this metadata into a RESTful http endpoint. When the metadata

of the constrained device contains an address where the sensed data should be send to, the gateway

may send a HTTP request to the specified address containing the information provided by the

constrained device (Zachariah et al. 2015). The architecture proposed by Zachariah et al. (2015)

addresses communication issues at the Perception-, Network-, and Middleware Layer. This architecture

aims to empower smartphones to act as gateways for constrained devices. Due to the mobility of

smartphones the connection between a constrained device and a gateway cannot be permanent, thus

ensuring and acknowledging that data was transmitted successfully remains an issue (Zachariah et al.

2015). The architecture proposed by Zachariah et al. (2015) does not consider ownership issues of

constrained devices or things. They suggest that mobile smartphone gateways connect to every

constrained device within range of the gateway and forward the data provided by the respective device,

Peripheral CloudSmartphone

BLE Profile

Sensors

Attributes

More Info

B
L

E

W
i-

F
i/
 3

G

HTTP

Acknowledgement

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 47

thus one can infer that gateways and constrained devices in Zachariah et al.´s (2015) proposal can be

interpreted as network nodes. Additionally, they suggest the usage of existing internet technologies

(e.g. BLE, IPv6, 6LoWPAN) to enable heterogeneous connectivity between constrained devices and

things. Hence, their approach can be assigned to the Internet Oriented Vision of IoT.

Figure 16: Heterogeneous Network Architecture (adapted and simplified from Jo et al. 2015)

The architecture proposed by Jo et al. (2015) (see Figure 16) follows a similar approach. They present

an architecture focussed on heterogeneous device-to-device communication with four types of devices

and three modes of usage, with each type of device being considered as a personal item such as

wearables, mobile phones, smartphones, tablets or personal computers. Terminal- and Sensing Devices

are the most constrained devices in the architecture proposed by Jo et al. (2015). Terminal Devices can

only act as Mobile as a Service Consumers, which means that they cannot share their own resources but

depend on the shared resources, which are offered as a service, of other devices in the architecture.

The services these type of device consumes are provided by the General Static Cloud, which is a network

of high performance data centres offering various kinds of services. In order to consume a service

offered by the General Static Cloud, a Terminal Device communicates with a Gateway Device. This type

of device operates as a Mobile Device as a Service Broker mode, which in the context of Jo et al.´s (2015)

means that this type transfers data from Terminal Devices to Master Devices and vice versa. Sensing

Devices are similar to Terminal Devices but are specialized in performing sensing tasks. However, in

contrast to the Terminal Device, this device operates in the Mobile as a Service Provider mode and thus

provides only the sensed data and is not able to communicate or collaborate otherwise. These sensing

services are provided to the Mobile Dynamic Cloud, which encompasses all mobile devices and is

introduced to offload and decrease network traffic to the General Static Cloud. While the General Static

Cloud relies on large scale data centres, the Mobile Dynamic Cloud utilises computing capacities near

General Static
Cloud

Master
Device

Master
Device

MaaSP

MaaSP

MaaR

PaaS

IaaS

SaaS

Terminal Device

Mobile
Dynamic
Cloud

IoT

Gateway
Device

Patrick Nitschke

48 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

the network edge. The fourth type of device, the Master Device operates in the Mobile as a Service

Representer mode (Jo et al. 2015). This type of device has the highest computing capacity and supports

a wide array of different wireless communication technologies and protocols. The Master Devices are

directly connected to the Gateway Devices, the General Static Cloud and to other Master Devices. They

solely represent their respective cloudlet which consist of all Gateway Devices and Terminal Devices and

offload any task they cannot perform on their own to services in the General Static Cloud. Likewise, they

represent the services provided by Sensing Devices and enable all other types of devices access to

sensed data. Jo et al. (2015) additionally suggest that each type of device maintains a backup connection

to the General Static Cloud in case no reliable connection through the Mobile Dynamic Cloud can be

achieved. By heavily relying on computing capacities near the network edge, this architecture is

supposed to scale well with increasing amounts of devices. Hence, the architecture proposed by Jo et

al. (2015) provides a possible solution for scalability issues of IoT. Additionally, Jo et al. (2015) suggest

that each type device uses either Bluetooth, cellular networks or Wi-Fi in combination with IPv6 for

communication purposes. This architecture is specifically designed to address scalability and

heterogeneity issues by relying on standardised communication based on existing internet technologies.

Hence, it can be assigned to the Internet Oriented Vision of IoT as well as addresses issues relating to

the Perception-, Network-, and Middleware Layer.

Both architectures presented by Zachariah et al. (2015) and Jo et al. (2015) can be assigned to the

Network IoT Architecture Perspective as both focus on “low level” network issues of IoT, and to the

Internet Oriented Vision of IoT and address issues on the Perception-, Network- or Middleware Layer of

the Generic IoT Architecture (see Figure 14). It must be noted that the architectures presented

previously and subsequently are only described with regard to their respective elements and their

corresponding relations as defined in section 2.4.

The Organisational IoT Architecture Perspective focusses on the organisational aspects of an

architecture and specifically addresses organisational relationships between each element, e.g. the

stakeholders of an element or the characteristics of the relationship between two components. In

contrast to the Network IoT Architecture Perspective it focusses on the organisational flow of data and

not on network traffic or routing issues. The reputation of the data producers and the value of data in

context of its intended use are important, while the format of the data or the required communication

technologies are of secondary importance. The Organisational IoT Architecture Perspective interprets

Things as “business entities” and focusses on ownership, security, identity and reputation rather than

communication technologies or network communication aspects. Architecture proposals that implicitly

refer to the Organisational IoT Architecture Perspective address issues on the Middleware-, Application-

, or on the Business Layer of the Generic IoT Architecture. Furthermore, these proposals tend to use

either the Internet Oriented- or Semantic Oriented Vision of IoT.

The original architecture proposals for S2aaS presented by Sheng et al. (2013) and Perera et al. (2014)

apply the Organisational IoT Architecture Perspective. Both proposals are specifically concerned with

the organisational relationships between the different components and intentionally omit details on

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 49

inner workings of the components as well as technical aspects (see section 4.1). Abdelwahab et al.

(2015) as well as Chang et al. (2015) follow the same approach. The Cloud of Things Architecture for

S2aaS presented by Abdelwahab et al. (2016) consists of four components (see Figure 17). Cloud Users

create sensing tasks that are managed and transformed by First Tier Clouds. Sensing tasks contain

information regarding the type of data to be collected, the area to be covered and various other aspects

depending on the sensing tasks domain (Abdelwahab et al. 2015). First Tier Clouds provide unified

interfaces for Cloud Users and abstract as much complexity as possible (e.g. a user does not have to

specify sensor types or deal with scheduling or discovering sensors). After being converted into Sensing

Task Requests, which are merely a formalisation of the task created by a Cloud User, the First Tier Cloud

issues this request to their Cloud Agents. The Cloud Agents are highly connected components, vary in

terms of computing capacity (e.g. a Cloud Agent can be a server-cluster, a normal personal computer or

a smartphone) and create as well as manage Virtual Sensor Networks based on the respective Sensing

Tasks they currently perform (Abdelwahab et al. 2015). The Cloud Agents presented in Abdelwahab et

al.´s (2015) architecture proposal share similarities with the Smartphone Gateways and the Master

Devices presented by Zachariah et al. (2015) and Jo et al. (2015), respectively. However, whereas the

latter focus on enabling and managing network connections between different components of their

respective architecture, Abdelwahab et al. (2015) focusses on patterns for resource or sensor discovery

and allocation of sensor networks, regardless of any communication technology and protocol, or

network structure. The Cloud Agent in Abdelwahab et al.´s (2015) proposal are connected to a variety

of individual sensing devices and create a virtual network based on the Sensing Request they are

currently performing based on these connected sensing devices. The data gathered by these virtual

networks is then sent to the Cloud User via the First Tier Cloud.

Figure 17: Cloud of Things Architecture for S2aaS (adapted from Abdelwahab et al. 2015)

Sensing

Task

Sensing

Task

Request

Cloud

Computing,

Storage, Network

First Tier Clouds Cloud Agents Cloud of Things

Supercomputer

Agent: Smart

Factories, Smart

Grid

Server Agent:

Smart Building,

eHealth,

Environmental

Monitoring

Smartphone Agent:

Smart Homes,

Wearables,

Connected Cars

1: Cloud
receives

sensing task

2: Cloud sends
Sensing Task

Request to

Cloud Agents

3: Sensor network
virtualisation

4: Agent
sends result to

requesting

cloud

5: Cloud
sends

result to

user

Cloud
User

Patrick Nitschke

50 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

The architecture proposed by Chang et al. (2015) follows a similar approach (see Figure 18). In the

Mobile Device as a Sensory Service Mediation framework, Clients issue sensing requests to Mobile Hosts

that provide access to sensor networks. The Mobile Hosts are either discovered by direct peer-to-peer

communication or via Discovery Servers which manage a database of available Mobile Hosts along with

metadata describing the services provided by each Mobile Host (Chii Chang et al. 2015). The Mobile Host

provides three modes of service access: one-time sensing, real-time sensing and periodical sensing. The

data collected through the sensor networks managed by the Mobile Host is stored in the Utility Cloud

Service, which acts as an on-demand data storage. Clients who have issued Sensing Tasks are granted

access to the respective Utility Cloud Service instances by the Mobile Hosts. When multiple Clients have

issued similar Sensing Tasks to a Mobile Host, the data is stored on a single Utility Cloud Service instance

and all Clients are granted access to the data. This reduces network load and energy consumption (Chii

Chang et al. 2015). Similar to the proposal provided by Abdelwahab et al. (2015), this proposal focusses

on the organisational relationships, on resource discovery as well as data and access flow rather than

network and communication issues. As both architecture proposals focus on the either the Application-

or the Middleware-Layer of the Generic IoT Architecture they can be assigned to the Organisational IoT

Architecture Perspective.

Figure 18: Mobile Device as a Sensory Service Mediation (adapted from Chii Chang et al. 2015)

Mizouni and El Barachi (2013) propose a business model for Mobile Phone Sensing as a Service that

illustrates different modes of usage and payment models for mobile phone users (see Figure 19). This

business model is an extension of the currently used mobile internet (3G/4G) business model (Mizouni

& El Barachi 2013). At its core, the Mobile Network Operator provides network services which are

consumed and paid by End-Users. Value Added Service Providers then provide additional services which

are billed via the Mobile Network Operator and can be used by the End Users. In order to provide sensing

services, Mizouni and El Barachi (2013) extend the core model with two additional components, the

Discovery
Server

Discover

Request/

Response
Subscription

Publish /
Update

Mobile
Host

Sensing

Upload

Eventing / Push Data

Proxy
(Dynamic Launched

Utility Cloud Service

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 51

Mobile Sensing Terminal Operator and the Mobile Sensing Network. Entities belonging to the Mobile

Sensing Network are sensors which capture environmental data and are assigned either to specific users

(persons), private or public organisations or communities. This categorisation is similar to the

classification of sensors related to their respective Sensor Owners of the S2aaS architecture described

by Perera et al. (2014) (see Figure 13 and section 4.1).

Figure 19: Mobile Phone Sensing as a Service Business Model (adapted from Mizouni & El Barachi

2013)

The data captured by the entities of the Mobile Sensing Network is collected by a special type of End-

User, the Mobile Sensing Terminal Operator. Besides being a normal mobile network user, the Mobile

Sensing Terminal Operator is able to collect data from the entities of the Mobile Sensing Network and

publish the data to the Mobile Network Operator (Mizouni & El Barachi 2013). The Mobile Sensing

Terminal Operator performs this task proactively, without a sensing task being issued to him. In contrast

to the previously presented architectures and frameworks, the business model proposed by Mizouni

and El Barachi (2013) relies on mobile phone users continuously collecting and publishing data on their

own.

When a Mobile Sensing Terminal Operator collects the data provided by a Mobile Sensing Network

entity, he pays for having access to the data of the entity. Upon publishing this data to the Mobile

Network Operator, the Mobile Sensing Terminal Operator gets paid depending on the value of the

collected data (Mizouni & El Barachi 2013). Thus, this approach relies on the mobile phone user to

proactively gather environmental data rather than reacting to sensing tasks. The business model

proposed by Mizouni and El Barachi (2013) distinguishes between four charging models for Mobile

Sensing Terminal Operators. The first model considers the operator to be operating as a self-

representative, thus he benefits from the sensed data and pays the entity owner of the Mobile Sensing

Network entity for the usage of the data. The second model considers the Mobile Sensing Terminal

Operator as a peer-representative who acts on behalf of other users, collects data for them and in return

Value added
Service
Provider

Mobile
Network
Operator

Mobile Sensing
Terminal Operator

Use network

services

Pay for use

Context info

mgmt + Use of

info for internal

operations

Service

provisioning

Publish

sensory

info

Pay/ get

paid for

sensing

services

Capture info

about itself Core mobile
network model

Patrick Nitschke

52 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

gets paid for his services by the other End-Users. The third charging model considers the operator as a

representative of the Mobile Network Operator. The Mobile Network Operator benefits from the sensed

data and in return pays the Mobile Sensing Terminal Operator. In the last charging model, the operator

either acts alone or collaborates with other operators to collect data in the first place; this includes

paying the owners of sensors. When the data is accessed, the individual operator or the group is paid

for their services. This proposal focusses primarily on the Business Layer of the Generic IoT Architecture.

Additionally, it aims to use mobile networks as existing technologies to enable IoT sensing services, thus

it can also be assigned to the Internet Oriented Vision of IoT.

All architectures, frameworks and models presented in relation to the Organisational IoT Architecture

Perspective can either be assigned to the Business-, Application- or Middleware Layer of the Generic IoT

Architecture. Furthermore, they are either using the Internet Oriented or Semantic Oriented Vision of

IoT. In conclusion, two IoT Architecture Perspectives, namely the Network IoT Architecture Perspective

and the Organisational IoT Architecture Perspective, have been identified and explained. Additionally,

these new perspectives were combined with the Visions of IoT and embedded into the Generic

Architecture of IoT (see Figure 14). These tasks where performed in order to answer research question

RQ1.2 (see section 1.2).

4.2.2 IoT Architecture Components

Based on the Generic IoT Architecture, proposed by Khan et al. (2012), described in section 4.2.1, and

illustrated in Figure 14b, the individual components of IoT architecture proposals are analysed in order

to work out common concepts of each component´s tasks, responsibilities and requirements. Therefore,

each IoT architecture proposal is examined and the descriptions, requirements, tasks and intentions of

each component are categorised based on the Generic IoT Architecture’s layers. Ideally, each

component is described with each layer of the Generic IoT Architecture in mind, which would mean in

conclusion that the component is holistically described. A holistic IoT architecture component

description will consider the Business-, Application-, Middleware-, Network- and Perception Layer of the

Generic IoT Architecture. However, depending on the component not all layers are necessary for

describing all aspects of an IoT architecture component, e.g. the Mobile Network Operator in Mizouni

and Barachi´s (2013) architecture proposal does not require a description on the Perception Layer

because it does not directly interact with the environment to sense data. The IoT architectures which

are regarded as part of this thesis are shown in Table 1. The components are grouped with the

architecture they belong to. Each component is described on different layers, whereas the Business

Layer is abbreviated with the character B, the Application Layer with the character A and so forth.

The descriptions for each component are extracted from the articles proposing the respective

architecture, normalised, and assigned to one of the layers. For example, Perera et al. (2014) and

Zachariah et al. (2015) i.a. suggest that Sensor Owners and Smartphone (-owners) must be incentivised

to perform their assigned task and that these components usually seek compensations for the services

they provide. Hence, one part of the common, normalised description of these components states that

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 53

they want to be compensated for providing access to sensing data. When reviewing the extracted

component descriptions (see Table 1) it becomes apparent that all IoT architecture proposals share

several common elements or components. These common components are presented in the next

paragraphs.

Consumer

All architecture proposals considered in this thesis mention the component Consumer or Data

Consumer, respectively, which is essentially characterised by its demand for data (Perera, Zaslavsky,

Christen, et al. 2014; Mizouni & El Barachi 2013; Abdelwahab et al. 2015). Regarding the Business Layer,

Consumers are always legal persons who have an interest in data and its potential information or

knowledge and are generally willing to compensate for the data and services they consume (Mizouni &

El Barachi 2013; Jo et al. 2015). Besides the demand for data, Jo et al. (2015) mention that Consumers

are also interested in offloading computational tasks onto cloud infrastructures. Consumers generally

do not provide any applications, services or are involved in managing communications between

different devices. Thus, the Application-, Middleware-, and Perception Layer are not considered in the

architecture proposals analysed in this thesis. However, Consumers either use web applications offered

by Service Providers to obtain sensing data or directly connect to components which provide sensing

data. For example, Perera et al. (2014) state that the Sensor Data Consumers can directly access the

Sensors maintained by a Sensor Publisher. However, this approach requires the Sensor Data Consumer

to strictly formalise his sensing requests. The architecture proposed by Chang et al. (2015) allows the

Client to directly issue sensing requests to the Mobile Host in a peer-to-peer connection. Depending on

the communication interfaces, technologies and protocols provided by the Mobile Host or the directly

accessed Thing, which can be as powerful as a smartphone or a highly constrained device, the Consumer

must support compatible communication interfaces, technologies and interfaces. Thus, the Network

Layer is addressed in some proposals when describing the Consumer component (e.g. Consumers must

support BLE or Wi-Fi to connect to Things in the vicinity) (Perera, Zaslavsky, Christen, et al. 2014; Chii

Chang et al. 2015). In conclusion, Consumers are entities that are mainly interested in data or

consumption of services, are willing to provide incentives for the data or services, and regularly use

services provided by Service Providers to issue sensing requests or rarely directly access Things to obtain

the desired data.

Thing

Every architecture proposal presented in Table 1 contains components that either resemble a single

Thing or a network of Things. These components can be virtual services or physical devices (Abdelwahab

et al. 2015). On the Business Layer, Things act as service providers, they provide access to their sensing

or data gathering capabilities. In return, Things can, but need not, demand compensation for the

services they provide. Additionally, the access to a Thing´s services must follow certain rules that the

Owner of the Thing might define. Such rules can specify access schedules, energy consumption

thresholds, restrict the data that can be accessed (e.g. no private data can be accessed, location must

be anonymised) and define what kind of compensation is required to access the services (Jo et al. 2015;

Patrick Nitschke

54 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Mizouni & El Barachi 2013; Perera, Zaslavsky, Christen, et al. 2014). Some architecture proposals

consider Things as personal devices (e.g. smartphones) (Chii Chang et al. 2015), while others consider

Things as highly constrained devices that have little computational power or storage capabilities.

However, every IoT architecture proposal either explicitly or implicitly mentions that Things are always

managed by an Owner, who defines access rules, compensations and other properties. On the

Perception Layer, Things merely have unique sensing capabilities which no other component of the

respective architecture has. Due to the constrained nature of most Things, descriptions addressing the

Network Layer describe the limited communication technologies and protocols of Things. The

architectures considered in this analysis suggest that highly constrained Things should be connected via

BLE, 6LoWPAN or Wi-Fi (Jo et al. 2015; Zachariah et al. 2015). Less constrained Things, such as

smartphones, can additionally be connected via cellular networks (Abdelwahab et al. 2015; Chii Chang

et al. 2015). In conclusion, Things provide unique sensing capabilities within the respective architecture,

are connected via limited communication channels and are mainly defined or shaped (e.g. properties,

metadata, access rules) by their respective Owner.

Owner

Although the component Owner is included in every IoT architecture proposal considered in this thesis,

it is rarely explicitly defined as an individual component. The reasons for this lack of a differentiated

view on the Owner component is twofold. At first, due to the origin of S2aaS in Mobile Phone Sensing,

Owner and Thing were basically considered as the same component (Sheng et al. 2013). In a traditional

Mobile Phone Sensing approach, a smartphone is considered as a Thing which provides unique sensing

capabilities. Additionally, the smartphone is considered as a personal device, which is owned by a

person who can immediately decide if a sensing task is performed (participatory sensing) or who can

define a set of rules for automatically performing sensing tasks (opportunistic sensing) (Yang et al. 2012;

Sheng et al. 2013). The second reason for the lacking differentiation between Things and their respective

Owners relates to the respective IoT Architecture Perspective of the corresponding IoT architecture. For

example, the architecture proposals of Jo et al. (2015) and Zachariah et al. (2015), which were assigned

to the Network IoT Architecture Perspective (see section 4.2.1), assume that access rules and expected

compensations are provided by the Thing, regardless who defines these rules. Hence, Jo et al. (2015)

and Zachariah et al. (2015) abstract and thus elude the ownership relation between Thing and Owner

and focus only on the metadata (e.g. access rules, data provided, etc.) exposed by the Things and how

to establish connections to these Things. On the Business Layer the Owner wants to be compensated

for the services his Things offer. Additionally, the Owner wants to specify access rules and restrictions

for the Things he owns. Access rules and restrictions include specifications on which kind of data and in

what detail the data is provided by a Thing. For example, an Owner might not want to expose the

location of a device and requires that the location is either anonymised or not exposed at all (Krause et

al. 2008). In conclusion, the Owner is the main stakeholder of a Thing and imposes his requirements and

specifications onto the Things he owns.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 55

Service Provider

The main purpose of this component across all architecture proposals is the provision of value added

services to Consumers. Individual Service Providers can specialise in providing domain specific services

(e.g. weather information, industrial sensor networks, etc.), however the gist of each service is the

discovery of Things and the collection, storage, transformation, analysis and presentation of data

(Perera, Zaslavsky, Christen, et al. 2014; Abdelwahab et al. 2015). To be able to provide these services,

most IoT architecture proposals consider this component as the most intelligent (Perera, Zaslavsky,

Christen, et al. 2014) component which is very well connected and has vast computing capabilities (Jo

et al. 2015). In general, Service Providers transform high level and informal sensing tasks made by

Consumers into formalised Sensing Requests and issue these requests to available and matching Things

via an arbitrary infrastructure. Consumers must provide compensation for using the services offered by

Service Providers. The Service Provider in turn provides compensation for accessing the data provided

by the involved Things. Furthermore, the Service Provider can also be interested in collecting or issuing

Sensing Tasks on his own (Mizouni & El Barachi 2013). Besides the previous descriptions on the Business

Layer, the Application Layer of Service Providers is also addressed in the literature on IoT architecture

proposals. To fulfil their respective Business Layer oriented tasks, Service Providers offer a variety of

applications that are used by Consumers. A Service Provider usually offers a web application that allows

Consumers to easily create Sensing Tasks. Thus, this application aims to support the main business task

of the Service Provider, which is to formalise Sensing Tasks (Chii Chang et al. 2015; Abdelwahab et al.

2015; Perera, Zaslavsky, Christen, et al. 2014). Furthermore, the web application handles compensations

as well as data representation. In addition, the Service Provider offers a variety of API endpoints, e.g. for

registering, discovering Mobile Hosts (Chii Chang et al. 2015), or issuing/ offering Sensing Tasks

(Abdelwahab et al. 2015). These “back end” applications or API endpoints allow the Service Provider to

be well connected with other components of the IoT architecture. To conclude, the Service Provider

collects, transforms and presents sensing data to Consumers based on Sensing Tasks.

The components Consumer, Thing, Owner and Service Provider are used in all IoT architecture proposals,

regardless of the IoT Architecture Perspective or the Vision of IoT the respective authors of the

architecture proposals used. However, the subsequently presented Gateway and Publisher are either

valid in the Network IoT Architecture Perspective or in the Organisational IoT Architecture Perspective.

Albeit having some similarities, these components must be distinguished according to the IoT

Architecture Perspectives in order be able to highlight the differences between them, the corresponding

architectures and the consequences arising from these different perspectives on an IoT architecture.

Gateway

The Gateway component is associated with the Network IoT Architecture Perspective and its main

purpose is to establish and maintain communication between Things and Service Providers. Both IoT

architecture proposals which were previously assigned to the Network IoT Architecture Perspective

include a component of which the sole purpose is to establish and maintain communication (Zachariah

et al. 2015; Jo et al. 2015). Zachariah et al. (2015) suggest that a Smartphone acts as a gateway to

Patrick Nitschke

56 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

establish communication between the Peripherals and the Cloud, which can be mapped to Things and

Service Providers, respectively. On the Business Layer, Zachariah et al. (2015) as well as Jo et al. (2015)

suggest that the Gateway component offers the establishment and maintenance of communication as

a service for which they demand compensation. In Jo et al.´s (2015) IoT architecture proposal both

Gateway Devices and Master Devices provide a network infrastructure that allows the Terminal Devices

to communicate with other devices. In return, Terminal Devices offer compensation for the services

they consume. The Business Model for Mobile Sensing as a Service proposed by Mizouni and Barachi

(2013), albeit assigned to the Organisational IoT Architecture Perspective (see 4.2.1), also describes a

component that offers gateway services. The Mobile Sensing Terminal Operator proactively establishes

connections to Mobile Network Sensing Entities in its vicinity, retrieves data and publishes it to the

Mobile Network Operator (Mizouni & El Barachi 2013). In all mentioned cases, the Gateway establishes

a peer-to-peer connection with the respective Things via BLE, Wi-Fi or a similar low energy wireless

communication technology. Thus, the Gateway always establishes a direct network connection with a

Thing in order to collect data. Due to this reason, the Middleware Layer is the most important aspect of

this component throughout the IoT architecture proposals considered in this thesis. Regarding this layer,

the Gateway is responsible for normalising communication between Things and Service Providers. It

supports a wide array of different communication protocols and provides sufficient computing capacity

to perform near network edge data transformation and routing tasks (Zachariah et al. 2015; Mizouni &

El Barachi 2013). To summarise, the Gateway´s main purpose is to enable communication between

Things and Service Providers.

Publisher

The Publisher component is associated with the Organisational IoT Architecture Perspective and

maintains a database of Things along with their metadata and offers applications as well as interfaces

to query or discover Things based arbitrary criteria. Publishers act as a proxy between Things and their

respective Owners, and between Service Providers or Consumers (Perera, Zaslavsky, Christen, et al.

2014). On the Business Layer, a Publisher maintains a set of Things which have been registered with the

Publisher by the Owner of the respective Thing. During the registration, the Owner can define access

restrictions and other rules for accessing his Thing through the Publisher (e.g. the Owner wants to

remain private or defines a threshold for a minimum compensation). The Publisher then either

advertises the Thing´s services, e.g. sensing capabilities, or waits for Sensing Tasks issued by Service

Providers. Depending on the specifications the Owner provided during the Thing´s registration, the

Publisher can automatically perform the Sensing Task (opportunistic sensing) or requests the Owner´s

permission beforehand (participatory sensing, see section 4.1). Additionally, the Publisher provides

services for discovering or querying Things (Chii Chang et al. 2015). For all these services the Publisher

may demand compensations (Perera, Zaslavsky, Christen, et al. 2014). In essence, the Publisher acts as

a Thing repository and as a proxy for the Thing he manages. In contrast to the Gateway, the Publisher

must not necessarily establish a peer-to-peer connection with Things. In contrast, Publishers and Things

are connected via contracts or registrations defined by the Owners of Things.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 57

Table 1 summarises the previous component descriptions and assigns each IoT architecture component

to one of the synthesised Consumer, Thing, Owner, Service Provider, Gateway, and Publisher

components. The first three columns of Table 1 contain the source for the architecture proposal, the

considered architecture component in terms of the respective architecture proposal and the mapped

component in terms of the Holistic IoT Architecture Framework to be developed in this thesis. The fourth

column contains the description of the respective architecture component. The description

characterises each component using the Generic IoT Architecture layers (see Figure 14). The architecture

proposals and each component were examined with each of these layers in mind, thus each

component´s description consists of specialised descriptions addressing a specific layer. The layers and

respective descriptions are colour coded (see Figure 14 for reference) and contain the abbreviated name

of the respective layer (e.g. B for Business Layer, etc.). The last column lists requirements which have

been derived from the component´s descriptions. Each requirement is considered as either a “must-

have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for successfully

fulfilling the expectations for a system and a “could-have” requirement merely provides supplementary

functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994).

Figure 20 and Figure 21 utilise these components and highlight the differences between IoT architecture

proposals applying either the Network IoT Architecture Perspective or the Organisational IoT

Architecture Perspective. The differences between both IoT Architecture Perspectives are discussed in

more detail in the next section. The analysis of IoT architecture components was conducted in order to

answer RQ1.1, RQ1.3 and RQ3.1 as well as achieve RO1 and RO3.

Patrick Nitschke

58 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Table 1: IoT Architecture Component Descriptions based on the Generic IoT Architecture Layers and

component requirements (own listing)

A
rc

h
it

ec
tu

re

C
o

m
p

o
n

en
t

M
ap

p
in

g

Description Requirements

Se
n

si
n

g
as

 a
 S

er
vi

ce
 (

Sh
en

g
et

 a
l.

20
13

; P
er

er
a,

 Z
as

la
vs

ky
, C

h
ri

st
en

, e
t

al
. 2

0
14

)

Se
n

so
r

O
w

n
er

O
w

n
er

B

• Offers access to sensing data

• Wants to be compensated for
providing access to sensing data

• Wants to be able to remain private/
anonymous

• Registers individual sensors with
Sensor Publishers

• Must be able to remain
private/ anonymous

• Must be able to control/
manage sensors/ things he
owns

• Must be able to manage
access to sensors/ things he
owns

• Must be able to define
usage constraints on Things
he owns

N

• Provides direct communication access
to owned sensors (e.g. home
network, mobile phone internet
access)

P
• Owns an arbitrary number of sensing

devices that can capture various kinds
of environmental data

Se
n

so
r

P
u

b
lis

h
e

r

P
u

b
lis

h
er

B

• Forms contracts with Sensor Owners
regarding individual sensors/ things

• Maintains a database of contracted
sensors along with metadata
describing the sensors

• Ensures privacy and anonymity of
contracted Sensor Owners

• Gets compensated by Sensor Owners
or Extended Service providers for
mediation services

• Must be able to forward
Sensing Tasks to Sensor
Owners

• Must be able to anonymise
data provided by sensors of
contracted Sensor Owners

• Must be able to detect/
discover Sensor Owners
based on sensors/ things
detected in the network

• Must support various
Incentive Mechanisms

• Must expose API unified
endpoints for accessing
sensors

A

• Provides direct access to sensors/
things for Sensor Data Consumers
(API)

• Provides access to sensors for
Extended Service Providers (API)

M

• Normalises communication between
Things

• Provides unified endpoints for various
types of sensors/ things

N • Discovers and establishes
communication with sensors/ things

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 59

Ex
te

n
d

ed
 S

er
vi

ce
 P

ro
vi

d
er

Se
rv

ic
e

P
ro

vi
d

er

B

• Provides various domain specific
value added services for Sensor Data
Consumers

• Translates and issues sensing tasks to
Sensor Publishers

• Presents sensing data to Sensor Data
Consumers

• Compensates Sensor Publishers for
using their services and sensors

• Must be able to access
endpoints exposed by
Sensor Publishers

• Must provide web
applications for Sensor
Data Consumers

• Must support various
Incentive Mechanisms

• Must be able to transform
arbitrary information
provided by Sensor Data
Consumers into uniform
Sensing Tasks

A

• Provides web applications and
interfaces for creating Sensing Tasks
and representing data

• Provides systems and services capable
of discovering and communicating
with Sensor Publishers

Se
n

so
r

D
at

a
C

o
n

su
m

er

C
o

n
su

m
er

B

• Consumes and compensates for value
added services provided by Extended
Service Providers

• Can directly access sensors/ things
through Sensor Publishers, thus can
bypass the Extended Service Provider
and directly compensate the Sensor
Publisher

Sm
ar

tp
h

o
n

e
G

at
ew

ay
s

(Z
ac

h
ar

ia
h

 e
t

al
. 2

01
5)

P
er

ip
h

er
al

Th
in

g

N
• Advertises its presence via BLE

• Supports BLE as a communication
technology

• Must have any kind of
communication interface

• Must be able to store and
provide characteristics
describing itself P

• Collects various kinds of
environmental data

• Expose certain characteristics (e.g.
type of sensor, attributes, additional
meta information)

Sm
ar

tp
h

o
n

e

G
at

ew
ay

B
• Smartphone users want to be

compensated for transmitting data
between Peripherals and the Cloud • Must be able to support

various Incentive
Mechanisms

• Must transform
characteristics of
connected Peripherals into
unified API endpoints

• Must be able to scan/
discover Peripherals in
vicinity and establish
connections

A • Exposes unified API endpoints when
acting as a BLE gateway

M

• Normalises communication between
Cloud and Peripheral by abstracting
proprietary interfaces of Peripheral
devices

• Acts as IPv6 gateway and allows
Peripherals to be directly addressable

• Acts as BLE gateway for Peripherals

• builds API endpoints based on the
characteristics of the Peripherals

Patrick Nitschke

60 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

N

• Discovers and establishes
communication with Peripherals

• Detects advertisements of BLE
enabled Peripherals

C
lo

u
d

Se
rv

ic
e

P
ro

vi
d

er
 B • Compensates Smartphone owners for

acting as gateways • Must be able to support
various Incentive
Mechanisms

• Must provide uniform
application/ service
endpoints

A
• Provides arbitrary endpoints for data

sensed by Peripherals and transmitted
by Smartphones to be sent to

H
et

er
o

ge
n

eo
u

s
M

o
b

ile
 N

e
tw

o
rk

 (
Jo

 e
t

al
. 2

01
5)

G
en

er
al

 S
ta

ti
c

C
lo

u
d

Se
rv

ic
e

 P
ro

vi
d

er

B

• Has large computing capacities and is
permanently reachable/ accessible

• Wants to offload tasks,
communication and services to
Mobile Dynamic Cloud, which consists
of Master Devices, Gateway Devices,
Terminal Devices

• Must be able to support
various Incentive
Mechanisms

• Must provide uniform
application/ service
endpoints

• Must be well connected

A

• Provides various services (IaaS, PaaS,
SaaS), which are consumed and
brokered by Master Devices and
Gateway Devices

• Provides endpoints to be used by
Master Devices for acting as service
providers

• Provides endpoints to be used by
Terminal Devices

• Provides endpoints to be used by
Sensing Devices

N

• Is connected to Master Devices and
Terminal Devices via cellular networks
or Wi-Fi

• Is connected to Terminal Devices via
BLE or Wi-Fi

Te
rm

in
al

 D
ev

ic
e

C
o

n
su

m
er

B

• Consumes services provided by
General Static Cloud directly or
through Gateway- and Master Devices

• Outsources computational tasks
through Gateway Devices to Master
Devices

• Must be able to support
various Incentive
Mechanisms

• Must be able to scan/
discover Gateway Devices
in the vicinity N

• Is connected to Gateway Devices via
BLE or Wi-Fi

• Is connected to General Static Cloud
via cellular network

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 61

Se
n

si
n

g
D

ev
ic

e

Th
in

g

B

• Acts as a service provider, provides
access to sensing capabilities, wants
to be compensated for service access

• Has Owner who controls and defines
restrictions, properties and access to
the services provided by the device

• Must be able to support
various Incentive
Mechanisms

• Must be able to define
access rules and
restrictions

• Must be able to remain
private/ anonymous

• Must be discoverable

N

• Is connected to General Static Cloud
via Wi-Fi

• Is connected to Mobile Dynamic Cloud
through Master Devices via Wi-Fi

P

• Has limited computational,
networking and storage capabilities

• Collects various kinds of
environmental data

G
at

ew
ay

 D
ev

ic
e

G
at

ew
ay

 /
 P

u
b

lis
h

er
 B

• Acts as a service broker, forwards
services provided by Master Devices
to Terminal Devices, wants to be
compensated for brokering services/
communication

• Must be able to support
various Incentive
Mechanisms

• Must be able to scan/
discover Master Devices
and Gateway Devices in the
vicinity

• Must be able to keep the
Terminal Devices private
and anonymous

N

• Is connected to Terminal Devices via
BLE, Wi-Fi

• Is connected to other Gateway
Devices via BLE, Wi-Fi

• Is connected to Master Devices via
BLE, Wi-Fi

M
as

te
r

D
ev

ic
e

G
at

ew
ay

 /
 P

u
b

lis
h

er
 B

• Represents services (service
endpoints) provided by the General
Static Cloud, service requests are
either forwarded to the General Static
Cloud or processed locally

• Wants to be compensated for service
provisions

• Represents, connects and manages
Gateway Devices and Terminal
Devices connected to itself – which
forms a cloudlet managed by the
corresponding Master Device

• Must be able to support
various Incentive
Mechanisms

• Must provide uniform
endpoints for services

• Must be able to collaborate
with other Master Devices

• Must be well connected

N

• Is connected to General Static Cloud
via cellular network, BLE, Wi-Fi

• Is connected to other Master Devices
via cellular network, BLE, Wi-Fi

• Is connected to Gateway Devices via
BLE, Wi-Fi

C
lo

u
d

 o
f

Th
in

gs

ar
ch

it
ec

tu
re

fo

r
S2

aa
S

(A
b

d
el

w
ah

ab

et
 a

l.
20

15
)

C
lo

u
d

 U
se

r

C
o

n
su

m
er

B
• Wants to obtain environmental data

and is willing to provide certain
compensations for the data

Patrick Nitschke

62 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Fi
rs

t
Ti

er
 C

lo
u

d

Se
rv

ic
e

P
ro

vi
d

er

B

• Provides various cloud services

• Maintains database of available Cloud
Agents and coordinates their actions

• Translates Sensing Tasks and forwards
them to available and suitable Cloud
Agents

• Must be able to transform
arbitrary information
provided by Cloud Users
into uniform Sensing Tasks

• Must be able to store
various types of data and
data formats A

• Provides unified user interfaces (e.g.
web applications, endpoints)

• Provides applications for creating
Sensing Tasks

• Provides access to stored data
retrieved by Cloud of Things

C
lo

u
d

 A
ge

n
t

G
at

ew
ay

 /
 P

u
b

lis
h

er

B

• Manages large amounts of connected
devices which are part of the Cloud of
Things

• Handles Sensing Tasks and selects
appropriate connected device from
the Cloud of Things

• Must be able to forward
Sensing Tasks to Sensor
Owners

• Must be able to support
various Incentive
Mechanisms

M

• Normalises communication between
various types of devices belonging to
the Cloud of Things

• Selects devices of the Cloud of Things
to perform Sensing Tasks, adheres to
various selection requirements (e.g.
energy consumption, distance, etc.)

• Manages Virtual Sensor Networks
created based on the criteria of the
Sensing Tasks

N
• Supports many kinds of

communication technologies and
protocols

C
lo

u
d

 o
f

Th
in

gs

Se
rv

ic
e

P
ro

vi
d

er

B

• Provides various degrees of available
computational power or sensing
capabilities

• Wants to be compensated for
computational power or sensing
capabilities

• Must be able to support
various Incentive
Mechanisms

N

• Individual devices are dynamically
assigned to virtual networks

• Provides limited communication
capabilities and protocols

P

• Can gather environmental data (from
physical devices)

• Can gather virtual data (from virtual
devices, e.g. services providing
insights on system usages, internet
traffic, etc.)

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 63

M
o

b
ile

 D
ev

ic
e

as
 a

 S
en

so
ry

 S
er

vi
ce

 M
ed

ia
ti

o
n

 (
C

h
ii

C
h

an
g

et
 a

l.
20

15
)

C
lie

n
t

C
o

n
su

m
er

B

• Wants to obtain environmental data
by issuing Sensing Tasks to Mobile
Hosts

• Uses Discovery Server to find suitable
Mobile Hosts

N

• Directly connected/ subscribed to
Mobile Hosts via peer-to-peer
connections (e.g. via local Wi-Fi
discovery, BLE advertising)

• Connected to Discovery Server via
internet

D
is

co
ve

ry
 S

er
ve

r

P
u

b
lis

h
er

B

• Manages many registered Mobile
Hosts

• Selects appropriate Mobile Hosts
based on Sensing Tasks

A

• Provides web-applications to
discover/ search for Mobile Hosts

• Maintains database containing
metadata describing Mobile Hosts

• Provides web-applications for Mobile
Hosts to register themselves with the
Discovery Server and manage their
metadata.

M
o

b
ile

 H
o

st

Th
in

g

B

• Provides sensing services (e.g. one-
time-, real-time-, and periodical
sensing)

• Wants to define what data is shared

• Wants to remain private and transfer
as less data as possible

• Dynamically uses Utility Cloud to
upload sensed data

• Is registered with one or more
Discovery Servers

• Authorises users to access the data
stored on the Utility Cloud

N

• Is directly connected to Clients via
peer-to-peer connections

• Is connected to Discovery Servers via
the internet (e.g. Wi-Fi, cellular
network)

P • Can gather various kinds of
environmental data

U
ti

lit
y

C
lo

u
d

Se

rv
ic

e

Se
rv

ic
e

P
ro

vi
d

er

B

• Provides data storage for sensing data
based on pay-by-use

• Is dynamically provisioned by Mobile
Host

• Limits access to data to authenticated
and authorised users

• Must be able to store
various types of data and
data formats

Patrick Nitschke

64 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

A
• Provides applications to access stored

sensing data (web-applications or
endpoints)

M
o

b
ile

 P
h

o
n

e
Se

n
si

n
g

as
 a

 S
er

vi
ce

 B
u

si
n

es
s

M
o

d
el

 (
M

iz
o

u
n

i &
 E

l B
ar

ac
h

i 2
01

3
)

M
o

b
ile

 N
et

w
o

rk
 O

p
er

at
o

r

Se
rv

ic
e

P
ro

vi
d

er

B

• Provides access to a cellular network

• Provides access to services of Value-
Added Service Providers through his
network

• Wants to obtain environmental data
and is willing to compensate Mobile
Sensing Terminal Operators for
collecting the data

• Must be able to support
various Incentive
Mechanisms

En
d

-U
se

r

C
o

n
su

m
er

B

• Accesses cellular network and
compensates Mobile Network
Operator for the access

• Uses Value-Added Services through
the cellular network

• Wants to obtain environmental data
and is willing to compensate Mobile
Sensing Terminal Operators for
collecting the data

• Must be able to support
various Incentive
Mechanisms

M
o

b
ile

 S
en

si
n

g
Te

rm
in

al
 O

p
er

at
o

r

G
at

ew
ay

/
P

u
b

lis
h

er

B

• Proactively gathers data from Mobile
Sensing Network Entities and aims to
be compensated for the collected
data

• Compensates Mobile Sensing Network
Entities access to their data

• Must be able to support
various Incentive
Mechanisms

A

• Provides applications to scan/
discover Mobile Sensing Network
Entities in the vicinity

• Provides applications to collect data
from Mobile Sensing Network Entity
and provide compensation

N
• Connects to Mobile Sensing Network

Entities via various communication
technologies and protocols

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 65

M
o

b
ile

 S
en

si
n

g
N

et
w

o
rk

 E
n

ti
ty

Th
in

g

B

• Provides access to sensing data and
wants to be compensated for the
access

• Wants define restrictions for data
access (e.g. kind of data, access times,
etc.)

• Must be able to support
various Incentive
Mechanisms

• Must be able to controlled/
managed by the respective
owner

• Must support to define
usage constraints

P • Provides various kinds of
environmental data

Figure 20: Preliminary generic IoT architecture applying the Organisational IoT Architecture

Perspective (own illustration)

Service

Provider

Service

Provider

Service

Provider

Publish /

Request Data

Service

Access

PublisherPublisher

ownership

Contract/

Registration

Owner

Consumer

Patrick Nitschke

66 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 21: Preliminary generic IoT architecture applying the Network IoT Architecture Perspective (own

illustration)

Service

Provider

Service

Provider

Service

Provider

Gateway Gateway

WSAN
WSAN

WSAN

Network

Network

Network Connection

Publish /

Request Data

Service

Access

Consumer

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 67

4.3 Thing Management – An underdeveloped component

Based on the IoT Architecture Perspectives presented in the previous sections, this section further

elaborates their differences and draws conclusions about potentially missing components or features in

the IoT architectures analysed in this thesis. Based on the conclusions presented in section 4.3.1, the

principles of Identity Management are discussed for the further development of a new component for

the Holistic IoT Architecture to be developed as part of this thesis (see section 4.3.2). Based on the

findings of the previous sections, the development of the new component Thing Management is

described in section 4.3.3.

4.3.1 Differences between Network- and Organisational IoT Architecture Perspectives and

Conclusions

To highlight the differences between the architectures applying either the Organisational IoT

Architecture Perspective or the Organisational IoT Architecture Perspective, two scenarios regarding the

deployment-environment of Things are described (see Figure 22). The main difference between the

scenarios is the degree of control an Owner has regarding the environment his Things are deployed in.

In the first scenario, which is essentially described by Perera et al. (2014), the Owner of a Thing has full

control over the environment. In Perera et al.´s (2014) example, an Owner deploys a smart fridge in his

home network. Thus, the Owner controls and establishes the connectivity of the smart fridge and can

directly connect or register the smart fridge with a Publisher. Furthermore, the Owner can directly

access his Things and modify restrictions, privacy settings and other parameters of his Things with ease.

In this scenario, the Owner additionally acts as the Gateway because he establishes a permanent

network connection between his Things and the internet. Publishers can act as proxies between Things

and Service Providers. This is possible because Publishers are directly connected to the Things registered

to them and they do not need to rely on external or uncontrolled Gateways to establish a network

connection (see Figure 22).

Patrick Nitschke

68 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 22: IoT Architecture Perspectives on different scenarios based on the Owner´s degree of control

in the deployment environment (own illustration)

Contrasting the first scenario, the second scenario regards Things deployed in a “foreign” environment

(see Figure 22). Owners still own their Things from an organisational view, but deploy their Things in an

environment they do not completely control (e.g. commercial sensor data providers deploy sensors in

public spaces). The deployment of Things in “foreign” environments indicates that Owners do not have

permanent access to their Things and that they neither provide nor control the communication between

their Things and the corresponding Publishers. This scenario is described by almost every architecture

proposal regarded in this thesis. For example, the IoT Smartphone Gateway presented by Zachariah et

al. (2015) (see section 4.2.1 and Figure 15) indicates that Peripherals, which are Things, need to rely on

the opportunistic and unreliable communication channels provided by mobile gateways. The Mobile

Phone Sensing as a Service Business Model presented by Mizouni and El Barachi (2013) also relies on a

gateway component to establish a non-permanent connection between Things and Service Providers.

In all the above-mentioned cases, the respective Publisher of a Thing, which should act as a proxy

between Things and Service Providers, is not considered at all. In essence, in this scenario Gateways

directly communicate with Things. This leads to two consequences. First, Publishers cannot fulfil their

role of managing access rules and restriction, or maintain the privacy of the respective Owner of a Thing.

This consequence indicates that these restrictions must be stored and managed directly by the

respective Thing. However, due to the deployment of Things in a “foreign” environment, which includes

limited, uncontrolled and unreliable access, managing Things could become a onerous task for Owners.

Second, considering the fact that a Thing should always be registered to at least one Publisher, the

Home network

(controlled environment)Foreign environment

Gateway

Owner

Publisher

Organisational relation

Network relation

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 69

corresponding Publisher´s metadata must also be stored on the Thing itself (Perera, Zaslavsky, Christen,

et al. 2014). This further complicates the management of Things and increases the technical

requirements for them as well (e.g. additional storage capacities, additional computing capacities to

support simplistic authentication, etc.). Things need to store their Publisher´s and Owner´s metadata.

Gateways need to determine the correct Publisher to transfer the data to, based on the metadata

provided by each Thing. This requirement for the Owners to permanently be able to access and manage

their Things and keep the metadata up-to-date could significantly hamper the deployment of large scale

WSNs due to increased operating costs. This is because the Owners of these networks very likely need

to provide network access themselves in order to guarantee up-to-date metadata of the Things in the

WSN. The additional metadata stored on Things is required because Gateways directly communicate

with Things and bypass the corresponding Publishers. Without this metadata the Gateway cannot

determine the receiver of the data, what kind of data they collect or if they are allowed to access the

Thing´s data in the first place.

In conclusion, the following problems arise when the Network IoT Architecture Perspective and the

Organisational IoT Architecture Perspective and the corresponding scenarios are considered in

combination.

• Lack of privacy and anonymity

With the ability to bypass the Publisher, which should act as a proxy and ensure privacy and

anonymity, neither the privacy nor anonymity of an Owner of a Thing are guaranteed.

• Onerous Thing management

With each Thing being able to be directly but not permanently addressed by Gateways, the metadata

describing the Thing must be manageable at all times. However, this becomes an issue in “foreign”

environments when communication cannot be guaranteed. Furthermore, this issue scales with the

number of Things to manage.

• Increased requirements for Things

The requirement to be able to store additional metadata, to host a simplistic authentication

framework and to provide some means of remote management requires the Things to provide

additional storage and computational capacities.

• Reliance on potentially untrusted Gateways

Gateways currently do not have an organisational relation with Publishers. Thus, they can be

considered as untrusted because it is not guaranteed that the Gateway conscientiously transmits the

data to the respective Publisher. Likewise, a Thing cannot determine if a Gateway that tries to access

it´s data or services acts on behalf of the Thing´s associated Publisher. This untrusted communication

can lead to issues ranging from publishing false data, negative impacts in a Thing´s reputation all the

way to the denial of services provided by a Thing, or publishing data which violates the privacy of the

Thing´s Owner.

To solve the above-mentioned problems, Owners need a system to easily manage their Things. This

system should be able to manage the restrictions, access rules and other settings of a Thing.

Patrick Nitschke

70 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Furthermore, the system should be able to manage the registrations of each Thing with a Publisher. The

guiding principles and development of this Thing Management System (TMS) are discussed in section

4.3.2 and section 4.3.3, respectively. After having discussed the Thing Management System as a new

component for the Holistic IoT Architecture Framework based on S2aaS, it will be embedded into the

architecture in section 0. However, the Thing Management System only solves the problems “Lack of

privacy and anonymity“ and “Onerous Thing management”. In order to tackle the problems “Increased

requirements for Things” and “Reliance on potentially untrusted Gateways”, the relation between

Gateways, Publishers and Things as well as the role of a Gateway itself must be revised (see Figure 22).

For Gateways to become trusted entities in relation to Publishers and being able to access Things on

behalf of a Publisher an authentication system between Gateways and Publishers, and between

Gateways and Things must be designed (see section 4.3.4).

4.3.2 Utilising Principles of Identity Management for Thing Management in IoT

The previous section suggested the so-called Thing Management System as a tool for Owners to manage

their Things and share their Things services with Publishers. By being responsible for these tasks, the

Thing Management System is expected to ensure the privacy and anonymity of a Thing´s Owner while

simultaneously simplifying the management of these Things. In order to be able to design and develop

such a system guiding principles or a domain model need to either be developed or identified and

transferred from other research or problem domains. As described in section 2.2, the suggestion and

the development phase of the GDC are to be guided by the patterns Theory Development and Problem

Space Tools and Techniques (Vaishnavi & Kuechler 2007). Based on the task, which is to develop a system

to manage and share Things, and the nature of these Things, the principles of Identity Management

shall be utilised to develop the Thing Management System.

Vaishnavi and Kuechler (2007) suggest that the pattern Problem Space Tools and Techniques can be

applied when a research problem has been identified and the researcher wants to assess the problem

space and utilise his general knowledge in order to identify tools and techniques that assist in the

solution of the research problem. In this particular case the sharing of data (e.g. what kind of data) and

providing access to services (e.g. specific users are granted or denied access), the maintaining of privacy

and anonymity, and the management of shared data and access (e.g. granting and revoking access)

make up the problem space. In essence, the problem space consists of issues regarding the management

of Things by their corresponding Owners. However, as described in section 2.4, IDM deals with issuing

credentials to users, identifying users with identifiers and granting access to services and data. As

mentioned earlier, the nature of Things led to the conclusion that IDM provides suitable principles to

guide the development of a system for managing Things.

In section 4.2.2, Things have been defined as components that provide unique sensing capabilities and

have rules for accessing the services they provide. This definition of Things bears similarities with the

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 71

Service Providers13 described in the context of IDM in section 2.4. Users wanting to access a Thing´s

services can authenticate themselves and are authorised to access the sensing or metadata of the Thing.

While authentication and authorisation are not necessarily required for accessing a Thing´s services,

these mechanisms are required when the service of a Thing must be compensated, as described in

section 4.2.2. As soon as a Thing requires compensation for its services, it must be able to identify users

and grant or deny access, depending on the compensation the respective user provides. In order to be

able to identify a user and if he needs to, or already has provided compensation for the services, the

Thing needs to issue credentials to its users. Hence, a Thing is “surrounded” by an Identity Domain and

uniquely identifies it´s users Identities based on a set of Identifiers defined by the Identity Domain of

the Thing. Based on this description, a Thing can be regarded as a Service Provider in the context of IDM.

However, with regard to the relationship between a Thing and its corresponding Owner, which has also

been defined in section 4.2.2, a Thing can additionally be interpreted as an Identity of an Owner. The

Owner of a Thing imposes his requirements regarding the compensation of services and the access

restrictions onto the Things he owns. As described by Perera et al. (2014) i.a., Owners have full control

over the Things they own and thus can decide if Things are published and which characteristics are made

available by publishing a Thing. The characteristics of a Thing generally consist of descriptions of the

services a Thing provides (e.g. sensor type, data scheme, information model, owner preferences,

availability, etc.) and additional metadata (e.g. location) (Zachariah et al. 2015; Perera, Zaslavsky,

Christen, et al. 2014). These characteristics, primarily denoting and designating the Thing´s entity and

identity respectively (see Figure 3), could very well be used to infer characteristics of the Thing´s Owner.

Thus, the Identity of a Thing also refers to its Owner, which is its Entity in terms of IDM. For example,

when the metadata of a Thing contains location information, one could infer that the Owner of that

Thing is or was active in that general area, e.g. because he had to deploy the device. Additionally, since

an Owner imposes his own requirements and specifications onto his Things, e.g. by specifying access

rules or defining what kind of compensation is required, he implicitly transfers characteristics denoting

his own Entity to the Thing´s characteristics, which can later be used to designate the Thing´s Identity.

Hence, a Thing can also be regarded an Identity referring to his Owner as its Entity. Figure 23 illustrates

this relationship between Things and Owners in terms of IDM.

13 It must be noted that the term Service Provider is ambiguous. Whenever a Service Provider in terms of IDM is
meant, it is mentioned in the text. Otherwise the Service Provider defined in section 4.2.2 is meant.

Patrick Nitschke

72 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 23: Relationship between Things and Owners in terms of IDM (own illustration)

In conclusion, in the domain of IDM, Things can be regarded as both Identities and Service Providers

alike. A Thing can act as a Service Provider, requiring users to authenticate themselves and granting

access to the services it provides. At the same time, in order to be able to be discovered, a Thing exposes

its Identity, which consists of characteristics describing the Thing, its services explicitly and its Owner

implicitly. Hence, a Thing must always be considered in combination with its respective Owner.

The insight that a Thing is an Identity will help significantly during the development of the Thing

Management System because the “Laws of Identity” (Cameron 2005) (see section 2.4) can be used as

requirements for the consecutive development steps of the Axiom Based Design which is applied in the

following section. Furthermore, the Personal Authentication Device (see Figure 5) proposed by Jøsang

and Pope (2005) can also be used to guide the development of the Thing Management System as it has

been designed to manage and share multiple sets of credentials or Identities with Service Providers.

Simultaneously, the insight that a Thing can also be considered as a Service Provider in terms of IDM will

be helpful in section 4.3.4, where the roles and relations of Gateways are revised. With Things acting as

Service Providers, Gateways can be interpreted as users who need to authenticate with a Thing.

However, this requires a Thing to provide an authentication system, which increases the technical

requirements for it (see section 4.3.1).

4.3.3 Development of the Thing Management System

Having discussed the need for a convenient, anonymity and privacy preserving system for managing

Things in section 4.3.1 and having identified suitable existing concepts and technologies in section 4.3.2

which can be used to guide the development of such a Thing Management System, this section will now

present the development of the Thing Management System. The development of this new component

T
h

in
g

Id

e
n

ti
fi

e
rs

O
w

n
e

r
Id

e
n

ti
fi

e
rs

Thing
Entity

Thing
Identity

Owner
Identity

Owner
Entity

R
e
fe

re
n

c
e

D
e
n

o
ta

ti
o
n

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 73

for the Holistic IoT Architecture Framework to be designed in this thesis, will apply the principles of the

Axiomatic Design method (see section 2.2).

Figure 24: Relationship of domains, mapping and design space in axiomatic design (adapted from Suh

& Do 2000)

The first step of the development process applying Axiomatic Design consists of mapping Functional

Requirements or deriving them from the Customer Domain (see Figure 24). The set of Customer

Attributes (CA) that will be used to derive the Functional Requirements (FR) are provided by Jøsang and

Pope (2005) and Cameron (2005). The Personal Authentication Device (PAD) described by Jøsang and

Pope (2005) (see Figure 5) will be used to retrieve requirements for the Thing Management System. The

PAD is based on the idea that Service Providers, in terms of IDM, generally have access to systems that

allow the automated management of Identities, while users do not use or have access to such systems.

Jøsang and Pope (2005) discuss that the growing number of Service Providers a user can and will

consume might lead to security and usability issues when users need to manage these identities

manually (e.g. by memorising credentials for each Service Provider). Consequently, the concept of

Federated Identity Management Models was introduced which in theory only requires a single set of

credentials for the users to memorise or manage. However, Jøsang and Pope (2005) argue that if users

only needed to manage a single set of credentials this would imply some sort of global federated Identity

Domain, which is unlikely to be feasible. This is because due to different requirements regarding the

characteristics or Identifiers making up an Identity across different Identity Domains (e.g. different legal

or security requirements) (Jøsang & Pope 2005). To address the issues of poor usability regarding the

management of identities, Jøsang and Pope (2005) present the PAD, which is a device or service

controlled by a single user that securely stores an arbitrary number of credentials which are linked to

corresponding Service Providers. Consequently, a user only needs to remember a single set of

credentials for authentication with his own PAD to be able to authenticate with every other Service

Provider he uses. Jøsang and Pope (2005) suggest that this can create a so called “virtual single-sign-on”

Customer

Domain

M
a
p

p
in

g

M
a
p

p
in

g

M
a
p

p
in

g

Functional

Domain
Physical

Domain

Process

Domain

CA

CA

CA

CA

FR

FR

FR

FR

FR

FR

FR

FR

DP

DP

DP

DP

DP

DP

PV

PV

PV

PV

Patrick Nitschke

74 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

environment, where a user is authenticated by single set of credentials across multiple Service Providers.

The different sets of credentials for each Service Provider are handled by the PAD, thus the prefix

“virtual” single-sign-on. Furthermore, the PAD can be backwards-compatible and can be implemented

in every existing Service Provider´s authentication framework because it only manages the credentials

or Identifiers and not the authentication (e.g. it can be interpreted as a database of a user´s credentials)

(2005).

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD,

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful

for generating requirements for the Thing Management System because the laws are addressing

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of

Identity”, can be also be applied to the Thing Management System. These requirements are also listed

in Table 2.

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary

requirements, the FRs and the notable exceptions of them.

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in

column three addresses one or more actors or components and defines an expected behaviour or

functionality for these actors or components. In addition, each requirement is considered as either a

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994).

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 75

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1,

CA26, i.a.).

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom

described in section 2.2.

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could

be able to be deployed on a portable device. However, considering the intended application of the PAD

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD

only stores the Credentials and Identities of a single user and that the PAD is only used when the user

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3),

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour.

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS.

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners

and not as an identity provider. The services offered by the TMS include the management of Things and

their corresponding Identities which are then used or shared with other Service Providers. It is not

intended that the Owners manage their Identities (themselves)14. The fact that the TMS acts as a Service

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a

single Identity Provider, is not relevant for the development of the TMS.

14 Although it has been stated in section 4.3.2 that a Thing can be considered as an Identity referring to an Owner,
it must be noted that the TMS is only intended to manage Identities that transitively refer to the Owner´s Entity.

Patrick Nitschke

76 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Table 2: Customer Attributes and a first set of preliminary requirements for the TMS (own listing)
C

A
 R

eq
. I

D

Description Requirement

C
A

1

“A solution, which seems quite obvious, is simply to let users
store identifiers and credentials from different service
providers in a single tamper resistant hardware device which
could be a smart card or some other portable personal
device.” (Jøsang & Pope 2005, p.7)

C
A

1.
1

 An Owner must be able
to store Identifiers and
Credentials in the TMS.

C
A

1.
2

The TMS must be able to
handle different types of
Credentials for different
Service Providers.

C
A

1.
3

The TMS must be
tamper-resistant.

C
A

1.
4

 The TMS must be able to
be deployed on portable
devices.

C
A

2
 “Because its main purpose would be authentication, the

device can be called a personal authentication device
(PAD).” (Jøsang & Pope 2005, p.7) C

A
2.

1

The TMS must only
provide authentication
and necessarily related
services.

C
A

3

“The user must authenticate himself to the PAD,

e.g. with a PIN, before the PAD can be used for
authentication purposes.” (Jøsang & Pope 2005, p.7) C

A
3

.1
 The TMS must provide

authentication
mechanisms for Owners.

C
A

4

“A more advanced solution could be to connect the PAD to
the client platform via a communication channel such as
bluetooth or wireless LAN, or to let the PAD communicate
directly with the server through a secondary channel. This
would allow the PAD to be fully integrated into the
authentication process. This is described in more detail in
Sec.6” (Jøsang & Pope 2005, p.8)

C
A

4.
1

The TMS must be able to
communicate with
different Service
Providers.

C
A

4.
2

The TMS must support
various communication
protocols and
technologies.

C
A

4.
3

The devices a TMS is
deployed on should
support LAN, IPv4, IPv6,
Wi-Fi, BLE.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 77

C
A

5

“The functionality of a PAD could be integrated into
other devices such as a mobile phone or personal

digital assistant (PDA) which many people carry
already. Using a mobile phone would also allow
advanced solutions such as registration and challenge-
response authentication through a mobile secondary
channel.” (Jøsang & Pope 2005, p.8)

C
A

5.
1

The TMS could be able to be
deployed on portable devices.

C
A

5.
2

The TMS must be able to
communicate with Service
Providers (e.g. to perform
authentication / validation
automatically).

C
A

6

“With a PAD connected to the client platform, virtual
SSO solutions are possible. This could be implemented
by letting the PAD automatically authenticate itself on
behalf of the user as long as the PAD is connected to
the client platform.” (Jøsang & Pope 2005, p.8)

C
A

6.
1

 The TMS must be able to
automatically authenticate
with a Service Provider.

C
A

7

“The PAD should be under the control of the user, and
not under the control of the identifier providers,

the credential issuers or the service providers.” (Jøsang
& Pope 2005, p.8)

C
A

7.
1

The TMS should be under the
Owner’s control (e.g. hosted
on his resources, only he has
access, etc.).

C
A

8

“In order to gain full advantage of the PAD, it should be
a general security device capable of handling many
types of identities and credentials. Some level of
standardisation, such as that described in the Personal
Transaction Protocol [7], might be needed for that to
be practical.” (Jøsang & Pope 2005, p.8)

C
A

8.
1

The TMS should support as
many different authentication
protocols and technologies as
possible.
C

A
8.

2

The TMS could use a
standardised protocol for
transmitting Identity related
information, if available.

C
A

9

“No one is as pivotal to the success of the identity
metasystem as the individual who uses it. The system
must first of all appeal by means of convenience and
simplicity. But to endure, it must earn the users trust
above all.” (Cameron 2005, p.6)

C
A

9.
1

The TMS must be simple to
use.

C
A

9.
2

The TMS must be convenient
to use.

C
A

9.
3

Owners must trust the TMS.

C
A

10
 “The system must be designed to put the user in control

- of what digital identities are used, and what
information is released.” (Cameron 2005, p.6)

C
A

10
.1

Owners must always give their
consent before actions
regarding their Identities are
performed (e.g. sharing,
publishing).

C
A

10
.2

 Owners must decide which
Characteristics or Identifiers
are shared with other third
parties.

Patrick Nitschke

78 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

C
A

11
 “The system must also protect the user against

deception, verifying the identity of any parties who ask
for information.” (Cameron 2005, p.6) C

A
11

.1
 The TMS must verify the

Identity of third parties
inquiring the Identity a Thing.

C
A

12
 “Should the user decide to supply identity information,

there must be no doubt that it goes to the right place.”
(Cameron 2005, p.6) C

A
12

.1
 The TMS must ensure that

Identities are shared only with
certified third parties.

C
A

13
 “And the system needs mechanisms to make the user

aware of the purposes for which any information is
being collected” (Cameron 2005, p.6) C

A
13

.1

The TMS must inform the
Owner about which Identity of
which of his Things is used by
which party for which
purpose.

C
A

14
 “The system must inform the user when he or she has

selected an identity provider able to track internet
behaviour” (Cameron 2005, p.6) C

A
14

.1

The TMS must inform the
Owner when the Owner
selected an Identity Provider
that tracks his internet
behaviour.

C
A

15

“Further, it must reinforce the sense that the user is in
control regardless of context, rather than arbitrarily
altering its contract with the user.” (Cameron 2005,
p.6)

C
A

15
.1

An Owner must give his
consent regardless of the
context or consequences of
allowing or denying sharing an
Identity of one of his Things.

C
A

15
.2

 An Owner must be asked for
his consent regardless of the
context of an inquiry in
general.

C
A

16

“The Law of User Control and Consent allows for the
use of mechanisms whereby the metasystem
remembers user decisions, and users may opt to have
them applied automatically on subsequent occasions.”
(Cameron 2005, p.6)

C
A

16
.1

 An Owner must be asked for
his consent before every
action taken by the TMS.

C
A

16
.2

 The TMS can be able to store
or remember an Owner’s
decision regarding specific
actions.

C
A

16
.3

The TMS can be able to
automatically apply decisions/
automatically act when the
Owner previously has allowed
it to.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 79

C
A

17

“To mitigate risk, it is best to acquire information
only on a “need to know” basis, and to retain it only
on a “need to retain” basis. By following these
practices, we can ensure the least possible damage
in the event of a breach.” (Cameron 2005, p.7)

C
A

17
.1

 The TMS must only retain the
minimal amount of Identity-
information.

C
A

17
.2

 The TMS must only acquire the
minimal amount of Identity-
information.

C
A

17
.3

 The TMS must only use or
provide Identity-information in
scenarios that inevitably require
the Identity-information.

C
A

18

“At the same time, the value of identifying
information decreases as the amount de- creases. A
system built with the principles of information
minimalism is therefore a less attractive target for
identity theft, reducing risk even further” (Cameron
2005, p.7)

C
A

18
.1

The TMS must store as little
Identity-information as possible.

C
A

19

“The concept of “least identifying information”
should be taken as meaning not only the fewest
number of claims, but the information least likely to
identify a given individual across multiple contexts.
For example, if a scenario requires proof of being a
certain age, then it is better to acquire and store the
age category rather than the birth date.” (Cameron
2005, p.7)

C
A

19
.1

Wherever possible, the TMS
should select the Characteristics
or Identifiers that satisfy the
needs of the inquirer and that
can least likely be used to
denote the Identity of an Owner.

C
A

20

“We can also express the Law of Minimal Disclosure
this way: aggregation of identifying information also
aggregates risk. To minimize risk, minimize
aggregation.” (Cameron 2005, p.7) C

A
20

.1
 The TMS must store the least
amount of Identity-information
as possible to provide the
desired services.

C
A

21

“Digital identity systems must be de- signed so the
disclosure of identifying information is limited to
parties

having a necessary and justifiable place in a given
identity relationship.” (Cameron 2005, p.7)

C
A

21
.1

 The TMS must verify if a party
has a necessary / justifiable
claim for accessing Identity-
information.

C
A

22
 “The identity system must make its user aware of the

party or parties with whom she is interacting while
sharing information.” (Cameron 2005, p.7) C

A
22

.1

The TMS must provide Identity-
information about other parties
that want to access the Identity-
information managed by the
TMS.

C
A

23
 “The justification requirements apply both to the

subject who is disclosing information and the relying
party who depends on it.” (Cameron 2005, p.7) C
A

23
.1

The Identities used to access
Service Providers must be
justifiable / necessary. E.g.
“Official” Identities must not be
necessary when wanting to
access a private service (e.g.
family wiki).

Patrick Nitschke

80 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

C
A

24

“We know from the law of control and con- sent that
the system must be predictable and "translucent" in
order to earn trust. But the user needs to understand
who she is dealing with for other reasons, as we will
see in law six (human integration).” (Cameron 2005,
p.7)

C
A

24
.1

 An Owner must always be
informed about who (e.g. third
parties) he is dealing with.

C
A

24
.2

 The parties involved in an
authentication process must
always be presented / shown.

C
A

25

“Every party to disclosure must provide the disclosing
party with a policy statement about information use.
This policy should govern what happens to disclosed
information. One can view this policy as defining
"delegated rights" issued by the disclosing party.”
(Cameron 2005, p.8)

C
A

25
.1

A third party wanting to access
Identity-information must
provide reasons / a policy that
states what the information is
used for.

C
A

25
.2

 An Owner using the TMS must
be asked for his consent when a
party wants to access an Identity
of one of his Things.

C
A

25
.3

A TMS should be able to
automatically decide if Identity-
information is shared or not,
based on the policies if the
Owner wishes so.

C
A

26

“A universal identity system must support both
“omnidirectional” identifiers for use by public entities
and “unidirectional” identifiers for use by private
entities, thus facilitating discovery while preventing
unnecessary re- lease of correlation handles”
(Cameron 2005, p.8)

C
A

26
.1

 A TMS must allow the Owner to
select omni- and uni-directional
Identifiers or Identities.

C
A

26
.2

 Omnidirectional Identifiers or
Identities must be public,
invariant and well know.

C
A

26
.3

 Unidirectional Identifiers or
Identities must remain private
and only be used when the
Owner wishes so.

C
A

26
.4

 Unidirectional Identifiers or
Identities shall be used in private
communication contexts.

C
A

26
.5

 Omnidirectional Identifiers or
Identities must be discoverable
and "emit" or act as beacon for
Identity (of the respective Entity)

C
A

26
.6

 Omnidirectional Identifiers or
Identities shall be used in public
communication / certification
scenarios.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 81

C
A

27

“A universal identity system must channel and enable
the inter-working of multiple identity technologies
run by multiple identity providers” (Cameron 2005,
p.9)

C
A

27
.1

 A TMS must support various
kinds of representations of
Identities.

C
A

27
.2

 A TMS must be able to interface
with various types of operators /
Service Providers.

C
A

28

“But in many cultures, employers and employees
would not feel comfortable using government
identifiers to log in at work. A government identifier
might be used to con- vey taxation information; it
might even be required when a person is first offered
employment. But the context of employment is
sufficiently autonomous that it warrants its own
identity, free from daily observation via a
government-run technology.” (Cameron 2005, p.9)

C
A

28
.1

 Depending on the context or
scenario, an Owner must be able
to choose which Identity he uses
/ provides to a Service Provider.

C
A

28
.2

 Identities must have different
characteristics and must be able
to be assigned to different
Service Providers.

C
A

29

“A universal system must embrace differentiation,
while recognizing that each of us is simultaneously -
in different contexts - a citizen, an employee, a
customer, a virtual personal.” (Cameron 2005, p.9)

C
A

29
.1

A TMS must be able to
distinguish between contexts
(e.g. based on the Service
Provider which inquires Identity-
information).

C
A

29
.2

 A TMS must support different
roles for its Owners, which can
be customers, employees,
citizens, etc. at the same time.

C
A

30

“This demonstrates, from yet another angle, that
different identity systems must exist in a
metasystem. It implies we need a simple
encapsulating protocol (a way of agreeing on and
transporting things). We also need a way to surface
information through a unified user experience that
allows individuals and organizations to select
appropriate identity providers and features as they
go about their daily activities.” (Cameron 2005, p.9)

C
A

30
.1

 A TMS must use a standardised
communication protocol for
transmitting Identity-
information.

C
A

30
.2

 A TMS must display / present
Identities in a similar manner
across different Identity
Domains / application contexts.

C
A

30
.3

 Owners must be able to select
Identity Providers through a
TMS.

C
A

30
.4

A TMS must not be tied to a
specific Identity Provider.

C
A

30
.5

A TMS must be able to
communicate with other TMS.

Patrick Nitschke

82 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

C
A

31

“The universal identity metasystem must not be
another monolith. It must be polycentric (federation
implies this) and also polymorphic (existing in
different forms). This will allow the identity ecology
to emerge, evolve and self-organize.” (Cameron
2005, p.10)

C
A

31
.1

A TMS embedded into a
metasystem should be
polycentric and polymorphic,
thus a TMS should be able to
communicate with different
kinds of TMS.

C
A

32

“Carl Ellison and his colleagues have coined the term
„ceremony‟ to describe interactions that span a
mixed network of human and cybernetic system
components – the full channel from web server to
human brain. A ceremony goes beyond cyber
protocols to ensure the integrity of communication
with the user.

This concept calls for profoundly changing the user´s
experience so it becomes predictable and
unambiguous enough to allow for informed
decisions.”(Cameron 2005, p.10)

C
A

32
.2

A TMS must inform the Owner
unambiguously regarding the
Identities the Owner is using and
dealing with while he accessing
Identity-information / sharing
Identity-information with Service
Providers.

C
A

33

“Since the identity system has to work on all
platforms, it must be safe on all platforms. The
properties that lead to its safety can't be based on
obscurity or the fact that the underlying platform or
software is unknown or has a small
adoption.”(Cameron 2005, p.10)

C
A

33
.1

A TMS should be platform
agnostic.

C
A

33
.2

 The Identity-information,
transmitted from the digital
system to the Owner must be
reliable.

C
A

34

“The unifying identity metasystem must guarantee
its users a simple, consistent experience while
enabling separation of contexts through multiple
operators and technologies.”(Cameron 2005, p.10)

C
A

34
.1

 A TMS must be able to
distinguish between application
contexts (e.g. based on different
Service Providers).

C
A

34
.2

 A TMS must support the usage
of different Identities for
different contexts.

C
A

35

“To make this possible, we must “thingify” digital
identities – make them into “things” the user can see
on the desktop, add and delete, select and share.
How usable would today´s computers be had we not
invented icons and lists that consistently represent
folders and documents? We must do the same with
digital identities.”(Cameron 2005, p.11)

C
A

35
.1

A TMS must present/ display an
Identity in a way the Owner
understands. An Identity should
be an object with properties and
applications / instances in
specific contexts (e.g. browsing,
personal, community, etc.).

The CAs and corresponding preliminary requirements listen in The first step of the development process

applying Axiomatic Design consists of mapping Functional Requirements or deriving them from the

Customer Domain (see Figure 24). The set of Customer Attributes (CA) that will be used to derive the

Functional Requirements (FR) are provided by Jøsang and Pope (2005) and Cameron (2005). The

Personal Authentication Device (PAD) described by Jøsang and Pope (2005) (see Figure 5) will be used

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 83

to retrieve requirements for the Thing Management System. The PAD is based on the idea that Service

Providers, in terms of IDM, generally have access to systems that allow the automated management of

Identities, while users do not use or have access to such systems. Jøsang and Pope (2005) discuss that

the growing number of Service Providers a user can and will consume might lead to security and usability

issues when users need to manage these identities manually (e.g. by memorising credentials for each

Service Provider). Consequently, the concept of Federated Identity Management Models was introduced

which in theory only requires a single set of credentials for the users to memorise or manage. However,

Jøsang and Pope (2005) argue that if users only needed to manage a single set of credentials this would

imply some sort of global federated Identity Domain, which is unlikely to be feasible. This is because due

to different requirements regarding the characteristics or Identifiers making up an Identity across

different Identity Domains (e.g. different legal or security requirements) (Jøsang & Pope 2005). To

address the issues of poor usability regarding the management of identities, Jøsang and Pope (2005)

present the PAD, which is a device or service controlled by a single user that securely stores an arbitrary

number of credentials which are linked to corresponding Service Providers. Consequently, a user only

needs to remember a single set of credentials for authentication with his own PAD to be able to

authenticate with every other Service Provider he uses. Jøsang and Pope (2005) suggest that this can

create a so called “virtual single-sign-on” environment, where a user is authenticated by single set of

credentials across multiple Service Providers. The different sets of credentials for each Service Provider

are handled by the PAD, thus the prefix “virtual” single-sign-on. Furthermore, the PAD can be

backwards-compatible and can be implemented in every existing Service Provider´s authentication

framework because it only manages the credentials or Identifiers and not the authentication (e.g. it can

be interpreted as a database of a user´s credentials) (2005).

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD,

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful

for generating requirements for the Thing Management System because the laws are addressing

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of

Identity”, can be also be applied to the Thing Management System. These requirements are also listed

in Table 2.

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements

Patrick Nitschke

84 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary

requirements, the FRs and the notable exceptions of them.

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in

column three addresses one or more actors or components and defines an expected behaviour or

functionality for these actors or components. In addition, each requirement is considered as either a

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994).

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1,

CA26, i.a.).

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom

described in section 2.2.

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could

be able to be deployed on a portable device. However, considering the intended application of the PAD

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD

only stores the Credentials and Identities of a single user and that the PAD is only used when the user

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3),

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour.

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS.

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 85

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners

and not as an identity provider. The services offered by the TMS include the management of Things and

their corresponding Identities which are then used or shared with other Service Providers. It is not

intended that the Owners manage their Identities (themselves). The fact that the TMS acts as a Service

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a

single Identity Provider, is not relevant for the development of the TMS.

Patrick Nitschke

86 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Table 2 are mapped to Functional Requirements, which are listed in Table 3. The first column of Table 3

contains unique identifiers for each requirement while the second column contains the associated

Customer Attributes from The first step of the development process applying Axiomatic Design consists

of mapping Functional Requirements or deriving them from the Customer Domain (see Figure 24). The

set of Customer Attributes (CA) that will be used to derive the Functional Requirements (FR) are provided

by Jøsang and Pope (2005) and Cameron (2005). The Personal Authentication Device (PAD) described by

Jøsang and Pope (2005) (see Figure 5) will be used to retrieve requirements for the Thing Management

System. The PAD is based on the idea that Service Providers, in terms of IDM, generally have access to

systems that allow the automated management of Identities, while users do not use or have access to

such systems. Jøsang and Pope (2005) discuss that the growing number of Service Providers a user can

and will consume might lead to security and usability issues when users need to manage these identities

manually (e.g. by memorising credentials for each Service Provider). Consequently, the concept of

Federated Identity Management Models was introduced which in theory only requires a single set of

credentials for the users to memorise or manage. However, Jøsang and Pope (2005) argue that if users

only needed to manage a single set of credentials this would imply some sort of global federated Identity

Domain, which is unlikely to be feasible. This is because due to different requirements regarding the

characteristics or Identifiers making up an Identity across different Identity Domains (e.g. different legal

or security requirements) (Jøsang & Pope 2005). To address the issues of poor usability regarding the

management of identities, Jøsang and Pope (2005) present the PAD, which is a device or service

controlled by a single user that securely stores an arbitrary number of credentials which are linked to

corresponding Service Providers. Consequently, a user only needs to remember a single set of

credentials for authentication with his own PAD to be able to authenticate with every other Service

Provider he uses. Jøsang and Pope (2005) suggest that this can create a so called “virtual single-sign-on”

environment, where a user is authenticated by single set of credentials across multiple Service Providers.

The different sets of credentials for each Service Provider are handled by the PAD, thus the prefix

“virtual” single-sign-on. Furthermore, the PAD can be backwards-compatible and can be implemented

in every existing Service Provider´s authentication framework because it only manages the credentials

or Identifiers and not the authentication (e.g. it can be interpreted as a database of a user´s credentials)

(2005).

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD,

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful

for generating requirements for the Thing Management System because the laws are addressing

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 87

Identity”, can be also be applied to the Thing Management System. These requirements are also listed

in Table 2.

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary

requirements, the FRs and the notable exceptions of them.

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in

column three addresses one or more actors or components and defines an expected behaviour or

functionality for these actors or components. In addition, each requirement is considered as either a

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994).

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1,

CA26, i.a.).

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom

described in section 2.2.

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could

be able to be deployed on a portable device. However, considering the intended application of the PAD

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD

only stores the Credentials and Identities of a single user and that the PAD is only used when the user

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3),

Patrick Nitschke

88 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour.

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS.

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners

and not as an identity provider. The services offered by the TMS include the management of Things and

their corresponding Identities which are then used or shared with other Service Providers. It is not

intended that the Owners manage their Identities (themselves). The fact that the TMS acts as a Service

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a

single Identity Provider, is not relevant for the development of the TMS.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 89

Table 2 or other related Functional Requirements. The third column determines the severity of the

requirements, which are again grouped into “must-have”, “should-have” and “could-have” (Bradner

1997; Clegg & Barker 1994). The fourth and last column contains the description of the Functional

Requirement.

The FRs listed in Table 3 are grouped into six modules that encapsulate similar functionalities. These

modules are Access and Authentication, Management, Communication and Publishing, Provisioning,

and Thing and Identity Representation (see Figure 25). Each module is responsible for a specific and

decoupled set of tasks and responsibilities. The modules have been created by semantically grouping

similar CAs and corresponding preliminary requirements together. For example, the CAs CA1.3, CA3.1,

C9.1, CA9.2 and CA2.1 state that the TMS need some means of authentication module that is tamper

resistant, easy and convenient to use. It must be noted that some Customer Attributes, e.g. CA1.3,

CA9.1, CA9.2, CA28.1, CA28.2, i.a., can be assigned to multiple modules at the same time. This is because

these CAs are either non-functional requirements (e.g. CA1.3, CA9.1, CA9.2) or that they are generic in

such a way that they address multiple issues in multiple modules (e.g. CA28.1, CA28.2). The modules

created by this grouping are described in the following paragraphs.

Figure 25: Component diagram for TMS based on FRs (own illustration)

Thing Management System

Authentication

Contracting

Registration

<<delegates>>

Access

<<delegates>>

Access and
Authentication

Authenticated
Access

Management

Thing and
Identity
Representation

Thing
Object

Communication

Communication
and Publishing

Contract
Object

Patrick Nitschke

90 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 91

Access and Authentication

This module is responsible for allowing Owners to securely access the TMS by requiring them to

authenticate themselves with an Identity consisting of Characteristics and Credentials defined by the

Identity Domain of the TMS. Furthermore, this module provides functionalities to register new users or

Owners with the TMS. During this process the Credentials and corresponding Identity referring to the

user or Owner are created and securely stored. In order to ensure that only authenticated users have

access to the TMS, the Access and Authentication module monitors every action and request that is

handled by the TMS and validates that the respective issuers of the requests and actions are properly

authenticated. Requests made by unauthenticated issuers are rejected. Issuers of request can be either

Owners, Things or Service Providers (e.g. Publishers).

Management

This module is responsible for storing and managing Things with their corresponding Identities. To fulfil

its responsibilities, this module provides means of creating, listing, updating and deleting both Things

and corresponding Identities. Users, which act as Owners, of the TMS must be able to create an arbitrary

representation of a Thing and add Identities to this Thing. An Identity of a Thing must contain a

reasonable amount of information to uniquely identify a Thing attached to the TMS. Furthermore, the

Owner must be able to define access rules and restrictions for each Thing individually and the Owner

must be able to specify if a single Identifier of an Identity is publicly available or if it must remain private.

The Management module is also responsible for publishing Identities containing public Identifiers and

allowing the Owner to assign Identities to Service Providers by forming contracts, which are provided by

the Contracting as well as Communication and Publishing module (see section 4.2.2). Additionally, this

module allows Owners to keep track which Identities are assigned to which Service Provider.

Communication and Publishing

The Management module uses the Communication and Publishing module when assigning Identities to

Service Providers. Thus, this module´s main responsibility is to enable and control communication

between the TMS and other third parties which are usually Service Providers. This module acts as an

adapter to allow the TMS to communicate with a variety of different Service Providers via various

communication technologies and protocols. The module abstracts the communication details (e.g. data

format, communication protocol, etc.), hence the Management module is capable of assigning Identities

to different types of Service Providers without issues. Furthermore, the Communication and Publishing

module is responsible for handling inquiries for Identity-information and obtaining the Owners consent.

Before any action is performed (e.g. publishing a Thing´s Identity), this module requests the consent of

the Owner. The “request for consent” contains information regarding the Identity of the inquirer and

the usage policy of the requests Identity-information and is presented to the Owner. Subsequently, the

Owner can either accept or decline the inquiry and save this decision so that the TMS can automatically

perform the same decision if the same inquirer asks for the same Identity with the same policy again.

Thing and Identity Representation

Patrick Nitschke

92 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

While the Management module is responsible for managing Things, this module is responsible for a

uniform representation of Things across different contexts and for different Service Providers. Like the

Management module, the Thing and Identity representation module acts as an adapter which abstracts

the technical details (e.g. storing a Thing´s data, different Identifiers or Characteristics, data formats,

etc.) of Things and provides a uniform representation of both Things and their corresponding Identities.

Furthermore, this module is also responsible for uniformly representing the Identities of various third

parties (e.g. Service Providers) during the “request for consent” handled by the Communication and

Publishing module.

Provisioning

This module specifies how the TMS should be able to be provisioned. Due to the heterogenetic nature

of IoT in general (see section 1.1), the TMS should be platform agnostic and should be able to be

deployed in a variety of different environments. In order to accomplish this, the TMS could be designed

as a web-service that provides a number of endpoints and services, which are represented by the

modules Access and Authentication, Management and Communication and Publishing. Subsequently,

the TMS could either be deployed on the infrastructure provided by an Owner (on premise) or be

deployed as a Service Provider in the internet, where many Owners share use the TMS together.

However, to ensure privacy and the respective Owners full control over the system, the TMS should

properly encapsulate the data of each Owner (e.g. by providing multitenancy functionalities).

Contracting

Similar to the Thing and Identity Representation module, the Contracting module abstracts the details

of assigning and forming contracts between the TMS and third parties (e.g. Service Providers), thus

acting as an adapter. This module is used by the Communication and Publishing module during the

process of assigning an Identity to a Service Provider. A contract contains an Identity as well as a set of

access rules and restrictions which have been defined using the Management module. Essentially, this

module is responsible converting the Identity and the set of access rules and restrictions into a

transferable format that can be handled by the Service Provider with whom a contract is to be formed.

Because the TMS must be able to communicate with a variety of different third parties, this module

should support a variety of transferable formats for contracts.

Having described each module in general, Table 3 lists the detailed functional requirements for each

module.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 93

Table 3: Functional Requirements and Customer Attribute mapping for the TMS (own listing)

FR Req. ID
Related

Req. ID
Severity Description

FR
1

 CA1.3

CA3.1

CA9.1

CA9.2

CA2.1

Must
The TMS must only allow authenticated Owners to access

the system.

FR1.1 CA1.1 Must The TMS must be able to store an Owner´s Credentials.

FR1.2 CA9.3 Must

The TMS must provide an authentication mechanism and

function for Owners, denying unauthenticated Owners

access.

FR1.3

CA17.1

CA18.1

CA19.1

CA20.1

Must

The TMS must store the smallest possible set of Credentials

to authenticate an Owner. The Credentials must be selected

in such a way that they cannot be used easily to infer the

Owners Identity.

FR1.4
CA1.3

CA3.1
Must

The TMS must provide a function to initially register an

Owner.

FR1.5
CA1.3

CA3.1
Must

The TMS must provide a function for authenticating with the

system.

Patrick Nitschke

94 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

FR
2

FR
3

FR5

CA1.2

CA8.1

CA9.1

CA9.2

CA17.2

CA19.1

CA28.1

CA28.2

Must
The TMS must be able to manage different types of Things

and Identities for different Service Providers.

FR2.1

CA17.2

CA18.1

CA19.1

CA28.1

CA28.2

Must

The Identity-information stored in the TMS must not require

unnecessary information. It must be able to store a minimal

amount of Identity-information to uniquely identify or

assign an Identity.

FR2.2 CA1.2
The TMS must provide a function to create, list, view,

update and delete Things.

FR2.3 CA1.2
The TMS must provide a function to create, list, view,

update and delete Identities for each Thing.

FR2.4

CA5.2

CA28.1

CA28.2

CA34.2

CA10.2

The TMS must be able to assign an Identity of a managed

Thing to a Service Provider.

FR2.5

CA26.1

CA28.1

CA28.2

Each Characteristic of a Thing´s Identity must be defined as

either public or private.

FR2.6
CA26.1

CA26.3

A private Characteristic must only be used in private

communication contexts.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 95

FR2.7
CA26.1

CA26.2

A public Characteristic can be used on public

communication contexts.

FR2.8
CA26.5

CA26.6

An Identity consisting of at least one public Characteristic

must be discoverable by Service Providers.

FR2.9 FR2.8
A TMS must expose information regarding Identities

consisting of public Characteristics.

FR2.10
FR2.4

CA13.1

An Owner must be able to see which Identities of which of

Thing are used or assigned to which Service Provider.

FR
3

CA4.1

CA1.3

CA30.5

Must
The TMS must be able to securely communicate with

different Service Providers and other TMS.

FR3.1

CA4.2

CA4.3

CA27.2

CA31.1

The TMS must support various communication technologies

and protocols.

FR3.2
FR3.1

CA31.1

The TMS´s must provide a modularised communication that

allows polymorphic communication with other systems.

FR3.3

CA6.1

FR3.2

CA9.1

CA9.2

The TMS must be able to automatically authenticate with a

Service Provider.

FR3.4

FR3.3

FR3.2

FR4.1

CA8.1

FR2

The TMS should provide as many different authentication

protocols as possible.

Patrick Nitschke

96 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

FR3.5

FR3.3

FR3.2

FR3.1

CA8.2

CA30.1

The TMS should support a standardised communication

protocol, if one is available.

FR3.6

FR3.3

CA9.3

CA10.1

CA15.1

CA15.2

CA16.1

CA24.1

Before any action is performed by the TMS, the Owner must

be consented.

FR3.7

FR3.6

CA16.2

CA16.3

CA25.3

The TMS can automatically authenticate with other

systems, if the Owner wishes so.

FR3.8

FR3.7

CA16.1

CA16.2

CA16.3

The Owner must be able to decide if and with which other

systems the TMS can automatically communicate and which

Identity is used. The decisions must be manageable and

revocable.

FR3.9

FR3.6

CA9.3

CA24.1

CA21.1

CA11.1

CA12.1

CA22.1

CA33.2

Each system or third party that communicates with the TMS

must reliably authenticate itself.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 97

FR3.10

FR3.9

CA24.2

CA32.2

CA30.2

CA35.1

The TMS must show/ provide the Identity of any third party

requesting to inquire Identity-information from the TMS to

the Owner.

FR3.11

FR.10

CA23.1

CA17.3

A third party inquiring Identity-information from a TMS

must state the reasons why the information is required.

FR3.12 CA25.1

A third party inquiring Identity-information from a TMS

must state what the Identity-information is to be used for.

These usage principles must be provided in a form of a

policy.

FR3.13
FR3.9

FR3.10

The Owner must be able to accept or reject an inquiry from

a third party.

FR3.14

FR3.7

FR3.8

CA25.3

The TMS can automatically respond and share Identity-

information with authenticated third parties if the Owner

wishes so.

FR3.15

FR2.6

FR.4.14

CA29.1

CA34.1

The TMS must be able to decide if Identity-information is

shared based on the authenticated third party, the

justifications for the inquiry and the Owners previous

decisions.

FR
4

CA30.2

CA35.1

CA27.1

A TMS must display Things and their corresponding

Identities in a similar manner across different contexts.

FR4.1
FR2.3

FR4
 A Thing must be able to have one or more Identities.

FR4.2 FR4
An Identity must consist of an arbitrary number of

Characteristics/ Identifiers.

Patrick Nitschke

98 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

FR4.3

FR2.6

FR2.7

FR2.8

The Characteristics of each Identity corresponding to a

Thing managed by the TMS must be manageable.

FR4.4 FR4
The Identity of a Thing and any other third party must be

displayed in a similar manner.

FR
5

CA33.1

CA7.1

The TMS should be platform agnostic and either be hosted

by or fully under control of the Owner.

FR5.1

CA4.1

CA7.1

CA33.1

The TMS could be provided as a web application and either

be hosted on the Owner´s resources or by a third party.

FR5.2 CA4.1 The TMS could be accessible via mobile devices.

FR
6

 FR2.4

Upon assigning Thing´s Identities to Service Providers,

contracts or agreements must be formed that mediate the

subsequent usage or access to the corresponding Identity´s

resources and services.

FR6.1

An agreement between the TMS and a Service Provider

regarding a Thing´s Identity must consist of an Identity and

a set of rules and restrictions.

FR6.2 FR6.1

The rules and restrictions of an agreement must be able to

govern the usage of the corresponding Thing´s services (e.g.

time based access, required compensations, etc.).

After having identified the Customer Attributes (see The first step of the development process applying

Axiomatic Design consists of mapping Functional Requirements or deriving them from the Customer

Domain (see Figure 24). The set of Customer Attributes (CA) that will be used to derive the Functional

Requirements (FR) are provided by Jøsang and Pope (2005) and Cameron (2005). The Personal

Authentication Device (PAD) described by Jøsang and Pope (2005) (see Figure 5) will be used to retrieve

requirements for the Thing Management System. The PAD is based on the idea that Service Providers,

in terms of IDM, generally have access to systems that allow the automated management of Identities,

while users do not use or have access to such systems. Jøsang and Pope (2005) discuss that the growing

number of Service Providers a user can and will consume might lead to security and usability issues when

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 99

users need to manage these identities manually (e.g. by memorising credentials for each Service

Provider). Consequently, the concept of Federated Identity Management Models was introduced which

in theory only requires a single set of credentials for the users to memorise or manage. However, Jøsang

and Pope (2005) argue that if users only needed to manage a single set of credentials this would imply

some sort of global federated Identity Domain, which is unlikely to be feasible. This is because due to

different requirements regarding the characteristics or Identifiers making up an Identity across different

Identity Domains (e.g. different legal or security requirements) (Jøsang & Pope 2005). To address the

issues of poor usability regarding the management of identities, Jøsang and Pope (2005) present the

PAD, which is a device or service controlled by a single user that securely stores an arbitrary number of

credentials which are linked to corresponding Service Providers. Consequently, a user only needs to

remember a single set of credentials for authentication with his own PAD to be able to authenticate

with every other Service Provider he uses. Jøsang and Pope (2005) suggest that this can create a so called

“virtual single-sign-on” environment, where a user is authenticated by single set of credentials across

multiple Service Providers. The different sets of credentials for each Service Provider are handled by the

PAD, thus the prefix “virtual” single-sign-on. Furthermore, the PAD can be backwards-compatible and

can be implemented in every existing Service Provider´s authentication framework because it only

manages the credentials or Identifiers and not the authentication (e.g. it can be interpreted as a

database of a user´s credentials) (2005).

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD,

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful

for generating requirements for the Thing Management System because the laws are addressing

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of

Identity”, can be also be applied to the Thing Management System. These requirements are also listed

in Table 2.

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following

Patrick Nitschke

100 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary

requirements, the FRs and the notable exceptions of them.

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in

column three addresses one or more actors or components and defines an expected behaviour or

functionality for these actors or components. In addition, each requirement is considered as either a

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994).

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1,

CA26, i.a.).

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom

described in section 2.2.

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could

be able to be deployed on a portable device. However, considering the intended application of the PAD

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD

only stores the Credentials and Identities of a single user and that the PAD is only used when the user

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3),

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour.

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS.

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners

and not as an identity provider. The services offered by the TMS include the management of Things and

their corresponding Identities which are then used or shared with other Service Providers. It is not

intended that the Owners manage their Identities (themselves). The fact that the TMS acts as a Service

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 101

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a

single Identity Provider, is not relevant for the development of the TMS.

Patrick Nitschke

102 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Table 2) and having derived Functional Requirements from the Customer Domain (see Table 3), the

Axiomatic Design approach requires the assignment of Design Parameters (DP) to the Functional

Requirements, which must satisfy the respective requirements. For the design to be considered a “good

design” in terms of the Axiom Based Design, the assigned DPs should to fulfil the Independence Axiom.

This means the corresponding Design Matrix should be either a triangular matrix or a diagonal matrix

(Suh & Do 2000). A triangular design matrix refers to a decoupled design, whereas a diagonal matrix

refers to an uncoupled design (see section 2.2). When considering the previously defined modules as

Design Parameters that should fulfil the corresponding Functional Requirements (e.g. the module

Management should fulfil FR2) and considering the interdependencies between each of the modules

described earlier, the Design Matrix shown in Figure 26 can be created. Note that the numbering of the

FRs listed in Table 3 are based on the order in which they were mentioned in the documents they were

extracted from. Hence, the numbering of the FRs bears no meaning for the Design Matrix. Suh (2000)

states that a triangular Design Matrix denotes a decoupled design and fulfils the Independence Axiom

when design sequence is correct. The rows of Design Matrix for the TMS shown in Figure 26 contains

the FRs from Table 3 and columns are considered as mapped to the Design Parameters. According to

the principles of the Axiom Based Design, each FR should have an assigned DP that fulfils only the FR. If

a one-to-one mapping between FRs and DPs cannot be achieved, the design is either coupled or

decoupled (Suh & Do 2000). During the description of the modules, which are considered as the Design

Parameters, the interdependencies between the modules have been mentioned. These

interdependencies are also contained in the Design Matrix. The matrix is filled with either a zero, which

denotes no interdependency or with a non-zero value which indicates any kind of dependency (Suh &

Do 2000). For example, the Design Matrix for the TMS denotes no dependency between the module

Provisioning and any other module, while the module Communication and Publishing depends on all

other modules. To fulfil the Independence Axiom when having a triangular Design Matrix, which denotes

a decoupled design, the correct design sequence must be met.

 DP1 DP2 DP3 DP4 DP5 DP6

FR5 X X X X X X

FR1 0 X 0 0 0 X

FR4 0 0 X X X X

FR2 0 0 0 X 0 X

FR6 0 0 0 0 X X

FR3 0 0 0 0 0 X

Figure 26: High level design matrix for the TMS (own illustration)

The numbering of the Design Parameters (see Figure 26) already denotes the design sequence. In order

to fulfil the Independence Axiom, the following design sequence must be used. The first module to be

further developed is the Provisioning module because it has no dependency to another module. The

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 103

next step in the sequence can either be the Access and Authentication module or the Thing and Identity

Representation module, as both only rely on the Provisioning module. The third step of the sequence

can either contain the Management module or the Contracting module. The last step of the design

sequence consists of the Communication and Publishing module. Thus, the Design Parameters are

assigned to the modules as follows.

• DP1 implements the Provisioning module (FR5 ≡ DP1)

• DP2 implements the Authentication and Access module (FR1 ≡ DP2)

• DP3 implements the Thing and Identity Representation module (FR4 ≡ DP3)

• DP4 implements the Management module (FR2 ≡ DP4)

• DP5 implements the Contracting module (FR6 ≡ DP5)

• DP6 implements the Communication and Publishing module (FR3 ≡ DP6)

With the functional requirements corresponding to the modules defined earlier still being fairly

complex, the Axiom Based Design approach demands that these requirements are further decomposed,

that for each of the new requirements a new Design Parameter is created, that a new more detailed

Design Matrix is created and this matrix is again evaluated according to the Independence Axiom (Suh

& Do 2000). However, as described in section 2.4, this thesis aims to develop a high-level architecture

framework which focusses on the components external relations and dependencies as well as their

individual responsibilities. Thus, the detailed inner workings of each component, which would be

described and specified by further decomposing the Functional Requirements listed in Table 3, are not

relevant for developing the high-level architecture framework.

In conclusion, the identification of a further component supporting Owners in managing their Things

and the subsequent development of the Thing Management System that fulfils the derived

requirements in this section complete the answer to RQ1.1 and RQ1.3. Thus, having answered RQ1.2 in

section 4.2.1 as well as the initial parts of RQ1.1 and RQ1.3 in section 4.2.2, RO1 is achieved in total.

Additionally, by transferring and mapping the concepts of Identity Management to architectural

components of IoT using the DSR pattern Problem Space Tools and Techniques components both RQ2.1

and RQ2.2 have been answered and RO2 has been achieved.

4.3.4 Revising and discussing the Gateway´s Roles and Relations

Considering the IoT Architecture Perspectives which have been exemplarily visualised in Figure 20 and

Figure 21 and considering the insights from section 4.3.2 that a Thing does not only act as a Service

Provider but can also be interpreted as an Identity, the special role of the Gateway component becomes

apparent. From the Network IoT Architecture Perspective´s point of view, the Gateway´s role

responsibility is to provide a communication channel between a Thing and a Publisher. In this view,

Things are willing to accept connections and communicate with anyone. Considering the Organisational

IoT Architecture Perspective, the Gateway is considered as a business entity that collects and sells

sensing information on its own behalf. Besides occasionally selling the sensed data to a Publisher, the

Patrick Nitschke

104 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Gateway has no organisational ties with the Publisher at all. Both, the Network IoT Architectures

Perspective and the Organisational IoT Architecture Perspective assume that a Thing willingly

communicates with any other component. However, considering section 4.3.2, where it was discussed

that a Thing can also be interpreted as an Identity referring to its Owner, one must re-evaluate the

assumption that a Thing willingly communicates with any other component. With Things being

“organisationally” registered to a Publisher who then acts as a proxy between the Thing and Service

Providers, it becomes apparent that a Gateway should also be related to a Publisher when the intention

is to establish a communication between a Thing and a Publisher. In order to maintain the Publisher´s

role as a proxy and thus the only way of accessing a Thing´s services, a Gateway must be able to act on

behalf of the Publisher when establishing a network connecting with a Thing. This intended role of the

Gateway is similar to the Mobile Sensing Terminal Operator suggested by Mizouni and El Barachi (2013)

which has been described in section 4.2.1. With Gateways acting on behalf of Publishers to establish a

communication with Things, a system for allowing Gateways to authenticate themselves as

representatives of Publishers must be devised (see Figure 27).

Figure 27: Revised roles and responsibilities of Gateways for the Holistic IoT Architecture Framework

(own illustration)

In this system, the TMS, which has been described in the previous section, manages many Identities of

Things. The specific Characteristics of these Identities are defined by the Thing-Identity-Domain of the

TMS. This domain contains all Identities of all Things the TMS manages. These Identities may be able to

directly refer to the Owner of its corresponding Thing and are shared or assigned to a Publisher. A

Publisher maintains many Things, or their respective Identities, which are owned by many different

Owners. The Publisher additionally has many registered Gateways who act on the behalf of the

Gateway

Publisher

Owner

TMS

TMS-Thing-

Identities

anonymisation

Publisher-

Thing-Identities

TMS-Owner Identity Domain

TMS-Publisher Identity Domain

Publisher-Gateway Identity Domain

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 105

Publisher. The Identities of the Gateways are defined by the Gateway-Identity-Domain of the Publisher.

This domain specifies which Characteristics are required for a Gateway to register itself with a Publisher.

Furthermore, the Publisher maintains another Thing-Identity-Domain which contains the Identities of

the Things the Publisher manages. The Identities of this domain are shared with the authenticated

Gateways of the Publisher. However, it must be noted that the Identities of the Thing-Identity-Domain

of the Publisher are not the same Identities that are shared with the Publisher via the Thing-Identity-

Domain of the TMS. The Publisher´s “Thing-Identities” are mapped to the “Thing-Identities” of the TMS,

which is illustrated in Figure 27. This mapping between the Identities that are shared with Gateways and

the Identities that have been shared with the Publisher allows the Publisher to maintain its role as a

proxy. Only the Publisher knows which Identity that is shared with a Gateway refers to a certain Owner,

thus the Publisher is able maintain the privacy of the Owners of the Things he manages.

However, this system additionally needs to consider the network-relation between a Gateway and a

Thing. The fact that a Gateway acts on behalf of a Publisher needs to be incorporated into the “network-

level” relation between a Gateway and a Thing. The Gateway needs to authenticate itself as a

representative of the associated Publisher of a Thing with which it intends to establish a communication

channel. For this purpose, it could be possible for the Publisher to issue an authentication-token to all

its Gateways. A Gateway can then provide this token to the Thing it intends to communicate with. The

Thing must then validate the token and grant or deny access accordingly. However, as described in

section 4.3.2, this would require a Thing to provide an authentication system. This system must either

be able to validate the token on its own or communicate with its Publisher to let it validate the token.

The first option is similar to the credential-focussed identity management approach and the latter is

similar to the relationship-focussed approach to identity management (see section 2.4). However, both

options are equally problematic. The first option requires the token “valid on its own” (e.g. like a

passport, as described in section 2.4), which is unlikely to be feasible because it will become increasingly

difficult to validate a token when the number of Things, Publishers or Gateways grows. The second

option would require the Thing to be able to directly communicate with its associated Publisher, which

is similar to the credit card example described in section 2.4, which is also not applicable. This is because

if the Thing would be able to directly communicate with its Publisher there is no need for a Gateway in

the first place.

In conclusion, Gateways need to have a relation to the Publisher to be able to access Things on behalf

of a Publisher who then can maintain the privacy and anonymity of the Owner corresponding to the

Things. However, the authentication issue between Gateways and Things remains to be solved.

4.4 Holistic IoT Architecture Framework based on S2aaS

Based on the IoT Architecture Perspectives identified in section 4.2.1 and the IoT Architecture

Components described in section 4.2.2 the lack of a component in the overall architecture has been

identified. The TMS, which has been developed in section 4.3.3, is a novel component which will be

integrated into the Holistic IoT Architecture Framework in this section.

Patrick Nitschke

106 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Table 4 provides an overview of all components the Holistic IoT Architecture Framework consists of. The

fist column denotes the component, while the second column provides a description of the respective

component. The third column of Table 4 contains the relations a component has with other components

of the architecture. Furthermore, each relation is described from both, the Network IoT Architecture

Perspective and the Organisational IoT Architecture Perspective.

Table 4: Overview of the components of the Holistic IoT Architecture Framework (own listing)

C
o

m
p

o
n

en
t

Description Relations

C
o

n
su

m
er

• Is exclusively interested in
obtaining data and
information as well as
offloading tasks it cannot
perform with its own
resources to other
components.

• Will provide compensation
or incentives for using
services like consuming data
and information or
offloading tasks to other
components.

Se
rv

ic
e

P
ro

vi
d

er

• Network: Can directly access a Service Provider`s
services via the internet (e.g. by accessing the web
application provided by the Service Provider).

• Organisational: Provides compensation when
accessing services (e.g. issuing Sensing Tasks)
provided by the Service Provider.

P
u

b
lis

h
er

• Network: Can issue Sensing Tasks by directly
accessing the Publishers API endpoint via the
internet.

• Organisational: Provides compensation when
accessing services (e.g. API endpoint of the
Publisher).

Th
in

g

• Provides unique services in
form of either sensing or
actuating capabilities.

• Mode of use (e.g. when it
can be accessed, what
compensations are
demanded, etc.) is
predetermined by the
corresponding Owner.

• Is generally restricted
regarding energy
consumption, computational
power and data storage.

• Needs to rely on
opportunistic
communication channels if
deployed in foreign
environment.

• The Characteristics of a
Thing (e.g. metadata like

O
w

n
er

• Network: If deployed in an environment that is
fully controlled by the Owner, the Owner can
establish a direct connection with the Thing,
optionally via the TMS. If deployed in a foreign
environment, a direct connection between Owner
and a Thing cannot be established.

• Organisational: All aspects and properties of the
Thing are managed by the Owner.

P
u

b
lis

h
er

• Network: If deployed in an environment that is
fully controlled by the Owner of the Thing, the
Publisher can establish a direct connection with
the Thing. If deployed in a foreign environment,
the Publisher needs to rely on Gateways to
establish an opportunistic connection.

• Organisational: The Thing is “registered” to one or
more Publishers, which act as a proxy between the
Thing and other third parties and represent the
interests of the Thing´s Owner. The interests of the
Owner are held down in a “contract”, which is
formed during the registration of the Thing with
the Publisher.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 107

location data, or sensing
data in general) denote its
Owner.

TM
S

• Network: If deployed in an environment that is
fully controlled by the Owner of the Thing, the
TMS can establish a direct connection with the
Thing. If deployed in a foreign environment, the
TMS cannot establish a direct connection at any
time, the TMS must rather rely on an opportunistic
connection that is manually provided by the
Owner (e.g. to register a new Thing with the TMS).

• Organisational: A Thing is initially registered with
the TMS (e.g. network addresses and metadata
are initially stored). From then on, the TMS
handles all Sensing Tasks issued by the
corresponding Publishers.

G
at

ew
ay

• Network: If deployed in a foreign environment,
the Thing can establish a connection with a
Publisher via a Gateway. The Gateway can directly
establish a connection with the Thing and the
corresponding Publisher(s).

• Organisational: The Thing does not have an
organisational tie with a Gateway.

O
w

n
er

• The Owner is the main
stakeholder of a Thing and
imposes his requirements
and interests onto the
Things he owns.

• The Things owned by the
Owner refer to himself and
are considered as the
Owner´s Identities because
each Characteristic of a
Thing can potentially denote
a property of the Owner
(e.g. the location of a Thing
could denote the address of
the Owner).

Th
in

g

• Network: The Owner can establish a connection
via the TMS, depending on the environment the
Thing is deployed in.

• Organisational: The Owner manages the
Characteristics of a Thing via the TMS.

TM
S

• Network: The Owner can directly access the web
application provided by the TMS. The connection
is either established by using the “home-network”
of the Owner (when the TMS is hosted on premise)
or via the internet.

• Organisational: The Owner manages his Things via
the TMS. However, the Owner has no direct
organisational relation with the TMS.

P
u

b
lis

h
er

• Network: The Owner does not establish a network
connection with the Publisher, except for an
indirect connection during the registration of a
Thing with a Publisher, however this connection is
handled by the TMS.

• Organisational: The Publisher acts on behalf of the
Owner when advertising the Services offered by
the Things of the Owner. The Owner may provide
some compensation for using the Publisher as
representative or proxy.

TM
S

• The TMS manages the
Things and their
corresponding Identities on
behalf of its Owner.

• Owners consume the
management services
provided by the TMS.

Th
in

g

• Network: Depending on the environment the
Thing is deployed in (controlled or foreign), the
TMS can establish a direct connection or needs to
rely on a connection that is manually created by
the Owner of the Thing.

• Organisational: The TMS manages the
Characteristics of each of its Things on behalf of
the Owner.

Patrick Nitschke

108 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

• The TMS can automatically
react to Sensing Tasks based
on the policies the Owner
has defined.

• The TMS provides Identities
for Things and assists
Owners in assigning these
Identities to Publishers.

P
u

b
lis

h
er

• Network: The TMS can establish a permanent and
direct connection with a Publisher via the internet.

• Organisational: The TMS receives the Sensing
Tasks forwarded by the Publisher. It initially forms
contracts regarding an individual Thing or a set of
Things with a Publisher.

O
w

n
er

• Network: The TMS can establish a permanent and
direct connection with the Owner via the internet
or the local home network.

• Organisational: The Owner consumes the
management services of the TMS.

P
u

b
lis

h
er

• Maintains a database of
Things along with
descriptive metadata.

• Exposes and advertises the
services of the Things it
manages.

• Accepts incoming Sensing
Tasks and forwards these
tasks, to Owners of Things
that could fulfil the
respective tasks and whose
Thing´s restrictions and
access rules do not
contradict with the
respective Sensing Task (e.g.
an Owner might forbid tasks
requiring non-anonymised
location data).

• Conceals the real Identity of
the Owners of the Things it
manages.

• Wants to be compensated
for the proxy-services it
provides.

TM
S

• Network: The Publisher can establish a permanent
and direct connection with the TMS via the
internet.

• Organisational: The Publisher forwards the
Sensing Tasks it received to each TMS
corresponding to a suitable Thing that could fulfil
the Sensing Task.

O
w

n
er

• Network: The Publisher does not establish a
network connection with the Owner, except for an
indirect connection during the registration of a
Thing with the Publisher, however this connection
is handled by the TMS.

• Organisational: The Publisher heeds the policies
which have been defined by the Owner during the
registration of a Thing with the Publisher. Hence,
the Publisher represents the Owners interests and
demands compensation for its services.

Th
in

g

• Network: Depending on the environment the
Thing is deployed in (controlled or foreign), the
Publisher can either establish a direct connection
via the internet or an opportunistic connection via
a Gateway.

• Organisational: The Publisher advertises the
services of a Thing; thus, Things can be interpreted
as the products a Publisher intends to sell on
behalf of the Owner.

G
at

ew
ay

• Network: The Publisher can establish a direct
connection with the Gateway via the internet.

• Organisational: The Publisher uses Gateways to
establish opportunistic network connections with
Things which are deployed in foreign
environments. These Gateways act on behalf of
the Publisher and are compensated for their
services.

 Developing the Holistic IoT Architecture Framework

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 109

Se
rv

ic
e

P
ro

vi
d

er

• Network: The Publisher can establish a direct
connection with Service Providers via the internet.

• Organisational: The Publisher offers the services of
the Things it acts on behalf of and demands
compensation for these services on behalf of the
corresponding Owners of the Things.

C
o

n
su

m
er

• Network: The Publisher can establish a direct
connection with Consumers via the internet.

• Organisational: The Publisher offers the services of
the Things it acts on behalf of and demands
compensation for these services on behalf of the
corresponding Owners of the Things.

Se
rv

ic
e

P
ro

vi
d

er

• The Service Provider offers
value added services and
demands compensation for
these services.

• Services range from easy
access to a large number of
Things to transforming and
reasoning over sensed data
and displaying the data
appropriately.

P
u

b
lis

h
er

• Network: The Service Provider can establish a

direct connection with the Publishers via the
internet.

• Organisational: The Service Provider issues Sensing
Tasks to the Publishers it knows and provides
compensation for the services of the Publishers.

C
o

n
su

m
er

• Network: The Service Provider can establish a
direct connection with Consumers via the internet.

• Organisational: Provides services and demands
compensation.

The components and relations of the Holistic IoT Architecture are further illustrated in Figure 28. In

essence, the architecture framework developed during this thesis is closely oriented towards the

original S2aaS architecture presented by Perera et al. (2014) and Sheng et al. (2013). The basic concepts

of all major components, the Publisher, the Owner and Thing, the Service Provider and the Consumer

can be easily mapped to the architectures presented by Perera et al. (2014) and Sheng et al. (2013).

However, it has been discussed in section 4.2.1 that both Perera et al. (2014) as well as Sheng et al.

(2013) can be assigned to the Organisational IoT Architecture Perspective, in which specific possibly

bothersome aspects of IoT could have been eluded because they were not the focus of the respective

architecture proposal. By distinguishing between different IoT Architecture Perspectives and using them

to analyse a variety of IoT architecture proposals, the need for a novel component and issues regarding

the network connectivity between Things and Publishers have been identified. The Thing Management

System, which is the new component, supports Owners in administering their Things and is located

between Things, Owners and Publishers in the Holistic IoT Architecture Framework (see Figure 28). The

connectivity issues have been discussed in section 4.3.4 and are superficially incorporated into the

architecture illustrated in Figure 28.

Patrick Nitschke

110 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 28: Holistic IoT Architecture Framework (own illustration)

This section concludes the development of the Holistic IoT Architecture Framework and specifically

answers and achieves RQ3.1 and RO3 respectively. The following chapter will cover the development of

a prototype using the Holistic IoT Architecture Framework.

Owner

Owner-controlled

environment

TMS-Owner Identity Domain

Foreign environment

TMS

Shared Thing

Identities

TMS-Publisher Identity Domain

ID 1

ID 2

ID 3

ID X

ID Y

ID Z

Gateway

Opportunistic connection

Publisher-Gateway Identity Domain

Gateway Token

/ Identifier

Consumer

Service
Provider

Publisher

Sensing Task

Organisational relation

Network relation

 Implementation of the Prototype

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 111

5 Implementation of the Prototype

Based on the developed Holistic IoT Architecture Framework (see Figure 28) and the completed

corresponding development step of the GDC this chapter addresses the evaluation step of the GDC. As

stated in section 2.2, this chapter utilises the demonstration pattern (Vaishnavi & Kuechler 2007).

According to this pattern, the Holistic IoT Architecture Framework is validated through implementation

work, which is demonstrated in this chapter. In the course of this, the issues raised in section 1.1 are

covered.

The implementation of each component of the Holistic IoT Architecture Framework aims to demonstrate

that the architecture provides sufficient specifications of roles and responsibilities, requirements and

descriptions of relations so that each component can be implemented separately. Additionally, each

component must be able to communicate with its related components according to the architecture

framework. However, due to the fact that the architecture framework merely defines the semantics15

of inter-component communication, the actual syntax used for the communication in this prototype can

be simplified. Thus, the prototype only aims to demonstrate a specific situation, which uses only a single

type of Things, adopting a mock-up communication syntax. Nevertheless, the prototype is designed to

be extensible to the effect that it supports multiple different communication channels and data formats.

The following paragraphs will briefly elaborate the most important technologies, frameworks and

implementation approaches used throughout the implementation of the prototype.

Ruby on Rails

The components of the Holistic IoT Architecture have to offer and consume various services over the

internet and are generally considered as web applications (see section 4.2.2 and 4.3.3). To implement

these applications, Ruby on Rails16 (RoR) was selected as the server-side web application framework.

The RoR framework was selected because it is especially suitable for rapid prototyping due to its two

predominant and guiding principles, which are deeply embedded in the architecture and development

process of RoR applications. The first principle, “don’t repeat yourself (DRY)”, is a common principle of

software design and states that every piece of information must have an unambiguous and singular

purpose or representation within a software system and should be reusable. The second, more

important principle of RoR is “convention over configuration”. The RoR framework predefines a set of

conventions which are deemed to be “best practice” (e.g. naming conventions, file- and data-structure).

15 The semantics of inter-component communication refer to the information exchanged between the
components (e.g. a contract between Thing Management System and Publisher), without specifying any
requirements regarding the syntax of the communication (e.g. data format, what data a contract consists of,
etc.).

16 https://rubyonrails.org/

Patrick Nitschke

112 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

When adhering to these conventions, applications can be developed rather quickly while remaining

scalable and extensible.

PostgreSQL

Considering the overall heterogeneity of IoT regarding technologies, data formats as well as

communication protocols and technologies and the sheer scale of IoT in general yield several

requirements for the selection of a storage engine. Firstly, to be able to represent various types of

Things, each with different data structures, the storage engine should provide means of storing data

without requiring a schema. For example, the metadata provided by each Thing can be in a different

format and may very well contain different key-value pairs. In order to remain flexible and scalable, this

data should be stored directly in the storage engine without transforming or parsing it beforehand.

Secondly, the storage engine itself should be scalable. In essence, this means that the storage engine

should be able to store and handle very large amounts of data, should be able to retrieve data relatively

fast and should be able to be deployed as a distributed system. However, for the implementation of the

prototype, the second requirement will not be considered for the selection of a storage engine17.

Consequently, PostgreSQL18 was selected as the storage engine for the prototype for the following

reasons. Firstly, it provides means of directly storing, indexing and retrieving schemaless data despite

being a relational database. Secondly, it is supported by RoR´s built object-relational-mapper which

further simplifies the development process.

The subsequent sections of this chapter will briefly present the use cases, data model, interfaces of each

component of the implemented Holistic IoT Architecture Framework. Additionally, each section will

discuss the insights, which have been gained during the development process of each component. These

insights are then further discussed and refined in the last section of this chapter.

17 It must be noted that the selected storage engine, PostgreSQL, might face scalability issues when the amount
of data stored significantly exceeds reasonable amounts deemed appropriate for a prototype (e.g. PostgreSQL
may experience performance issues when exceeding 1-2TB of data, whereas the average representation of a
Thing of the prototype implementation ranges from 50B to 200B, which means that performance issues of
PostgreSQL may arise when exceeding 5 × 109 Things).

18 https://www.postgresql.org/

 Implementation of the Prototype

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 113

5.1 Thing Management System

The implementation of the Thing Management System is guided by the functional requirements and

modules defined in section 4.3.3. Based on these requirements, the use cases illustrated in Figure 29

are supported by the implemented prototype component.

Users, which are the Owners in terms of the Holistic IoT Architecture Framework, can register

themselves with the TMS. During this process, users define their Credentials which consist of an e-mail

and a password. These credentials are encrypted and stored in the database. As soon as a user is

authenticated, he can access the Management module of the TMS. This module allows the user to

create or import Things. The prototype representation of a Thing consists of a name, which is defined

by the user and metadata providing descriptive information of a Thing (see Figure 30). This data may

contain the address (e.g. IP) of the Thing and details for accessing it (e.g. what protocols to use, which

data format, etc.). This data is stored and handled as a schemaless JSON19 by the TMS. The user is able

to create, update and delete each of his own Things. As stated in section 4.3.3, the Provisioning module

of the TMS distinguishes between on premise deployments and deployments as Service Providers. Thus,

multiple users can register with the TMS and are able to manage Things simultaneously. This allows

both the deployment as a Service Provider and as an on premise application with only a single user.

However, the data of each user and the corresponding Things are stored in the same database and on

the same server, which might not fulfil advanced data privacy and security requirements.

For each Thing, a user can create several Identities. Each Identity inherits the metadata of its

corresponding Thing. Furthermore, a user then can define the visibility of each inherited Characteristic

of an Identity. When defining a Characteristic as “private”, it will not be shared with other components.

A Characteristic defined as “public” will be shared with other components (e.g. Publishers). Identities

are published by assigning them to Contracts and submitting these Contracts to a Publisher. A Contract

consists of many Identities and metadata. The metadata is again stored and handled as a schemaless

JSON and may be used to model access rules, restrictions or the compensations demanded for accessing

the services provided by a Thing. Additionally, a Contract is assigned to a single Publisher. Upon

submitting a Contract to a known Publisher, the Contract can either be “accepted” or “rejected” by the

Publisher. When the Publisher accepts the Contract, which means that he is willing to act as a proxy

between the Identities of the Contract and other components (e.g. Service Providers), the TMS allows

to receive Sensing Requests for Identities contained in the Contract. As discussed in section 4.3.3, the

TMS must always retrieve the users’ consent before performing an action. Thus, upon receiving a

Sensing Request, the user can decide to “accept” or “reject” the Sensing Request. When the request is

accepted, the corresponding Publisher will access the Things´ specified in the Sensing Request.

19 http://www.json.org/json-de.html

Patrick Nitschke

114 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Figure 29: Use case diagram of the Thing Management System (own illustration)

To communicate with other components, the prototype implementation of the TMS uses the following

RESTful APIs.

• Contract-API
The Contract-API sends the Contract data to a registered Publisher via a HTTP POST request. The

payload of the request consists of the JSON representation of the Contract along with the

related Identities.

• Sensing Request-API
The Sensing Request-API receives Sensing Requests via HTTP POST requests. Upon receiving a

valid JSON payload, which consists of the Contract the Sensing Request relates to along with an

additional policy, which specifies the Sensing’s Request purpose, compensation and incentive

mechanism.

Additionally, the Sensing Request-API sends an acceptance or rejection to the corresponding

Publisher via a HTTP POST request.

Authenticate

Register with

TMS

Sign-In to

TMS

Manage

Things

Create/

Import Thing

Add Identity

to Thing

Edit, delete

Things

Define

Characteristic

directions

Assign

Identity to

Publisher

<<extend>>

<<extend>>

Create

Contract

Assign

Identity to

Contract

Define rules

for Contract

<<include>>

<<include>>

Submit

Contract to

Publisher

Import

Publisher

Accept/ Reject

Sensing

Request

Receive Sensing

Requests

Thing Management System

Owner / User

System

 Implementation of the Prototype

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 115

Figure 30 Class diagram of the Thing Management System (own illustration)

During the implementation of the Thing Management System the challenge of uniformly representing

Things became more apparent. Considering that different Things may very well provide and require

different interfaces, different metadata and different addressing mechanisms, a considerable amount

of effort must be put into addressing this heterogeneity issue. The first step to approach this issue is to

utilise schemaless databases for storing the Things data. The second, more challenging, step is to

develop adapters20 that provide the necessary behaviour based on the metadata of a Thing. However,

the effort required to provide an adapter for each kind of Thing scales with the amount of different

types of Things, which might be too high. However, this problem could either be solved by relying on

the vendors of Things to provide the necessary adapters or by following the Semantic Oriented Vision

of IoT. As discussed in section 3.1, this vision of IoT suggest to utilise semantic technologies which could

be used to automatically generate the necessary adapters based on the Things metadata.

20 This approach is similar to the adapter pattern presented by Gamma et al. (1995).

User

+ email : string

+ encrypted_password : string

Thing

+ name : string

+ meta : jsonb

Identity

+ name : string

+ characteristics: jsonb

+ uuid : string

Contract

+ name : string

+ meta : jsonb

+ uuid : string

+ state : ContractState

+ start_date : datetime

+ end_date : datetime

<<enumeration>>
ContractState

open
pending

accepted

rejected

Publisher

+ address : string

+ name : string

+ uuid :string

SensingRequest

+ policy : jsonb

+ uuid : string

+ state : SensingRequestState

<<enumeration>>
SensingRequestState

open
accepted

rejected

ContractsIdentity

IdentitiesSensingRequests

DemoPublisherBaseAdapter

DemoAdapter

1

1

1

1

1

1

1

0..* 0..* 1

0..*

0..*

1

0..*
0..* 0..*

0..*

0..*

Patrick Nitschke

116 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

5.2 Publisher

The implementation of the Publisher is guided by the descriptions and specifications provided in section

4.2.2. Based on these requirements, the use cases illustrated in Figure 31 are supported by the

implemented prototype component.

As discussed in section 4.2.2, the main purpose of the Publisher is to mediate the communication

between Owners, Things and Service Providers. To illustrate this function, the implemented Publisher

component only supports a specific set of use cases that are only accessible via a RESTful API. The

Publisher has no additional stakeholders beside the Publisher´s “system” itself. The system can receive

contracts, which essentially consist of metadata, rules and Identities. Upon receiving a contract, the

system may accept or reject it. Both, the contract’s metadata and rules as well as the Identity´s

Characteristics are stored and handled as a schemaless JSON (see Figure 32).

Figure 31: Use case diagram of the Publisher (own illustration)

The system can receive Sensing Tasks and create Sensing Requests based on the criteria provided by the

Sensing Tasks. The criteria for creating and issuing a Sensing Request are extracted from the respective

Sensing Task´s metadata, which is also stored and handled as a schemaless JSON. The prototype

implementation of this feature uses the metadata of the Sensing Task and matches it with the Identities

the Publisher manages. The matching mechanism of the prototype uses a query-string which is divided

and compared with each value of an Identity´s metadata. For example, if the query-string of the Sensing

Task contains a certain keyword and any value of the metadata of an Identity contains the same

keyword, the Sensing Task matches the Identity. However, this matching mechanism is rather simplistic

and only for demonstration purposes. Subsequently, the system can issue the Sensing Requests which

have been created based on the received Sensing Tasks to the corresponding TMS. The information

Receive

Sensing Tasks

Perform

Sensing

Create Sensing

Requests

Issue Sensing

Requests to

TMS

Grant access

to Gateways

Request data

from Thing

directly

<<include>>

System

Publisher

Receive

Contract

 Implementation of the Prototype

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 117

regarding the address of a TMS, the data format and communication protocols to be used is stored in

the corresponding Contract of the Identity which matches the Sensing Task´s query (see Figure 32).

Figure 32: Class diagram of the Publisher (own illustration)

As soon as a Sensing Request has been accepted by the TMS (see section 5.1), the system can perform

sensing by either directly accessing the services of the Things corresponding to the Identities a Sensing

Request consists of or by granting Gateways access to the Things. This behaviour maps to the different

kinds of environments Things might be deployed in (see section 4.3.1 and Figure 22 in particular).

In order to be able to mediate the communication between Things, Owners and Service Providers, the

Publisher provides several RESTful APIs.

• Sensing Task-API
The Sensing Task-API receives Sensing Tasks via HTTP POST requests. Upon receiving a valid

JSON payload, which consists of the metadata describing the Sensing Task, a Sensing Task is

being created and associated Sensing Requests are being generated.

Additionally, the Sensing Task-API sends the data collected by Gateways or by the Publisher

itself to the Service Provider corresponding to the Sensing Task via HTTP POST requests.

• Contract-API
The Contract-API creates Contracts received via HTTP POST requests. The payload of a valid

request contains the Contract’s metadata and rules as well as a set of Identities which relate to

the Contract.

• Sensing Request-API
This API sends Sensing Requests via HTTP POST requests to a TMS. The payload of a request

consists of the associated Sensing Task´s metadata, the Contract the Sensing Request relates to

as well as a set of Identities.

Additionally, the Sensing Request-API receives the acceptance or rejection of a Sensing Request

via HTTP POST requests.

SensingTask

+ meta : jsonb

+ uuid : string

SensingRequest

+ policy : jsonb

+ uuid : string

+ state : SensingRequestState

<<enumeration>>
SensingRequestState

open
accepted

rejected

ServiceProvider

+ meta : jsonb

+ uuid : string

Contract

+ name : string

+ meta : jsonb

+ uuid : string

+ rules : jsonb

Identity

+ name : string

+ characteristics: jsonb

+ uuid : string

IdentitiesSensingRequests

BaseAdapter

DemoAdapter

BaseAdapterDemoAdapter

BaseAdapter

DemoAdapter

1

1

1
1

1

0..*
0..*

0..*

0..*

0..*

Patrick Nitschke

118 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

• Identity-API
This Identity-API collects the sensing data from Things. The type of request depends on the

specified metadata of the Thing or the corresponding Identity managed by the Publisher. The

prototype API uses HTTP GET requests to obtain the data from Things.

During the implementation of the Publisher component, challenges regarding the management and

dynamic creation of suitable adapters to cope with the heterogeneity of Things, which also has been

described in the previous section, became apparent. Additionally, the task of matching a Sensing Task

to fitting Identities based on arbitrary rules, policies and specifications is a challenging task. As

mentioned, the prototype implementation utilises a simplistic, demonstrative string matching

mechanism. However, this mechanism should be further developed by using more sophisticated search

mechanisms such as Apache Lucene21 and Elasticsearch22 which provide sophisticated search and

matching functionalities that are able to cope with the heterogeneity of Things, their data

representations and Sensing Tasks with their various requirements.

5.3 Service Provider

The implementation of the Service Provider is guided by the descriptions and specifications provided in

section 4.2.2. Based on these requirements, the use cases illustrated in Figure 31 are supported by the

implemented prototype component.

Figure 33: Use case diagram of the Service Provider (own illustration)

21 https://lucene.apache.org/core/

22 https://www.elastic.co/de/products/elasticsearch

Authenticate

Register with

Service

Provider

Sign-In to

Service

Provider

Visualise

Data

Create

Sensing Task

Send Sensing

Task to

Publisher

View Data

Service Provider

System

Consumer / User

 Implementation of the Prototype

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 119

The Service Provider is mainly used by users who act as Consumers in terms of the Holistic IoT

Architecture Framework. Users can register themselves with the Service Provider. During this process,

users define their Credentials, which consist of an e-mail and a password. These credentials are

encrypted and stored in the database. As soon as a user is authenticated, he can create Sensing Tasks

and view the data of the tasks he issued. A Sensing Task in this prototype implementation of a Service

Provider consists of metadata and result-data. The metadata contains a query-string along with

additional fields, e.g. for describing usage policies or compensations provided. The result-data contains

the data that is sensed by the Things corresponding to the Sensing Task. The metadata as well as the

result-data is stored and handled as a schemaless JSON. When a Sensing Task has been created, the

system can send the task to known Publishers via a RESTful API (see Figure 34). Likewise, the system can

receive the data associated to Sensing Tasks and visualise the received data for the user.

Figure 34: Class diagram of the Service Provider (own illustration)

Besides offering a web application for the user to interact with, the Service Provider uses a RESTful API

to communicate with Publishers.

• Sensing Task-API
This API sends Sensing Tasks via HTTP POST requests to a Publisher. The payload of a request

consists of the metadata of the Sensing Task.

Additionally, this API receives sensing data related to a Sensing Task and stores the data in the

database.

The prototype implementation of the Service Provider component yielded insights similar to the ones

gained during the implementation of the Publisher component. Again, heterogeneity remains an issue

and providing adapters for each different kind of representations of policies or incentive mechanisms

requires considerable effort. Additionally, parsing and transforming “high-level” user queries (e.g. air

pollution data in a specific city) into formats that can be transferred to Publishers for further analysis is

a difficult task. As suggested during the development of the Publisher, technologies like Apache Lucene

or Elasticsearch, which provide sophisticated search mechanism, may prove to be helpful.

1

User

+ email : string

+ encrypted_password : string

SensingTask

+ meta : jsonb

+ uuid : string
SensingTasksPublisher

Publisher

+ address : string

+ name : string

+ uuid :string

DemoPublisherBaseAdapter

DemoAdapter

1

1

0..*

0..*
0..*

Patrick Nitschke

120 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

5.4 Evaluation Results

The implementation of the Holistic IoT Architecture Framework as a prototype demonstrated that the

conceptual design of the framework including the theoretical specifications and descriptions of each of

its components is technically realisable. The implementation work evaluates and shows the general

feasibility of the overall architecture. While addressing the technical details of each components deeper

insights into the operation and performance could be gained. However, looking at the technical details

and inner workings of each component in detail and evaluating the architecture holistically at all levels

of analysis may go beyond the scope of the thesis described in section 2.4. In this section, it is stated

that the thesis aims to develop a high-level architecture framework, which does not emphasise the inner

workings of components. Nonetheless, the evaluation of the implementation and especially technical

details yielded evaluation results that may affect the high-level aspects of the Holistic IoT Architecture

Framework. Thus, considering technical details and inner workings of components during the evaluation

is justified. The following paragraphs elaborate the evaluation results of the Holistic IoT Architecture

Frameworks´ prototype implementation.

Component Addressing System

Regarding Figures Figure 30, Figure 32 and Figure 34, it becomes apparent that each contains a

representation of either the Publisher component or the Service Provider component. This is due to the

fact that each component requires information regarding other components it is intended to talk to. For

example, the TMS prototype requires users to import Publishers. The Publisher stored in the database

of the TMS contains information that describes the APIs the Publisher provides (see section 5.2 for the

APIs provided by Publishers). As described in section 5.1, the TMS sends Contracts to Publishers via HTTP

POST requests, which requires an address to which the request is sent to. Depending on the API,

additional information might be required to transmit the information (e.g. when authentication is

required). Users of the TMS are required to provide this information for the TMS to be able to send

Contracts to Publishers. The same principles apply for both the Publisher and the Service Provider.

However, manually importing the required information for each Publisher or Service Provider might not

be applicable. The reason for this is twofold. Firstly, when the number of components grows, the

management of the configuration information might become increasingly time consuming and complex.

Secondly, when individual instances of components cease to exist (e.g. a Service Provider discontinues

his services) or new instances are created (e.g. a new Publisher services enters the eco system), the

changes do not reach each component. For example, a TMS might try to submit contracts to a Publisher

which doesn’t exist anymore. Consequently, this would require the users of each TMS to manually check

if the Publisher information is still valid. Again, the same applies for the Publisher and Service Provider

component.

To address this issue a system similar to the Discovery Server proposed by Chang et al. (2015) might be

incorporated into the overall architecture. The Component Addressing System would provide

information regarding available Publishers and Service Providers. This information may range from

configuration data (e.g. API descriptions) to reputational classifications (e.g. monitoring and publishing

 Implementation of the Prototype

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 121

the reputation of a Publisher) or certification information (e.g. certifying the identity of a Publisher

imported to the TMS).

Heterogeneity

The multitude of different types of Things, different data formats and representations remains an issue.

However, with the Holistic IoT Architecture Framework defining the responsibilities, roles and

relationships for each component, the starting point for addressing this issue is clearly marked out. As

stated in the previous sections, this issue can be solved by providing a sufficient variety of adapters

responsible for translating different data formats or communicating via different interfaces. This could

be achieved by either implementing an adapter for each kind of Thing or by utilising the principles and

technologies suggested by the Semantic Oriented Vision of IoT discussed in section 3.1 to automatically

generate adapters or interfaces.

This chapter finalises the application of the GDC. The discussion of suitable technologies for

implementing the prototype in the beginning of this chapter addressed RO4 and the corresponding

research questions RQ4.1 and RQ4.2.

 Summary and Conclusion

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 123

6 Summary and Conclusion

This chapter summarises the key findings of this thesis in section 6.1 by answering each research

question that was posed in section 1.2. Subsequently the research contribution (see section 6.2) and

the limitations of this thesis (see section 6.3) are briefly discussed. This thesis concludes with hints for

future work in section 6.4.

6.1 Research Questions

In this section, each of the research questions that guided the research conducted in this thesis (see

section 1.2) is answered individually. For each research question, a summarising answer is provided

along with the respective reference to the corresponding section(s) where the research question is

elaborated on and answered in detail.

RO1 Identify and evaluate components of S2aaS.

RQ1.1 Which components of S2aaS are addressed in the pertinent IoT architecture literature?

Based on the IoT Architecture Perspectives developed in section 4.2.1, the following components have

been identified in the literature and been described in detail in section 4.2.2. Across the pertinent

literature the components Consumer, Thing, Owner and Service Provider are mentioned either implicitly

or explicitly. The Consumer component is essentially interested in sensing data and is willing to provide

compensation (see page 53). The Thing component, giving IoT its name, provides unique sensing and

actuating services and is considered the bridge between the digital and physical world (see page 53).

Things are owned by Owners, who essentially govern their Things by defining access rules or requiring

compensation for their Things` services (see page 54). Service Providers provide value added services,

which are employed by Consumers. In order to provide these value-added services, Service Providers

rely on the sensing data of Things (see page 55). Depending on the respective IoT Architecture

Perspective, the components Publisher and Gateway are considered in the literature or not. Gateways

aim to establish communication between the individual components, especially between Things and

other components (see page 55). Publishers intend to represent the interests of Owners (e.g. privacy),

thus they act as proxy between Things, Owners and Service Providers (see page 56). Additionally, with

Owners potentially owning many different Things, the need for an additional component, the Thing

Management System, has been identified in section 4.3.1. Essentially, the TMS allows Owners to

manage a multitude of different Things, including the selection of data to be shared or published. The

details of the TMS are discussed in section 4.3.3.

RQ1.2 Which perspectives on the components of S2aaS are to be considered?

During the analysis of IoT architecture proposals in the literature, two new perspectives on IoT

architectures became apparent. The Network IoT Architecture Perspective focusses on establishing

communication between individual components of an IoT architecture in general (see section 4.2.1,

page 45) and is related to the Gateway component described earlier. The Organisational IoT

Patrick Nitschke

124 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Architecture Perspective concentrates on the description and definition of the organisational

relationships between components of an IoT architecture (see section 4.2.1, page 48). This perspective

is related to the Publisher component which was identified as part of the previous research question

answered in section 4.2.2.

RQ1.3 What common requirements for S2aaS components can be defined?

By analysing the pertinent literature in section 4.2.2 requirements for each of the components

Consumer, Thing, Owner, Service Provider, Gateway and Publisher have been worked out. The

requirements extracted from the literature are illustrated in Table 1. In general, each component is

interpreted as an independent software system which exposes specific functionalities via

communication endpoints. The detailed requirements for each component are guided by the respective

business level interests of the components stakeholders. For example, Service Providers offer value

added services (e.g. simplifying searching for and visualising sensing data) and consequently need to be

able to support various incentive mechanisms. Furthermore, the requirements for the novel component

of the Thing Management System have been described in section 4.3.3 and illustrated in Table 2 as well

as Table 3.

RO2 Map architectural components of S2aaS to existing IoT services, systems and concepts.

RQ2.1 How can existing services, systems and concepts be mapped to components of S2aaS?

This thesis applied the DSR pattern Problem Space Tools and Techniques presented by Vaishnavi and

Kuechler (2007) to identify existing services, systems and concepts that could be mapped to

components of S2aaS. With the research domain of IoT being relatively new and unstructured, the

pattern suggested by Vaishnavi and Kuechler (2007) is especially considered useful. This pattern utilises

researchers´ general knowledge to identify promising tools and techniques to solve a given research

problem. Therefore, it is employed in this thesis to test novel solutions of existing research problems of

IoT.

RQ2.2 Which existing services, systems and concepts can be mapped to components of S2aaS?

Based on the Problem Space Tools and Techniques pattern identified as part of the previous research

question, the concepts and techniques of Identity Management have been identified as a suitable

baseline or guiding principle to develop the novel component of the Thing Management System in

section 4.3. By interpreting Things as Identities referring to their corresponding Owners as Entities, the

principles and concepts of Identity Management can be transferred to IoT and used to design a system

for managing Things.

RO3 Propose detailed specifications for the components of IoT architecture framework.

RQ3.1 What are the specifications for each component?

Having identified a common set of IoT architecture components (Consumer, Thing, Owner, Service

Provider) as well as two additional components which have been identified by using the novel IoT

Architecture Perspectives (Publisher and Gateway) and additionally having developed the Thing

Management System as a completely new component, the detailed specifications of each of these

 Summary and Conclusion

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 125

components are listed in Table 4. Following the intended high-level approach for the Holistic IoT

Architecture Framework described in section 2.4, the specifications for each component focus on

external relations with other components as well as the roles and responsibilities of each component.,

RO4 Find technologies supporting the implementation of the proposed architecture framework.

RQ4.1 Which criteria are important for the selection of technologies that support the implementation of
the proposed architecture framework?

Based on the theoretical development and specifications of the components of the Holistic IoT

Architecture as part of the previous research questions, it was evaluated if these specifications and

descriptions are viable to guide the implementation of a prototype. In order to be able to develop a

prototype, several choices regarding the selection of technologies had to be made. The discussion

carried out in the beginning of chapter 5 shows that the sufficient support of heterogeneous data is a

crucial criterion for selecting appropriate technologies supporting the implementation of such a

framework.

RQ4.2 Which technologies are suitable to implement components for the proposed architecture?

Considering the need to support the representation, storage and handling of heterogeneous or

schemaless data, the data storage technology for the prototype was selected accordingly. As discussed

in the beginning of chapter 5, PostgreSQL was selected as the storage engine for the prototype because

it provides sufficient capabilities to handle schemaless data and is simple to integrate into the other

technologies of the prototype such as Ruby on Rails. However, it must be noted that while the selection

of this storage engine is appropriate for a prototype like this, a large-scale implementation of the Holistic

IoT Architecture should use technologies that scale better than PostgreSQL.

6.2 Research Contribution

In the course of this thesis, various aspects of IoT architectures proposed in the pertinent literature were

interpreted and used to develop a Holistic IoT Architecture Framework that covers these various aspects

as a whole. During the development of this framework two novel perspectives on IoT architectures in

general were identified. These perspectives, the Network- and the Organisational IoT Architecture

Perspective, helped to identify and specify architecture components which are mentioned in the

literature, either implicitly or explicitly. In addition, the perspectives could be used as a supplemental

tool to classify the focus of existing IoT architecture proposals in the literature. The components

Consumer, Thing, Owner, Service Provider, Publisher, and Gateway, which were identified with the help

of these perspectives, have been thoroughly described. Furthermore, by considering the novel IoT

architecture perspectives and comparing the differences between the associated architectures, the

need of an additional component became apparent. This conclusion was further encouraged by the

realisation that Things can be interpreted as Identities in terms of Identity Management. Based on this

insight that Things are Identities which refer to their respective Owners and the discrepancies between

the Organisational IoT Architecture Perspective and the Network IoT Architecture Perspective, a novel

component was developed which addresses the need to allow Owners to manage their Things. The

Patrick Nitschke

126 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Thing Management System developed throughout this thesis, which allows Owners to share and publish

their Identities (or Things), was subsequently embedded into the overall architecture.

Overall, the Holistic IoT Architecture Framework developed in this thesis provides high level

specifications and descriptions of IoT architecture components, their relations, roles and

responsibilities. By applying this architecture, the expected behaviour and tasks of the IoT architecture

components are clearly defined on a high level of abstraction. Based on the understanding of the role

of each IoT architecture component and what the semantics of the communication between the

individual components are, the implementation of a component is a straightforward process, which has

been demonstrated in this thesis as well.

6.3 Limitations

Considering that the evaluation conducted in section 5.4 revealed that dealing with the technical details

on a low level of abstraction can potentially have an impact on the architecture in general, the mere

focus on a high level of abstraction might be a limitation of this thesis. In section 5.4, the need for some

kind of Component Addressing System became apparent while evaluating the implementation of

prototype of the Holistic IoT Architecture Framework.

As the evaluation in section 5.4 has shown, the evaluation on a lower level of abstraction can yield

results that have an impact on higher levels. Thus, one limitation of this thesis is the focus on the high-

level aspects of an IoT architecture. Additionally, only a subset of IoT architecture proposals has been

considered in the analysis (see section 2.3), which inevitably suggests that some possibly relevant

aspects addressed by other proposals are not covered by the IoT architecture framework developed in

this thesis.

Another limitation of this thesis is mentioned in section 4.3.4. The architecture requires that Gateways

may act on behalf of Publishers to gather data from Things which have been deployed in foreign

environments and thus need to rely on opportunistic and non-permanent communication. However, as

has been discussed in section 4.3.4, Gateways need to authenticate with Things and prove that they act

on behalf of the associated Publisher of a Thing and have indeed the permission to access the Thing´s

services. The main issue with this connection between Gateways, Publisher and Things is the lack of a

suitable authentication mechanism. The mechanism must either provide Gateways with credentials that

are “valid on their own” and which can be independently validated by a Thing or the Thing must be able

to directly communicate with its assigned Publisher to check the relationship between the requesting

Gateway and corresponding Publisher. As discussed in section 4.3.4, both options are equally

problematic. Using credentials which are “valid on their own” (e.g. sufficiently encrypted tokens, etc.)

is impractical because managing the tokens becomes increasingly difficult with the number of Things,

Gateways and Publishers growing. For example, it will be very difficult to revoke access to Things when

not having access to every Thing and to invalidate specific credentials so that access is denied. While

 Summary and Conclusion

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 127

this issue has been discussed, a solution was not presented in this thesis. Hence, it is the main limitation

of this thesis.

6.4 Future Work

As discussed in the previous section, communication and propagation of access rights and a suitable

authentication mechanism between Gateways, Publishers and Things remain issues to be solved in the

future. Solving these issues is especially important in order to be able to deploy IoT applications and

sensor networks on a large scale. It is inevitable that Things are deployed in foreign environments and

thus need to rely on opportunistic communication.

Furthermore, with Gartner (2014) forecasting a black market worth five billion US$ by 2020, the need

for mechanisms and systems which can assess the quality and authenticity of sensing data becomes

apparent. The Holistic IoT Architecture defines Consumers as components that are interested in sensing

data and are willing to provide some means of compensation. The intention to provide compensation

for data implies that sensing data has value that needs to be defined. The value of data could be coupled

to the reputation of the Owners, Things, Publisher and Gateways involved in obtaining this data. Thus,

a system must be developed to determine and manage the reputation of all actors involved in gathering

sensing data. A system for assessing the reputation of an actor could be integrated into each component

of the Holistic IoT Architecture Framework.

However, for S2aaS to be successful, a more general issue regarding IoT and sensing data must be

addressed. S2aaS is designed to offer access to sensing data as a service, which describes various

dimensions of any environment at anytime and anywhere. Furthermore, S2aaS suggests that this

service, which is provided by a plethora of actors, needs to be compensated. For this purpose, various

incentive mechanisms have been developed. The problem is, however, that research regarding S2aaS

stops at this point. Potential use and value of sensing data, which justifies the compensation for

gathering this data in the first place, is often disregarded. Consumers need methods to assess what kind

of data and which amount of data is required in order to be able to derive information and knowledge

from this data.

 References

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 129

References

Abdelwahab, S. et al., 2016. Cloud of Things for Sensing-as-a-Service: Architecture, Algorithms, and Use
Case. IEEE Internet of Things Journal, 3(6), pp.1099–1112. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7457602.

Abdelwahab, S. et al., 2015. Cloud of Things for Sensing as a Service: Sensing Resource Discovery and
Virtualization. In 2015 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–7.
Available at: http://ieeexplore.ieee.org/document/7417252/.

Abdelwahab, S. et al., 2014. Enabling Smart Cloud Services Through Remote Sensing: An Internet of
Everything Enabler. IEEE Internet of Things Journal, 1(3), pp.276–288. Available at:
http://ieeexplore.ieee.org/document/6817547/.

Ahmad, A. et al., 2016. Model-Based Testing as a Service for IoT Platforms. In Leveraging Applications
of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications. Cham:
Springer International Publishing, pp. 727–742. Available at:
http://link.springer.com/10.1007/978-3-540-88479-8.

ARM Limited, 2017. CoAP. Available at: http://coap.technology/ [Accessed January 28, 2017].

Ashton, K., 2009. That “Internet of Things” Thing. RFID Journal. Available at:
http://www.itrco.jp/libraries/RFIDjournal-That Internet of Things Thing.pdf [Accessed February
15, 2017].

Atzori, L., Iera, A. & Morabito, G., 2010. The Internet of Things: A survey. Computer Networks, 54(15),
pp.2787–2805. Available at: http://dx.doi.org/10.1016/j.comnet.2010.05.010.

Auto-ID Lab, 2017. Auto-ID Labs. Available at: http://autoidlabs.org/ [Accessed January 14, 2017].

Barnaghi, P. et al., 2012. Semantics for the Internet of Things: early progress and back to the future.
International Journal on Semantic Web and Information Systems, 8(1), pp.1–21. Available at:
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2012010101.

Bassi, A. et al., 2013. Enabling Things to Talk A. Bassi et al., eds., Berlin, Heidelberg: Springer Berlin
Heidelberg. Available at: http://doi.wiley.com/10.1002/9781118600146.ch1.

Bhargav-Spantzely, A. et al., 2006. User centricity: A Taxonomy and Open Issues. In Proceedings of the
second ACM workshop on Digital identity management - DIM ’06. New York, New York, USA: ACM
Press, p. 1. Available at: http://portal.acm.org/citation.cfm?doid=1179529.1179531.

Botterman, M., 2009. Internet of Things: an early reality of the Future Internet, Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Internet+of+Things+:+an+early
+reality+of+the+Future+Internet#0.

Bradner, S., 1997. Key words for use in RFCs to Indicate Requirement Levels. , pp.1–3. Available at:
https://www.ietf.org/rfc/rfc2119.txt.

Burke, J. et al., 2006. Participatory sensing. In ACM SenSys 2006. Boulder, Colorado, USA. Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.3024.

Cameron, K., 2005. The Laws of Identity. , p.13. Available at:
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf [Accessed September
2, 2016].

Campbell, A.T. et al., 2008. The Rise of People-Centric Sensing. Internet Computing, 12(4), pp.12–21.

Chii Chang, Srirama, S.N. & Liyanage, M., 2015. A Service-Oriented Mobile Cloud Middleware
Framework for Provisioning Mobile Sensing as a Service. In 2015 IEEE 21st International
Conference on Parallel and Distributed Systems (ICPADS). Melbourne, Australia: IEEE, pp. 124–131.

Patrick Nitschke

130 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Available at: http://ieeexplore.ieee.org/document/7384287/.

Clegg, D. & Barker, R., 1994. Case Method Fast-Track: A Rad Approach, Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

daCosta, F., 2013. Rethinking the Internet of Things, Berkeley, CA: Apress. Available at:
http://link.springer.com/10.1007/978-1-4302-5741-7_8.

Efremov, S. et al., 2015. Cloud IoT Platforms: A Solid Foundation for the Future Web or a Temporary
Workaround? In S. Balandin, S. Andreev, & Y. Koucheryavy, eds. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 47–55. Available
at: http://link.springer.com/10.1007/978-3-319-23126-6_5.

Emmerich, W., Aoyama, M. & Sventek, J., 2008. The impact of research on the development of
middleware technology. ACM Trans Softw Eng Methodol, 17(4), pp.1–48. Available at:
http://discovery.ucl.ac.uk/46712/.

Fenn, J. & LeHong, H., 2011. Hype Cycle for Emerging Technologies, Stamford. Available at:
http://www.gartner.com/newsroom/id/2819918%5Cnhttps://www.google.be/url?sa=t&rct=j&q
=&esrc=s&source=web&cd=9&cad=rja&uact=8&ved=0ahUKEwjxzq6mnr3JAhUGPQ8KHR-
WBGgQFghRMAg&url=http://isites.harvard.edu/fs/docs/icb.topic1360759.files/hype_cycle_for_
emerging_t.

Ferna et al., 2015. Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using
Environmental Information J. M. García-Chamizo, G. Fortino, & S. F. Ochoa, eds., Cham: Springer
International Publishing. Available at: http://link.springer.com/10.1007/978-3-642-35377-2.

Fleisch, E., 2010. What is the Internet of Things? An Economic Perspective (white paper). In Zurich,
Switzerland: Auto-ID Labs, pp. 1–27.

Fremantle, P. et al., 2014. Federated Identity and Access Management for the Internet of Things. In 2014
International Workshop on Secure Internet of Things. IEEE, pp. 10–17. Available at:
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84926431695&partnerID=40&md5=2726c8ea5ad90df99e17f7e8099ca815.

Gamma, E. et al., 1995. Design Patterns Elements of Reusable Object-Oriented Software, Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc. Available at:
http://www.cs.up.ac.za/cs/aboake/sws780/references/patternstoarchitecture/Gamma-
DesignPatternsIntro.pdf.

Gartner, 2016a. Gartner Says By 2020, More Than Half of Major New Business Processes and Systems
Will Incorporate Some Element of the Internet of Things. Gartner.com. Available at:
http://www.gartner.com/newsroom/id/3185623 [Accessed February 10, 2017].

Gartner, 2013. Hype Cycle for the Internet of Things, 2013. , (July), pp.1–4. Available at:
http://www.gartner.com/newsroom/id/2575515%0ASTAMFORD, [Accessed September 2, 2016].

Gartner, 2014. Hype Cycle for the Internet of Things, 2014. , (July), pp.1–4. Available at:
http://www.gartner.com/newsroom/id/2819918 [Accessed September 2, 2016].

Gartner, 2016b. Hype Cycle for the Internet of Things, 2016. , pp.16–18. Available at:
http://www.gartner.com/newsroom/id/3412017 STAMFORD, [Accessed September 2, 2016].

Gero, J.S., 2000. Research Methods for Design Science Research: Computational and Cognitive
Approaches. Proceedings of ANZAScA, (November 1999). Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.7198&rep=rep1&type=
pdf.

Geschickter, C., 2015. A CIO ’ s Guide to Realizing the Business Value of IoT , Part 2 : Scope , Deployment
Options and Pilot, Stamford.

 References

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 131

Gregor, S. & Hevner, A.R., 2013. POSITIONING AND PRESENTING DESIGN SCIENCE Types of Knowledge
in Design Science Research. MIS Quarterly, 37(2), pp.337–355.

Ha, T., Lee, S. & Kim, N., 2015. Development of a User-Oriented IoT Middleware Architecture Based on
Users’ Context Data. In N. Streitz & P. Markopoulos, eds. Distributed, Ambient, and Pervasive
Interactions. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp.
287–295. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-
84901599558&partnerID=tZOtx3y1.

Hui, J. & Corporation, A.R., 2009. 6LoWPAN: Incorporating IEEE 802.15.4 into the IP architecture,
Berkeley.

IBM, 2016a. Create IBM Watson IoT Platform Organization. Available at:
https://developer.ibm.com/recipes/tutorials/how-to-register-devices-in-ibm-iot-foundation/
[Accessed July 11, 2016].

IBM, 2016b. Track-n-Trace. Available at: https://developer.ibm.com/recipes/tutorials/track-n-trace-7/
[Accessed July 11, 2016].

INFSO D.4 Networked Enterprise et al., 2008. Internet of Things in 2020 A ROADMAP FOR THE FUTURE,
Berlin. Available at: http://www.smart-systems-
integration.org/public/documents/publications/Internet-of-Things_in_2020_EC-
EPoSS_Workshop_Report_2008_v3.pdf.

International Telecommunication Union, 2005. The Internet of Things, Geneva.

IoT Analytics, 2015. IoT Platforms The central backbone for the Internet of Things, Available at:
http://www.iot-analytics.com.

Ishaq, I. et al., 2013. IETF Standardization in the Field of the Internet of Things (IoT): A Survey, Available
at: http://www.mdpi.com/2224-2708/2/2/235/htm.

Jahankhani, H. et al., 2010. Handbook of electronic security and digital forensics 1st ed., Singapore:
World Scientific. Available at:
https://books.google.de/books?hl=de&lr=&id=ZgpV6Rvw2FoC&oi=fnd&pg=PA279&dq=digital+id
entity+management&ots=QWFHl-
srib&sig=ZHhLmNipX0wxKYGzt2TPTKJdeeQ#v=onepage&q=digital identity management&f=false.

Jo, M. et al., 2015. Device-to-device-based heterogeneous radio access network architecture for mobile
cloud computing. IEEE Wireless Communications, 22(3), pp.50–58. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7143326.

Johnson, F.A. et al., 2009. The EPCglobal Architecture Framework, Brussels, Belgium.

Jøsang, A. & Pope, S., 2005. User centric identity management. In AusCERT Asia Pacific Information
Technology Security Conference. pp. 1–13. Available at:
http://web.mac.com/skjpope/downloads/files/usercentric.pdf.

Katasonov, A. et al., 2008. Smart Semantic Middleware for the Internet of Things. Icinco-Icso, 1(August),
pp.169–178. Available at: http://www.mit.jyu.fi/ai/papers/ICINCO-2008.pdf.

Khan, R. et al., 2012. Future internet: The internet of things architecture, possible applications and key
challenges. In Proceedings - 10th International Conference on Frontiers of Information Technology,
FIT 2012. pp. 257–260.

Kim, J. et al., 2014. M2M service platforms: Survey, issues, and enabling technologies. IEEE
Communications Surveys and Tutorials, 16(1), pp.61–76.

Krause, A. et al., 2008. Toward Community Sensing. In 2008 International Conference on Information
Processing in Sensor Networks (ipsn 2008). IEEE, pp. 481–492. Available at:
http://ieeexplore.ieee.org/document/4505497/.

Patrick Nitschke

132 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Kuechler, Vaishnavi & Petter, 2005. The Aggregate General Design Cycle as a Perspective on the
Evolution of Computing Communities of Interest. Computing Letters, 1(3), pp.123–128. Available
at: http://booksandjournals.brillonline.com/content/journals/10.1163/1574040054861221.

Lee, I. & Lee, K., 2015. The Internet of Things (IoT): Applications, investments, and challenges for
enterprises. Business Horizons, 58(4), pp.431–440. Available at:
http://dx.doi.org/10.1016/j.bushor.2015.03.008.

Linden, A. & Fenn, J., 2003. Understanding Gartner’s hype cycles, Stamford. Available at:
http://www.ask-force.org/web/Discourse/Linden-HypeCycle-2003.pdf.

Madakam, S., Ramaswamy, R. & Tripathi, S., 2015. Internet of Things (IoT): A Literature Review. Journal
of Computer and Communications, 3(5), pp.164–173. Available at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56616&#abstract.

Mashal, I. et al., 2015. Choices for interaction with things on Internet and underlying issues. Ad Hoc
Networks, 28(November), pp.68–90. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S1570870514003138.

Mashal, I., Alsaryrah, O. & Chung, T.-Y., 2016. Testing and evaluating recommendation algorithms in
internet of things. Journal of Ambient Intelligence and Humanized Computing, 7(6), pp.889–900.
Available at: http://link.springer.com/10.1007/s12652-016-0357-4.

Mazhelis, O. et al., 2013. Internet-of-Things Market , Value Networks , and Business Models : State of
the Art Report, JYVÄSKYLÄ.

Miao Wu et al., 2010. Research on the architecture of Internet of Things. In 2010 3rd International
Conference on Advanced Computer Theory and Engineering(ICACTE). IEEE, pp. V5-484-V5-487.
Available at: http://ieeexplore.ieee.org/document/5579493/.

Mineraud, J. et al., 2016. A gap analysis of Internet-of-Things platforms. Computer Communications, 89–
90(1), pp.5–16. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0140366416300731.

Mizouni, R. & El Barachi, M., 2013. Mobile phone sensing as a service: Business model and use cases.
International Conference on Next Generation Mobile Applications, Services, and Technologies,
pp.116–121.

Moreno-Vozmediano, R., Montero, R.S. & Llorente, I.M., 2013. Key challenges in cloud computing:
Enabling the future internet of services. IEEE Internet Computing, 17(4), pp.18–25.

Mosser, S. et al., 2012. SENSAPP as a Reference Platform to Support Cloud Experiments: From the
Internet of Things to the Internet of Services. In 2012 14th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing. IEEE, pp. 400–406. Available at:
http://ieeexplore.ieee.org/document/6481058/.

Naur, P. & Randell, B., 1968. Software Engineering: Report of a conference sponsored by the NATO
Science Committee. In NATO Software Engineering Conference. p. 231. Available at:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html.

Al Nuaimi, K. et al., 2012. Web-based wireless sensor networks. In Proceedings of the 6th International
Conference on Ubiquitous Information Management and Communication - ICUIMC ’12. New York,
New York, USA: ACM Press, p. 1. Available at:
http://dl.acm.org/citation.cfm?doid=2184751.2184881.

Park, G.-J., 2007. Axiomatic Design. In Analytic Methods for Design Practice. London: Springer London,
pp. 17–105. Available at: http://link.springer.com/10.1007/978-1-84628-473-1.

Perera, C. et al., 2013. Context-Aware Sensor Search, Selection and Ranking Model for Internet of Things
Middleware. In 2013 IEEE 14th International Conference on Mobile Data Management. IEEE, pp.
314–322. Available at: http://ieeexplore.ieee.org/document/6569153/.

 References

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 133

Perera, C. et al., 2015. Energy-Efficient Location and Activity-Aware On-Demand Mobile Distributed
Sensing Platform for Sensing as a Service in IoT Clouds. IEEE Transactions on Computational Social
Systems, 2(4), pp.171–181. Available at: http://arxiv.org/abs/1601.00428.

Perera, C., Jayaraman, P.P., et al., 2014. MOSDEN: An Internet of Things Middleware for Resource
Constrained Mobile Devices. In 2014 47th Hawaii International Conference on System Sciences.
IEEE, pp. 1053–1062. Available at: http://ieeexplore.ieee.org/document/6758734/.

Perera, C., Zaslavsky, A., Christen, P., et al., 2014. Sensing as a service model for smart cities supported
by Internet of Things. Transactions on Emerging Telecommunications Technologies, 25(1), pp.81–
93. Available at: http://doi.wiley.com/10.1002/ett.2704.

Perera, C., Zaslavsky, A., Liu, C.H., et al., 2014. Sensor Search Techniques for Sensing as a Service
Architecture for the Internet of Things. IEEE Sensors Journal, 14(2), pp.406–420. Available at:
http://ieeexplore.ieee.org/document/6605518/.

Petrolo, R. et al., 2017. The design of the gateway for the Cloud of Things. Annals of
Telecommunications, 72(1–2), pp.31–40. Available at: http://link.springer.com/10.1007/s12243-
016-0521-z.

Pettey, C. & Vandermeulen, R., 2012. Hype Cycle for the Internet of Things, 2012, Stamford.

Rothensee, M., 2008. User Acceptance of the Intelligent Fridge: Empirical Results from a Simulation. In
The Internet of Things. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 123–139. Available at:
http://portal.acm.org/citation.cfm?id=1793071&CFID=1793840&CFTOKEN=33112955.

Sarma, A.C. & Girão, J., 2009. Identities in the Future Internet of Things. Wireless Personal
Communications, 49(3), pp.353–363. Available at: http://link.springer.com/10.1007/s11277-009-
9697-0.

Serdaroglu, K.C. & Baydere, S., 2016. WiSEGATE: Wireless Sensor Network Gateway framework for
internet of things. Wireless Networks, 22(5), pp.1475–1491. Available at:
http://link.springer.com/10.1007/s11276-015-1046-5.

Sheng, X. et al., 2012. Sensing as a service: A cloud computing system for mobile phone sensing. In 2012
IEEE Sensors. IEEE, pp. 1–4. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6411516.

Sheng, X. et al., 2013. Sensing as a Service: Challenges, Solutions and Future Directions. IEEE Sensors
Journal, 13(10), pp.3733–3741. Available at: http://ieeexplore.ieee.org/document/6515322/.

Solis, C. & Wang, X., 2011. A Study of the Characteristics of Behaviour Driven Development. In 2011 37th
EUROMICRO Conference on Software Engineering and Advanced Applications. IEEE, pp. 383–387.
Available at: http://ieeexplore.ieee.org/document/6068372/.

Sone, M., 2001. Household consumable item automatic replenishment system including intelligent
refrigerator. Available at: https://www.google.com/patents/US6204763.

Stanford-Clark, A. & Nipper, A., 2017. MQTT. Available at: http://mqtt.org/ [Accessed January 28, 2017].

Sterling, B., 2005. Shaping Things, Londong, England: The MIT Press. Available at:
http://www.amazon.com/Shaping-Things-Mediaworks-Pamphlets-Sterling/dp/0262693267.

Suh, N.P. & Do, S.-H., 2000. Axiomatic Design of Software Systems. CIRP Annals - Manufacturing
Technology, 49(1), pp.95–100. Available at:
http://www.axiomaticdesign.com/technology/ADSChapter5.html.

Takeda, H. et al., 1990. Modeling Design Processes. AI Magazine, 11(4), pp.37–48.

Tarkoma, S. & Katasonov, A., 2011. Internet of Things Strategic Research Agenda, Helsinki, Finnland.

The National Intelligence Council, 2008. Disruptive Civil Technologies Six Technologies With Potential

Patrick Nitschke

134 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Impacts on US Interests Out to 2025. National Intelligence Council, 59(April), p.48. Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Disruptive+Civil+Technologies
+Six+Technologies+With+Potential+Impacts+on+%7BUS%7D+Interests+Out+to+2025#1.

Tima, I., Simperl, E. & Hench, G., 2009. A joint roadmap for Semantic technologies and the Internet of
Things. In Proceedings of the Third STI Roadmapping Workshop. Crete, Greece. Available at:
http://link.springer.com/10.1007/s11277-011-0288-5.

Vaishnavi, V. & Kuechler, B., 2004. Design Science Research in Information Systems Overview of Design
Science Research. Ais, p.45. Available at: http://www.desrist.org/design-research-in-information-
systems/.

Vaishnavi, V. & Kuechler, W., 2007. Design Science Research Methods and Patterns, Boca Raton, USA:
Auerbach Publications. Available at:
http://www.crcnetbase.com/doi/book/10.1201/9781420059335.

Vazquez, J.I. & Lopez-de-ipina, D., 2008. Social Devices : Autonomous Artifacts That Communicate on
the Internet. In pp. 308–324.

Velosa, A., Schulte, R.W. & Lheureux, B.J., 2015. Hype Cycle for the Internet of Things, 2015. , (July),
pp.1–69. Available at:
http://www.gartner.com/document/3098434?ref=solrAll&refval=161158590&qid=40f7a175899f
78812787998fff35a614.

Wortmann, F. & Flüchter, K., 2015. Internet of Things. Business & Information Systems Engineering,
57(3), pp.221–224. Available at: http://link.springer.com/10.1007/s12599-015-0383-3.

Yang, D. et al., 2012. Crowdsourcing to smartphones. In Proceedings of the 18th annual international
conference on Mobile computing and networking - Mobicom ’12. New York, New York, USA: ACM
Press, p. 173. Available at: http://dl.acm.org/citation.cfm?doid=2348543.2348567.

Yasrab, R. & Gu, N., 2016. Multi-cloud PaaS Architecture (MCPA): A Solution to Cloud Lock-In. In 2016
3rd International Conference on Information Science and Control Engineering (ICISCE). IEEE, pp.
473–477. Available at: http://ieeexplore.ieee.org/document/7726205/.

Zachariah, T. et al., 2015. The Internet of Things Has a Gateway Problem. In Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications - HotMobile ’15. New
York, New York, USA: ACM Press, pp. 27–32. Available at:
http://web.eecs.umich.edu/~prabal/pubs/papers/zachariah15gateway.pdf.

Zaslavsky, A., Perera, C. & Georgakopoulos, D., 2013. Sensing as a Service and Big Data. Proceedings of
the International Conference on Advances in Cloud Computing (ACC-2012), pp.21–29. Available at:
http://arxiv.org/abs/1301.0159.

Zorzi, M. et al., 2010. From today’s INTRAnet of things to a future INTERnet of things: a wireless- and
mobility-related view. IEEE Wireless Communications, 17(6), pp.44–51. Available at:
http://ieeexplore.ieee.org/document/5675777/.

 Appendix

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 135

Appendix

Appendix 1: Source code of the prototype

The source code of the prototype developed in chapter 5 is available at the following addresses. Each

component is implemented as a separate web application based on Ruby on Rails and hosted in its own

repository.

Thing Management System https://gitlab.uni-koblenz.de/msc/msc-tms

Service Provider
https://gitlab.uni-koblenz.de/msc/msc-service-
provider

Publisher https://gitlab.uni-koblenz.de/msc/msc-publisher

Thing
https://gitlab.uni-koblenz.de/msc/msc-
demo_thing

Patrick Nitschke

136 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group

Appendix 2: Overview of the icons used in the illustrations

• User of a system or service

• Stakeholder of a system or service

• User with a mobile device

• Mobile device

• Smartphone

• Identity of a user

• Credentials of a user

• Identity of a Thing

• Thing

ID 1

ID 1

 Appendix

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 137

• Publisher of the Holistic IoT Architecture

Framework

• Service Provider of the Holistic IoT

Architecture Framework

• Gateway of the Holistic IoT Architecture

Framework

• Thing Management System of the Holistic

IoT Architecture Framework

Publisher

Service
Provider

Gateway

TMS

	Declaration/ Erklärung
	Abstract (English)
	Abstract (German)
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Aim, Objectives and Questions
	1.3 Outline of the Thesis

	2 Research Design
	2.1 Methodology
	2.2 Research Method
	2.3 Data Sources and Collection Methods
	2.4 Scope and Basic Theory
	2.5 Research Steps and Methods for Analysis

	3 Theoretical Foundations
	3.1 Internet of Things
	3.2 IoT Platforms

	4 Developing the Holistic IoT Architecture Framework
	4.1 Sensing as a Service as a Baseline
	4.2 IoT Architecture Perspectives and Components
	4.2.1 IoT Architecture Perspectives
	4.2.2 IoT Architecture Components

	4.3 Thing Management – An underdeveloped component
	4.3.1 Differences between Network- and Organisational IoT Architecture Perspectives and Conclusions
	4.3.2 Utilising Principles of Identity Management for Thing Management in IoT
	4.3.3 Development of the Thing Management System
	4.3.4 Revising and discussing the Gateway´s Roles and Relations

	4.4 Holistic IoT Architecture Framework based on S2aaS

	5 Implementation of the Prototype
	5.1 Thing Management System
	5.2 Publisher
	5.3 Service Provider
	5.4 Evaluation Results

	6 Summary and Conclusion
	6.1 Research Questions
	6.2 Research Contribution
	6.3 Limitations
	6.4 Future Work

	References
	Appendix
	Appendix 1: Source code of the prototype
	Appendix 2: Overview of the icons used in the illustrations

