
 

 

Development of an Internet of Things architecture 

framework based on Sensing as a Service  

 

A thesis submitted for the 

Master of Science in Information Systems 

 

by 

Patrick Nitschke 

Student ID: 209210074 

E-Mail: nitschke@uni-koblenz.de 

 

Faculty 4: Computer Science 

Institute for IS Research 

University of Koblenz-Landau, Germany 

 

Supervisors: 

Prof. Dr. Susan P. Williams 

Prof. Dr. Petra Schubert 

 

Koblenz, February 2017 

 





© 2017 University Koblenz-Landau, Enterprise Information Management Research Group iii 

Declaration/ Erklärung 

I declare that, 

 

This thesis presents work carried out by myself and does not incorporate without acknowledgement 

any material previously submitted for a degree or diploma in any university. To the best of my 

knowledge, it does not constitute any previous work published or written by another person except 

where due reference is made in the text. 

 

---------------------------------------- 

 

Ich versichere, 

dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und 

Hilfsmittel benutzt habe. 

 

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden. Der Veröffentlichung dieser 

Arbeit im Internet stimme ich zu. 

 

 

 

Patrick Nitschke 

Koblenz, March 2017  

 





© 2017 University Koblenz-Landau, Enterprise Information Management Research Group v 

Abstract (English) 

The Internet of Things (IoT) is a network of addressable, physical objects that contain embedded 

sensing, communication and actuating technologies to sense and interact with their environment 

(Geschickter 2015). Like every novel paradigm, the IoT sparks interest throughout all domains both in 

theory and practice, resulting in the development of systems pushing technology to its limits. These 

limits become apparent when having to manage an increasing number of Things across various contexts. 

A plethora of IoT architecture proposals have been developed and prototype products, such as IoT 

platforms, been introduced. However, each of these architectures and products apply their very own 

interpretations of an IoT architecture and its individual components so that IoT is currently more an 

Intranet of Things than an Internet of Things (Zorzi et al. 2010). Thus, this thesis aims to develop a 

common understanding of the elements forming an IoT architecture and provide high-level 

specifications in the form of a Holistic IoT Architecture Framework. 

Design Science Research (DSR) is used in this thesis to develop the architecture framework based on the 

pertinent literature. The development of the Holistic IoT Architecture Framework includes the 

identification of two new IoT Architecture Perspectives that became apparent during the analysis of the 

IoT architecture proposals identified in the extant literature. While applying these novel perspectives, 

the need for a new component for the architecture framework, which was merely implicitly mentioned 

in the literature, became obvious as well. The components of various IoT architecture proposals as well 

as the novel component, the Thing Management System, were combined, consolidated and related to 

each other to develop the Holistic IoT Architecture Framework. Subsequently, it was shown that the 

specifications of the architecture framework are suitable to guide the implementation of a prototype.  

This contribution provides a common understanding of the basic building blocks, actors and relations of 

an IoT architecture. 
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Abstract (German) 

Das Internet der Dinge (IoT) ist ein Netzwerk bestehend aus adressierbaren, physikalischen Objekten, 

die Sensor-, Kommunikations- und Aktuator-Technologien bereitstellen und mit ihrer Umwelt 

interagieren (Geschickter 2015). Wie jedes neue Konzept, hat auch IoT Interesse über jeden 

Anwendungsbereich hinweg, sowohl in Theorie als auch Praxis, geweckt und die verfügbaren 

Technologien an ihre Grenzen gebracht. Diese Grenzen machen sich insbesondere dann bemerkbar, 

wenn die Anzahl von Dingen (Things), die über verschiedenste Anwendungsbereiche hinweg verwaltet 

werden müssen, steigt. Um die neuartigen Anforderungen zu erfüllen, wurde eine Fülle von 

verschiedenen Systemen entwickelt, die alle ihre eigenen Interpretationen einer IoT Architektur und 

ihrer jeweiligen Komponenten anwenden. Dies hat dazu geführt, dass IoT aktuell eher ein Intranet der 

Dinge als ein Internet der Dinge ist (Zorzi et al. 2010). Daher ist es Ziel dieser Arbeit, ein einheitliches 

Verständnis der Komponenten, die eine IoT Architektur bilden, zu erlangen und generische 

Spezifikationen in Form eines Ganzheitlichen IoT Architektur Frameworks zur Verfügung zu stellen. 

Diese Arbeit verwendet Design Science Research (DSR), um die genannte Architektur auf Basis der 

einschlägigen Literatur zu entwickeln. Die Entwicklung des Ganzheitlichen IoT Architektur Frameworks 

umfasst die Nutzung zwei neuer Perspektiven auf IoT Architekturen (IoT Architecture Perspectives), die 

während der Analyse von IoT Architekturen in der Literatur identifiziert wurden. Die Anwendung dieser 

neuen Perspektiven führte zur Erkenntnis, dass eine weitere, ebenfalls neuartige, Komponente in der 

Literatur implizit erwähnt wird. Die Beschreibungen der Komponenten von verschiedenen IoT 

Architekturen wurden vereinheitlicht und mit der neuen Komponente, dem Thing Management System, 

in Beziehung gesetzt, um das Ganzheitliche IoT Architektur Framework zu entwickeln. Weiterhin wurde 

gezeigt, dass die Spezifikationen der Architektur als Vorlage für die Implementation eines Prototypen 

geeignet ist. 

Der Hauptbeitrag dieser Arbeit ist ein vereinheitlichtes Verständnis der einzelnen Komponenten sowie 

deren Interaktionen einer IoT Architektur. 
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1 Introduction 

The first chapter of this thesis provides a brief introduction. The chapter begins with the problem 

statement which motivates the research conducted throughout and presented in this thesis. 

Subsequently the research aim, objectives and questions are presented to systematically guide the 

study of this thesis. An overview of the structure of this thesis is provided in the last section of this 

chapter. 

1.1 Problem Statement 

The Internet of Things (IoT) is a network of addressable, physical objects that contain embedded 

sensing, communication and actuating technologies to sense and interact with their environment. This 

network creates ecosystems that contain various services and applications (e.g. communication-, 

sensing, data analysis -services) (Geschickter 2015). Like every novel paradigm, the Internet of Things 

sparks interest throughout all domains both in theory and practice. Ever since IoT was added to 

Gartner´s Hype-Cycle of emerging technologies in 2011, it was either considered as “on the rise” or “at 

the peak of inflated expectations” (Fenn & LeHong 2011; 2012; 2013; 2014). In both hype-cycle-states 

IoT received high media coverage and an increasing number of companies started to assess how the 

Internet of Things could be integrated into their business strategies (Linden & Fenn 2003). Due to the 

novelty of this new paradigm many first-generation products were created under the label of IoT. 

However, neither businesses nor researchers have agreed upon a common, holistic understanding of 

the term Internet of Things during the hype (Wortmann & Flüchter 2015). These first-generation 

products are prone to negative publicity and technical issues. This is mainly due to the technology being 

far from mature and pushed to its limits. In fact, most IoT related projects and applications can still be 

considered as prototypes. The design of these prototypes may very well have been intuitively guided by 

the idea to create a network of humans and things alike – “(…) experimentation at essentially full scale” 

(Vaishnavi & Kuechler 2007 p. 10). 

In the case of IoT, these limits became visible when having to manage increasing amounts of different 

things and ensuring connectivity among them and to other internet services (Lee & Lee 2015). By trying 

to incorporate a plethora of different things into a global network, issues regarding scalability, 

heterogeneity, interoperability, and standardisation arise (Perera, Zaslavsky, Liu, et al. 2014; Atzori et 

al. 2010; Moreno-Vozmediano et al. 2013). Additionally, the abstract nature of the value IoT can provide 

proved to be an issue for starting IoT initiatives in the first place. According to Gartner, the ignorance 

regarding the value of data provided by IoT applications hampered the adoption of IoT in some cases 

(Velosa et al. 2015). These issues as well as the insights gained through the first prototyping phase led 

to a special circumstance of IoT in Gartner´s Hype-Cycle of emerging technologies. Despite the removal 

of the overall concept of IoT from the Hype-Cycle in 2016, several sub-concepts of IoT have been added 

in 2015 and quickly reached the brink of the “peak of inflated expectations” in 2016 (Velosa et al. 2015; 

2016b). This “split” is a special circumstance of a technology in Gartner´s Hype-Cycle, where a 
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technology is split into several sub-concepts (Linden & Fenn 2003). The newly emerged technologies are 

“Internet of Things Architecture” and “Internet of Things Platform”. Both technologies aim to tackle the 

above-mentioned issues. IoT architecture tries to pave the way for future IoT applications. It deals with 

developing networks and their architecture to support and manage increasing amounts of things. While 

businesses try to gain a competitive advantage by preparing themselves for IoT, e.g. by reassessing their 

business models for IoT or gathering knowledge (Velosa et al. 2015), researchers try to provide generic 

architecture models for the Internet of Things. For example, Khan et al. (2012) propose a generic IoT 

architecture consisting of five layers, namely business-, application-, middleware-, network- and 

perception-layer. They assigned each layer to specific tasks, responsibilities and requirements, e.g. the 

perception-layer is responsible for gathering data regarding the environment. This architecture research 

tries to introduce a common understanding of the Internet of Things, because all efforts of deploying 

the Internet of Things on a global scale is futile without a well-defined architecture (Mashal et al. 2015). 

IoT platforms aim to enable secure connectivity between things, be it humans, sensor-devices or 

services of some sort, and are regarded as an integral part of any IoT architecture (IoT Analytics 2015; 

Mineraud et al. 2016). These platforms provide software suites and various cloud based services to 

facilitate the operation of “IoT endpoints” to enable communication between various, different devices. 

Currently available IoT platforms provide functions for device and application management (PaaS), data 

aggregation, transformation, storage and management as well as some means to analyse and visualise 

data streams (Velosa et al. 2015; Mineraud et al. 2016). However, if a user wants to use the 

functionalities of any IoT platform he must adhere to some constraints imposed by IoT platforms. 

Applications built on top of an IoT platform need to adhere to the requirements of that very platform. 

However, applications adhering the requirements of a specific platform created with a toolkit provided 

by that platform are tied to that specific IoT platform (IBM 2016a). In order to be able to access and 

manage things through an IoT platform users must create an application specific “IoT endpoint” on the 

platform and configure their devices to communicate with that endpoint. The communication (e.g. data 

format, communication technology/ protocol, etc.) are dictated by the IoT platform (Ishaq et al. 2013). 

These constraints of IoT platforms lead to several lock-in effects. The platform specific application 

requirements lead to the use of proprietary solutions (e.g. toolkits, protocols, data formats, etc.), which 

leads to difficulties regarding communication and migration between different IoT platforms (Mosser 

et al. 2012; Yasrab & Gu 2016; IBM 2016a). Thus, applications developed for one IoT platform are often 

not portable between platforms. This effect is called data lock-in (Mineraud et al. 2016). Another 

consequence of IoT platforms relying on proprietary solutions is the vendor lock-in. To provide a 

seamless integration of sensors and devices into an IoT platform, gateways and sensors must often be 

from the same vendor. Additionally, vendors are forced to make their devices compatible to the 

proprietary interfaces dictated by IoT platforms (Velosa et al. 2015). This results in specific IoT platforms 

only supporting devices from specific vendors (Ahmad et al. 2016). These lock-in effects are created due 

to the predominant lack or competition of standards in IoT and lead to two additional issues (Lee & Lee 

2015; Yasrab & Gu 2016).  
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Firstly, although it is simple for users to create an IoT endpoint, register and configure their things for 

that endpoint and create IoT applications (e.g. most IoT platforms provide tools for visual application 

development), the applications and device management functionalities lack dynamics. For example, it 

is not possible to dynamically add and remove endpoints and devices to applications created with 

currently available IoT platforms (IBM 2016b).  

The reason for this lack of dynamics lies in the low level of abstraction of IoT application development 

required by current IoT platforms. On the one hand, users have visual tools (e.g. node based and visual 

development tools) to create an application. On the other hand, users need to directly address devices 

(e.g. provide a one-to-one mapping of an “IoT endpoint” node to a device talking to that endpoint). 

Thus, adding a new device requires creation of a new node on the respective application, provision of a 

device-node mapping, manually normalising of the retrieved data and redeploying the application on 

the IoT platform (IBM 2016a). 

Secondly, applications built on top of IoT platforms cannot communicate with applications, devices or 

services from other IoT platforms in a simple fashion. This problem is called the “IoT Gateway Problem” 

and was addressed by Zachariah et al. (2015). According to Zachariah et al., each different type of device 

(e.g. sensors, wearables, etc.) requires a different gateway to be connected to the internet or other 

services. A gateway is either a device or an application (e.g. an application installed on a smartphone) 

which handles and normalises communication near the network edge. The reason for this lack of inter-

device or cross-platform is two sided. The first reason lies in the fact that there are no uniform data 

formats available, which are usable across platforms and different types of devices (Mineraud et al. 

2016). To cope with these issues of data heterogeneity, data scheme identification and fusion, Mineraud 

et al. (2016) suggest that IoT platforms should provide catalogues containing semantic indexes and 

uniform interoperable data models which can be used to identify and manage data schemes. Without 

these functionalities users are currently required to manually identify data schemes, normalise, 

transform and store the data retrieved by their devices. Thus, each IoT applications database will likely 

contain different data structures which makes inter-application and cross-platform communication 

difficult. However, the second and more severe reason is the lack of actual communication 

functionalities provided by IoT platforms. Lee and Lee (2015) state that there are currently many 

different competing standards in the domain of IoT, whereas each enterprise building an IoT platform 

tries to introduce their preferred standards. Various researchers state that the introduction of standards 

is critical for the adoption of IoT on a global scale (Atzori et al. 2010; Mashal et al. 2016; Mineraud et al. 

2016). Despite the need for standardisation, some researchers (e.g. Katasonov et al. 2008; Tima et al. 

2009) argue that semantic technologies are a better approach to cope with the heterogeneity of devices 

and protocols than enforcing a common standard. 

In order to improve system dynamics of IoT platform applications and to remove cross-platform 

communication barriers, a common understanding of the elements forming an IoT architecture is 

required. Furthermore, the required functionalities of IoT platforms which are an essential element 

within an IoT architecture must be defined. Researchers have proposed a plethora of IoT architecture 
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models (Sheng et al. 2012; Mizouni & El Barachi 2013; Zaslavsky et al. 2013; Al Nuaimi et al. 2012) and 

component definitions (Zachariah et al. 2015; Ha et al. 2015; Petrolo et al. 2017; Serdaroglu & Baydere 

2016) to overcome the mentioned issues. 

Among these architectures Sensing as a Service (S2aaS), proposed by Sheng et al. (2012), has sparked 

interest in particular. This architecture combined with various proposals for IoT components (e.g. 

middlewares, gateways, services, consumers, etc.) will form the basis for the overall research aim of this 

thesis. The thesis aims to increase the abstraction level of IoT application development by examining 

S2aaS´s conceptual components and proposing a holistic architecture framework which can be 

implemented.  

This architecture framework aims to combine the various IoT architecture proposals to a common 

denominator. Based on this holistic framework literature proposing implementations, technologies or 

behaviours for each component of the architecture can be examined and the definition of each 

architectural component can be refined.  

An increased level of abstraction in the development process addresses both issues of IoT development 

platforms mentioned previously. The lack of system dynamics (e.g. because a user cannot simply add 

new IoT endpoints with respective devices on-the-fly) is reduced by introducing and specifying high level 

architectural elements. These high-level elements, their behaviour, interfaces, roles and data structures 

are to be defined by the holistic architecture framework. These high-level elements could then be used 

by users in the development process. An exemplary element may be responsible for managing and 

detecting sensors based on specific rules (e.g. a gateway-element). Furthermore, by relieving users of 

the onerous task to manually handle and transform different data structures and enforcing a common 

data format through the high-level architecture itself (e.g. common specifications for data elements and 

communication interfaces), barriers hampering cross-platform communication can be removed 

(Zachariah et al. 2015). 

1.2 Research Aim, Objectives and Questions 

By introducing a holistic high-level architecture framework, a common understanding of IoT and its 

respective elements, actors, roles and responsibilities is to be achieved. Based on this common 

understanding, barriers of cross-platform communication and issues regarding systems dynamics in IoT 

application development on IoT platforms can be addressed. To achieve the fundamental research aim 

of this thesis, which is to increase the abstraction level of IoT application development by examining 

S2aaS’s conceptual components and proposing a holistic architecture framework which can be 

implemented, several research objectives must be fulfilled. As stated before, there are many proposals 

for IoT architectures and descriptions of specific components. Among these architecture proposals 

Sensing as a Service (S2aaS) (Sheng et al. 2012; Perera, Zaslavsky, Christen, et al. 2014) has been selected 

as a foundation, as it describes core concepts, actors and components of IoT on a high level of 

abstraction. Furthermore, many architecture proposals either aim to provide the application 
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environment for S2aaS or basically describe the very same components of S2aaS (Al Nuaimi et al. 2012; 

Abdelwahab et al. 2014). S2aaS is mostly considered a cloud service which heavily relies on the 

interaction with other services (e.g. sensor services, data services, etc.). Therefore, it requires a suitable 

environment (Zaslavsky et al. 2013). In order to achieve a common understanding of S2aaS along with 

its components, actors and perspectives the first research objective (RO1) must be fulfilled.  

RO1 To identify, synthesise and evaluate Sensing as a Service components, requirements 

and perspectives. 

To achieve RO1, components of S2aaS which are discussed in the pertinent IoT architecture literature 

must be identified. Since there are multiple architecture proposals relating to Sensing as a Service, 

whether implicitly or explicitly, common features of these elements must be identified. Additionally, 

architecture proposals differ regarding their perspective on the Internet of Things. The perspective of 

the architecture proposal might be rather technical or on a business level and consequently influence 

the naming, description and nature of the architectures elements. However, the components of the 

various proposals and perspectives are to be combined into common requirements of architectural 

elements. Thus, to achieve RO1 the following research questions must be answered.  

RQ1.1 Which components of S2aaS are addressed in the pertinent IoT architecture 

literature? 

RQ1.2 Which perspectives on the components of S2aaS are to be considered? 

RQ1.3 What common requirements for S2aaS components can be defined? 

After having achieved RO1, research regarding IoT components is examined to identify already existing 

systems, services and concepts which fully or partially fulfil the component´s requirements worked out 

in RO1. By providing a mapping between architecture components and existing concepts, systems and 

services, the rather abstract descriptions of the architecture components can be refined. This is 

achieved by incorporating the specific descriptions and specifications of these existing services, 

concepts and systems into the definitions of the architectural components created in RO1. In order to 

be able to select these existing concepts a mapping between services/concepts/systems and 

architectural components must be realised (e.g. the concept of an IoT gateway or middleware is mapped 

to an architecture component). Thus, the next objective is to provide a mapping between existing IoT 

services, systems and concepts and S2aaS architectural components. 

RO2 To map architectural components of S2aaS to existing IoT services, systems and 

concepts. 

To accomplish RO2 two research questions must be answered. The first question aims to find out how 

existing services, systems and concepts can be mapped to architectural components of the Sensing as a 

Service architecture. This mapping should be able to classify services, systems and concepts (e.g. 

gateways, middlewares, etc.) and assign them to the respective S2aaS architecture element(s). Based 

on this mapping some existing services, systems and concepts will be identified and mapped onto 

architecture elements to answer the second research question of RO2. 
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RQ2.1 How can existing services, systems and concepts be mapped to components of S2aaS? 

RQ2.2 Which existing services, systems and concepts can be mapped to components of 

S2aaS? 

Based on the high-level S2aaS components and their likewise high level requirements from RO1 and the 

mapped systems, services and concepts as a result of RO2 a detailed specification of the S2aaS 

components is to be achieved. Based on the refined descriptions and requirements for each system, 

service or concept in RO2, which are likely to be much more detailed than the high-level specifications 

of the components from Ro1, and the mapping between different levels of abstraction the fulfilment of 

the next research objective becomes possible. 

RO3 To propose detailed specifications for the components of IoT architecture framework. 

This research objectives can be achieved by simply answering RQ3.1. 

RQ3.1 What are the specifications for each component? 

Based on the outcome of RO3 existing technologies can be identified which might fully or partially 

support the required functionalities of each component of the proposed holistic architecture 

framework. Therefore, the following and last research objective is to be achieved. 

RO4 To find technologies supporting the implementation of the proposed architecture 

framework. 

RO4 is achieved firstly by identifying criteria for selecting technologies. These criteria are drawn from 

the requirements developed in RO1 and the detailed specifications from RO3. Secondly, existing 

technologies (e.g. communication protocols, existing applications, code libraries, etc.) need to be 

selected based on the previously defined criteria.  

RQ4.1 Which criteria are important for the selection of technologies that support the 

implementation of the proposed architecture framework? 

RQ4.2 Which technologies are suitable to implement components for the proposed 

architecture? 

By accomplishing RO1 to RO4 and answering the respective research questions (see Figure 1) a common 

understanding of IoT and its elements can be achieved, and thus the overall research aim. 
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Figure 1. Research objectives with associated research questions (own illustration) 

1.3 Outline of the Thesis 

This section provides an overview of the structure of this thesis. The thesis consists of six chapters, which 

are briefly described in the following paragraphs. 

Chapter 1 provides a brief introduction, consisting of the problem statement and the research aim and 

objectives guiding the further research conducted throughout this thesis. 

Chapter 2 elaborates on the research design that provides the basis for the research which was carried 

out in this thesis. The chapter begins with the description of Design Science Research, which is used as 

the methodology (see section 2.1.), followed by a description of the research methods used in each 

phase of Design Science Research in section 2.2. The following sections discuss the data sources and 

collection methods (section 2.3) as well as the scope and basic theory (see section 2.4). The chapter 

concludes with an illustration of the individual research steps performed in this thesis. 

Chapter 3 introduces the Internet of Things (see section 3.1) and specifically describes IoT platforms in 

section 3.2 to provide supplementary information for the following chapters. 

Chapter 4 represents the main part of this thesis. It describes Sensing as a Service in section 4.1, followed 

by the development of IoT Architecture Perspectives and of the components of the Holistic IoT 

Architecture Framework (see section 4.2). Based on the components and perspectives developed in the 

previous section, a novel component for the Holistic IoT Architecture Framework is developed in section 

4.3. The chapter concludes with the combination of the components developed in section 4.2 and 

section 4.3 which forms and finalises the Holistic IoT Architecture Framework (see section 4.4). 
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Chapter 5 documents the prototype implementation of the components of the Holistic IoT Architecture 

Framework in sections 5.1 to 5.3. The chapter finishes with an evaluation of the implementation of the 

prototype application of the architecture framework in section 5.4. 

Chapter 6 is the final chapter of this thesis and provides summarised answers to the research questions 

(see section 0) and discusses the research contribution in section 6.2. The last two sections discuss the 

limitations of the research conducted throughout this thesis (see section 6.3) and possible topics and 

challenges for potential future work (see section 6.4). 
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2 Research Design 

In this chapter the research design used throughout this thesis is presented. This chapter deals with the 

methodology (see section 2.1), the research method (see section 2.2), the data sources and collection 

methods (see section 2.3) as well as the scope and basic theory (see section 2.4). The chapter concludes 

with an overview of the research steps and the corresponding methods for analysis in section 2.5. 

2.1 Methodology 

This thesis aims to achieve a common understanding of IoT architecture elements. To accomplish this, 

a holistic architecture framework is to be developed. The development of the framework is based on 

the analysis of existing architecture proposals for the Internet of Things. Thus, the phenomenon of 

interest as well as the desired outputs of this thesis are elements of the area of Information Systems 

(IS) and artificially created (Vaishnavi & Kuechler 2004). The analysis and development of the 

architecture framework focusses on achieving and answering the research objects and respective 

research questions stated in section 1.2. The technical and organisational interdependencies and 

elements of IoT architectures are the phenomenon of interest. The new holistic IoT architecture 

framework is to be created to improve the knowledge and understanding of IoT and to address the 

issues, such as system dynamics of IoT platform applications, mentioned earlier in this thesis (see 

section 1.1). Based on the phenomenon of interest and the desired output of this thesis, Design Science 

Research (DSR) is used to develop the IoT architecture framework as an artefact and evaluate it. This 

methodology is deemed to be especially suited for developing IS artefacts and provides a framework 

for performing said tasks (Vaishnavi & Kuechler 2007). The General Design Cycle (GDC), described by 

Takeda et al. (1990) and Vaishnavi & Kuechler (2007) i.a., is an integral part of DSR and can be used to 

structure the research process.  

This cyclic model consists of five individual process steps. Research or design using this model begins 

with the awareness of problem. In this step a problem is to be identified, whether intentionally or not. 

This first step is the most unstructured part of the GDC. A problem can arise during literature research 

or in practical engagements with an already existing IS artefact (Vaishnavi & Kuechler 2007). In the 

original GDC model Takeda et al. (1990) suggest that the designer or researcher becomes aware of a 

problem, which is taken from a known or unknown set of existing problems, and decides whether this 

problem is to be solved. The problem addressed in this thesis, which is the lack of a common 

understanding of IoT architecture elements, responsibilities and related problems (see section 1.1), 

became clear during the initial and preliminary literature research and analysis as well the explorative 

use of IoT platforms. In the second process step of the GDC, the suggestion, existing knowledge of the 

problem domain is used to abductively draw suggestions for solving the problem. Alternatively, the 

suggestion can also be developed by using appropriate research methods or patterns of DSR (Vaishnavi 

& Kuechler 2007). The result of the second process step of the GDC is a tentative design which in turn 

guides the development of a new artefact. In the development step of the GDC most of the design tasks 
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are performed. The tentative and likely incomplete design is further refined and continuously improved 

and a new artefact is developed. The nature of the artefact depends on the phenomenon of interest 

and can range from actual implementations of software systems to rather abstract manifestations in 

form of models or other constructs (Vaishnavi & Kuechler 2004). The next process step of the GDC 

consists of an evaluation of the artefact. Usually the tentative design already contains some evaluation 

criteria, whether explicit or implicit. The result of the evaluation are insights regarding the performance 

of the artefact and its capability of solving the problem state in the first step (awareness of problem). 

The three steps suggestion, development and evaluation are often repeated multiple times and the 

results and insights gained in each evaluation and development step are used as input for the next 

cycle´s suggestion step to further improve the artefact (Vaishnavi & Kuechler 2004). The last process 

step of the GDC, the conclusion, marks the end of a DSR project as well as the GDC. Additionally, 

Kuechler et al. (2005) suggest an extension of the GDC which links multiple instantiations of a GDC 

associated to different research projects and domains together. The result and insights of one GDC is 

used as a starting point for another research and design project. This extension is called Aggregate 

General Design Cycle (AGDC). However, this thesis only utilises one instance of a GDC.  

 

Figure 2. Knowledge Contribution Framework (adapted from Gregor & Hevner 2013) 

The kind of knowledge contribution of a DSR projects depends on two factors (see Figure 2), the 

maturity of problem and solution domain (Gregor & Hevner 2013). The problem domain is the domain 

in which the problem has been identified during the process step of the GDC awareness of problem. In 

this thesis, the Internet of Things constitutes the problem domain. The solution domain, from which 

existing knowledge is used to draw conclusions and create a tentative design that guides the subsequent 

steps, is Identity Management and will be thoroughly explained in section 2.4.  

The knowledge created throughout a DSR project can be classified as part of one of the following classes 

of outputs: constructs, models, frameworks, architectures, design principles, methods, instantiations 
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and design theories. For a detailed explanation of each of these classes refer to Vaishnavi and Kuechler 

(2004). The desired outputs of this thesis are constructs, which are the common components required 

by RO1 and RO3, as well as models defining the relationship between these components. An 

instantiation should then operationalise the previously defined constructs and models to aid the 

evaluation step of the GDC. 

2.2 Research Method 

The methodology chosen and presented in the previous section inevitably guides the selection of 

appropriate research methods. However, due to the fact that the IS research community is considered 

a multi-paradigmatic research community, the research method can be chosen relatively freely 

(Vaishnavi & Kuechler 2007). As already stated, this thesis applies Design Science Research as its 

research methodology. For each process step of the GDC mentioned previously different research 

methods or patterns can be applied. This thesis utilizes the patterns presented by Vaishnavi and 

Kuechler (2007) as research methods or at least as supporting guidelines for performing each process 

step of the GDC.  

The conducting of the first process step of the GDC, awareness of problem, is guided by the meta level 

pattern “Questioning Constraints” presented by Vaishnavi and Kuechler (2007). This pattern is labelled 

as a meta level pattern because Vaishnavi and Kuechler state that it is applicable during each process 

step of the GDC. This pattern aims to identify research gaps by questioning constraints imposed on a 

research problem. It does not matter if these constraints are implicitly or explicitly mentioned by the 

research community dealing with the research problem (Vaishnavi & Kuechler 2007). This pattern is 

especially suitable when a researcher starts to work in a new field and thus is able have an unbiased 

view on the field. In addition, the researcher should have some knowledge on adjacent research fields 

and related technologies that might have impact on the constraints.  

The second and third process step, suggestion and development respectively, of the GDC are directed 

by the suggestion and development patterns Theory Development and Problem Space Tools and 

Techniques also presented by Vaishnavi and Kuechler (2007). The pattern theory development can be 

applied when the researcher intends to draw theory from his work. Theory, according to Vaishnavi and 

Kuechler (2007), can be new models, concepts and conceptual frameworks i.a. As this thesis intends to 

create an IoT architecture framework based on existing IoT architectures to provide a common 

understanding of IoT´s elements, this pattern can guide the development of such theory. Specifically, 

the incremental theory development described by Vaishnavi and Kuechler guides the development of 

theory, the subsequently created artefact, it´s evaluation and influence on the refinement of the theory 

(Vaishnavi & Kuechler 2007). The pattern problem space tool technique guides the researcher in finding 

appropriate tools to solve the research problem. These tools, which are applied to the problem domain, 

then guide the researcher in subsequent tasks. Vaishnavi and Kuechler (2007) state that the researcher 

should utilise his general knowledge of existing research tools and techniques to identify an appropriate 

candidate and apply it to the problem domain. 
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The third process step, the development, of the GDC will additionally utilise another research method. 

Gero (2000) proposes axiom based design research as a research method for developing IS or design 

artefacts. This research method allows the creation of IS artefacts by first specifying several axioms and 

then deriving their logical consequences. Suh (2000) further elaborates this method in context of the 

design of software systems. Designing software systems, and any other design task, is based on the 

independence- and information axiom as well as the customer-, functional, physical- and process-

domain and a mapping between these domains. This design framework requires the designer or 

researcher to adhere to two axioms. The independence axiom states that functional requirements must 

not interfere with each other. Each functional requirement should be satisfied by a design parameter. 

Depending on the requirements or dependencies between different design parameters a specific design 

can be classified as an uncoupled-, a decoupled or a coupled design, whereas an uncoupled design is 

considered the best solution (Suh & Do 2000; Park 2007). By using the design matrix, a supporting 

method mentioned by Suh (2000), the dependencies between functional requirements and design 

parameters can be displayed. Furthermore, Suh describes specific steps for designing a software system 

with axiomatic design.  

In the first step the functional requirements are derived from the customer domain. In the next step a 

design parameter is assigned to each functional requirement that satisfies that functional requirement. 

Suh (2000) notes that there can be many different designs, which are mappings between different 

domains, that can satisfy the independence axiom equally. To be able to select the “best” design among 

a set of existing designs, Suh introduces the information axiom. The axiom states that the best design is 

the design that contains the least information. In the context of software systems Suh considers 

information as the complexity of the system. Thus the least complex design is the best design according 

to Suh (2000). Having selected the best design, the next step presented by Suh requires the 

decomposition of functional requirements. When the functional requirements are unclear or sufficiently 

complex, they need to be decomposed into sets of simpler requirements. After having decomposed 

each requirement, new design parameters must be assigned to the simple requirements and new more 

detailed design must again be evaluated according the information principle. The steps one to three are 

repeated until each functional requirement and associated design parameter of the design can be 

implemented without further decomposition (Suh & Do 2000; Park 2007). This procedure ensures that 

the resulting design or software system is highly modularised. As this thesis aims to create a holistic IoT 

architecture framework, it is desirable that this framework is highly modularised.  

As described in section 1.2, RO3 aims to provide a detailed description of each architecture element. By 

applying axiom based design as a research method during the development step of the GDC, the 

elements of the IoT architecture shall be considered encapsulated, not as further decomposable 

elements. Thus, a separation of concerns between each element of the IoT architecture framework can 

be ensured. 

The evaluation step of the GDC will apply the demonstration pattern mentioned by Vaishnavi and 

Kuechler (2007). The intent of this pattern is to demonstrate that the IoT architecture framework 
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developed through is thesis is indeed implementable. During the implementation, the creation of an 

instantiation, further insights regarding the practicability and limitations of the architecture framework 

might be gained. 

2.3 Data Sources and Collection Methods 

During the initial phase of this thesis a literature research was conducted to become familiar with the 

new area of IoT. This literature research pattern described by Vaishnavi and Kuechler (2007) can be used 

after a research domain has already been identified. In this thesis, the research domain of interest is 

IoT. Vaishnavi and Kuechler suggest that researchers should review internet resources, literature on the 

research domain of interest as well as attend conferences of that domain. However, reviewing literature 

regarding IoT in general is deemed sufficient to become familiar with the topic in this thesis. For the first 

literature research the databases SpringerLink1, ACM Digital Library2, IEEE Xplore Digital Library3, 

Science Direct 4as well as ResearchGate 5and Google Scholar6 are used. This initial literature research 

was focused on IoT in general and on IoT test beds or simulation environments. Therefore, the following 

groups of keywords were used. The first group contained the keywords “Internet of Thing*” and “IoT”, 

whereas the “*” represents that the keyword may be stemmed (e.g. “Internet of Thing” or “Internet of 

Things” may be used). The next group contains “Simulation*” and “Testbed*”. The third group consists 

of the keywords “Information*” and “Context”. The groups are combined with “and” and each keyword 

in a group are combined with an “or” operator.  

The result of this first literature research yielded 33 articles, ranging from 1990 to 2016 (year of 

publication). When reviewing these articles three loosely connected time periods stood out. The first 

period, ranging from 1990 to 2006 contained articles that dealt with the foundations of simulation 

techniques in general. The second period, from 2006 to 2011, focussed on low level issues regarding 

simulation and network environments. This period aimed to provide the basis for management and 

implementation of Wireless Sensor Networks (WSN), their simulation and other networking issues. The 

last period, from 2012 to 2016, mainly contained articles dealing with high level and architectural issues 

regarding large sensor or device networks, management of information as well as the value and trust of 

this automatically generated and processed information. During the first two periods, mainly technical 

issues were addressed in literature. The third period additionally tries to incorporate humans into the 

                                                           

1 http://link.springer.com/ 

2 http://dl.acm.org/ 

3 http://ieeexplore.ieee.org/  

4 http://www.sciencedirect.com/ 

5 https://www.researchgate.net/ 

6 https://scholar.google.de/ 

http://link.springer.com/
http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com/
https://www.researchgate.net/
https://scholar.google.de/
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newly proposed applications and architectures, so that information, privacy, trust, and security became 

apparent and important topics.  

Among the articles assigned to the third period, was an article by Sheng et al. (2012) that presented a 

novel architecture model for IoT. This particular architecture, further extended by Perera et al. (2014) 

combined with the above described issues becoming nascent during the first exploratory use of IoT 

platforms is responsible for the shift in focus regarding the literature search of this thesis. 

The subsequent literature research focusses on articles on IoT architectures, their corresponding 

elements and related concepts, systems and services. The keyword groups used to obtain articles 

dealing with the said topics are as follows. The first group again consists of “Internet of Thing*”, “IoT” 

and “Web of Service*”. The second group contains the keywords “architecture*”, “framework”, 

“model”. The third group consists of the keywords “mobile phone sensing”, “sensing service”. This 

second literature search yielded several articles, from which six articles where specifically dealing with 

IoT architectures. The articles and respective architecture proposals, element descriptions and 

containing systems, services and concepts form the basis for the analysis of IoT architecture frameworks 

and the identification of common elements, as required for accomplishing RO1, RO2 and RO3. 

2.4 Scope and Basic Theory 

Based on the articles proposing or describing IoT architectures, single elements or other concepts, 

systems or services discovered as part of the second literature search described in the previous section, 

an analysis and comparison of the IoT architectures is to be conducted. The analysis focusses on the 

architecture elements and their relations (e.g. interfaces with other elements). Since this thesis aims to 

provide a high-level architecture framework, aspects regarding the detailed inner workings of elements 

(e.g. energy efficiency or context detection techniques for gateways) are not taken into account for the 

intended analysis. 

The basic theory that shall be incorporated into the construction of the IS artefact by applying the GDC 

is Identity Management (IDM). Although it is often stated that IDM has no clearly defined meaning, 

especially in the digital world, a preliminary definition can be built upon the commonly agreed 

constructs of IDM (Jahankhani et al. 2010). In essence, IDM deals with issuing credentials to users during 

the registration phase and subsequently identifying these users with the identifiers to grant or refuse 

access to systems, services or other digital systems (Jøsang & Pope 2005). This superficial definition also 

contains the common constructs used in IDM. Users are considered as Entities, credentials as Identities 

and a single attribute of these credentials (e.g. username, password or other information) as Identifier. 

The set of identifiers that are used to identify a user in a system is considered an Identity Domain, which 

imposes certain criteria on the selection of identifiers (Jøsang & Pope 2005). These constructs are then 

used by an Identity Management System, which provides several services (e.g. authorisation, 

authentication, enterprise directory, etc.) to users or entities (Jahankhani et al. 2010). The constructs 
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and their relationships as well as requirements for an Identity Management System are explained 

subsequently. 

The core of identity management consists of entities, identities and identifiers (see Figure 3). An entity 

represented by one or more identities, whether completely or partially. Entities can be real-life persons, 

enterprises or other legal bodies or digital services/ things (Jøsang & Pope 2005). Entities can be 

represented by multiple identities (Bhargav-Spantzely et al. 2006). There also exists the concept of 

shared entities, where several individual entities act as a single entity in a specific context. An example 

for this are families or companies. They consist of individual entities (e.g. family members, employees), 

which in turn can have multiple identities themselves, but act as a single entity in certain contexts, 

where an outsider cannot tell which “sub-entity” he is dealing with (Jøsang & Pope 2005). Entities are 

then described or represented by Identities. Identities are context specific, thus an entity has different 

identities in different contexts, e.g. an identity of an entity in a social network might significantly differ 

from the identity provided by the passport (Jahankhani et al. 2010). Furthermore, identities can describe 

their corresponding entity only partially or completely, again depending on the context or application 

domain. The identity consists of a set of characteristics referring to the entity. Only the complete set of 

characteristics (e.g. the required fields in a registration form) assemble an identity in a context or 

application domain. Depending on the context, an identity can be unique or ambiguous (Jøsang & Pope 

2005). Identifiers, or characteristics, are the building blocks of identities. Each identifier is a claim of the 

corresponding entity that is not necessarily verified or certified by a third party, they are merely 

assertions that an entity has a specific characteristic (Bhargav-Spantzely et al. 2006; Cameron 2005). 

Identifiers have several properties. They are either transient or permanent (e.g. a student-number is 

transient, a social security number is permanent).  

An identifier can be self-selected or issued by an authority (e.g. usernames are self-selected, social 

security numbers are issued) (Jøsang & Pope 2005). Which identifiers are required and/ or used to 

uniquely identify an identity depends on the identity domain or context the identity is in. In an identity 

domain, all identities are unique. It is a namespace which enforces a one-to-one relationship between 

identifiers and identities. Thus, not every kind of identifier is suitable to build a namespace, e.g. the date 

of birth usually does not provide a one-to-one mapping. Designing such a namespace is challenging and 

the problem scales with the size of the identity domain. Additionally, identifiers selected for the 

namespaces must usually be easy to remember, because they are primarily used by humans (Cameron 

2005). Identity domains, containing identities uniquely identified by a namespace are an integral part 

of Identity Management Systems. These systems manage identities and provide authentication, 

authorisation and directory services. Entities authenticate with the system by using the identifiers 

defined by the namespace of the identity management system´s identity domain. After being 

authenticated entities are authorized to use specific services according to roles they have been assigned 

to or according to some rules defined otherwise. These roles or rules are stored in the enterprise 

directory of the identity management system (Jahankhani et al. 2010).  
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Figure 3. Relationship between Entity, Identity and Identifier (adapted from Sarma & Girão 2009) 

According to Cameron (2005), identity management systems must adhere to the “Laws of Identity” that 

specify requirements for dealing with identities. The first law states that the end-user should always 

stay in control and must be asked for his consent when exposing any kind of information. The second 

law, the law of minimal disclosure, states that only a minimum amount of information must be shared 

with third parties. The third law requires that the third parties, with whom the information is shared, 

must have a necessary and justifiable requirement for obtaining that information. The fourth law 

requires that the mode of use for the identifiers must be able to be specified. This means that a user 

must be able to define in which contexts a specific identifier of one of his identities can be used. The 

fifth and sixth law require heterogeneity and human usability respectively. The seventh and last law 

states that the handling of identities must provide the same user experience across contexts (Cameron 

2005). 

Additionally, the research domain of identity management distinguishes between User Centric-, 

Federated Identity Management Models and User Centric Federated Identity Management Models, 

which is a mixture of both. However, Bhargav-Spantzely et al. (2006) note that these terms and 

especially User Centricity lack a common understanding.  

A Federated Identity Management Model shares and maps the identifiers and identities provided by 

users (entities) among service providers. Normally, each service provider would have its own identity 

domain. In a federated identity management model however, the service providers have agreed upon 

a set of standards and technologies to share the identity information (Jøsang & Pope 2005). This creates 

a single shared identity domain. As soon as a user is authenticated with one service provider who is 

member of the identity federation, he is authenticated with all other service providers as well. However, 

due to the implicit sharing of identity information, the federated identity model violates the first three 
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laws of identity in favour for a certain degree of “ease of use” for the user (Cameron 2005; Bhargav-

Spantzely et al. 2006).  

 

Figure 4: Federated Identity Management Model (adapted from Jøsang & Pope 2005) 

The User Centric Identity Management Model comprises the idea that the user should always be in full 

control over transactions containing his identity. Bhargav-Spantzely et al. (2006) distinguish between 

two different types of user centric identity management, namely relationship- and credential-focussed 

identity management. In a relationship-focussed identity management approach a user, or entity, 

merely maintains a relationship with the identity management systems that has issued his credentials. 

The identity management system, sometimes called identity provider, is invoked in every transaction 

made with these credentials. The identity management system then handles the communication of 

identity information with the respective service provider used in the transaction. A good example 

provided for this type of user centric identity management is given by Bhargav-Spantzely et al. (2006). 

Credit cards, issued by a bank, are considered as a relationship between the issuer (the bank) and the 

holder (customer of the bank). These credentials/ identifiers used to identify the customer, or the entity, 

are usually the credit card number, the card validation code and a signature. The customer is in full 

control over his credentials and invoked in every transaction. When the customer uses the credit card 

to make a transaction to a service provider (i.e. when he wants to pay with the credit card), the bank 

must first validate the card and thus needs to identify the holder by using the provided credentials. 

Upon successful validation and authentication, the bank then handles the transaction of the relevant 

identity information to the respective service provider (Bhargav-Spantzely et al. 2006). A credential-
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focussed identity management approach aims to obtain permanent credentials. These credentials are 

managed by the user (or entity) and can be used in transaction without invoking the identity 

management system that has issued these credentials (Bhargav-Spantzely et al. 2006). Jøsang and Pope 

(2005) suggest to use a Personal Identification Device (PAD) to locally store and manage credentials (see 

Figure 5). 

 

Figure 5: User Centric Identity Management Model (adapted from Jøsang & Pope 2005) 

In this case the PAD is responsible for storing different credentials for accessing different service 

providers, whereas each has a different identity domain. However, the PAD can also be used to store 

long term credentials. Again, Bhargava and Spantzely (2006) provide an example for a credential-

focussed identity management model where the example of credit cards need to invoke the 

corresponding identity managemen system. In contrast, passports are valid on their own. Passports are 

also issued by an identity management system, usually the government of the country a person lives in, 

and contains a set of identifiers to identify the holder of the passport without invoking the country´s 

government. All identifiers are stored locally, the user is also invoked in every transaction requiring his 

identity information and he is also in full control of this information (Bhargav-Spantzely et al. 2006). 

The concepts provided by identity management are used in the development phase of the GDC 

described in chapter Error! Reference source not found. of this thesis. Since, the internet of things i

ncorporates a vast number of devices, or things, and each of these devices has inevitably an owner in 
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the real world, one can conject that each of these things can be regarded as an identity representing its 

associated entity (Mazhelis et al. 2013). When a family decides to install various smart sensors in their 

house, each of these sensors exposes characteristic information, an identifier, regarding that family, be 

it simple temperature sensors or advanced cameras tracking and recognizing faces. Contrastingly, smart 

things can also act as service providers, where identities can be authenticated to perform certain 

actions. Fremantle et al. (2014) describe the scenario of a smart lock where the owner can grant access 

to the lock so that multiple persons, which are authenticated via their identities of the smart lock’s 

identity domain, can unlock it. Additionally, some rules, such as access in a predefined period of time, 

can be defined. Thus, things can be both identities and service providers in terms of identity 

management. 

2.5 Research Steps and Methods for Analysis 

Since this thesis aims to create an implementable high level IoT architecture framework by applying 

design science research and the corresponding general design cycle as the research methodology, the 

selected method for analysis is the demonstration pattern as described in section 2.2.  

For an overview of the research steps see Figure 6. In the first and second step of the GDC a tentative 

design based primarily based on academic literature and IoT platform reviews is created. As described 

in section 2.1, the awareness of problem and suggestion step of the GDC result in the research problem 

as well as a suggestion for the solution for that problem, which was suggested in section 1.1. The 

research problem that motivates this thesis is the lack of a common understanding of IoT architecture 

elements and resulting problems, such as a lack of system dynamics and insufficient interoperability due 

to heterogeneity issues. Thus, this thesis suggests to synthesise different IoT architecture proposals into 

a holistic IoT architecture framework. The research problem and the tentative design are elaborated on 

in section 1.1 and section respectively 1.2. 
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Figure 6: Research steps (own illustration) 

Based on the tentative design, literature research on IoT architectures and Sensing as a Service (S2aaS) 

is performed to answer both RQ1.1 and RQ1.2. The data sources and methods of collection for the 

literature research is described in section 2.3. Based on the answers of RQ1.1 and RQ1.2, which are the 

S2aaS perspectives and common elements respectively, the actual component requirements are to be 

created in the next research step. This research step aims to answer RQ1.3. Having completed this step, 

RO1 is achieved and a first sketch of the high level IoT architecture framework is achieved. Knowing the 

requirements for each element, the next research objective can be addressed. Based on the component 

requirements (see RO1) and a literature research on IoT systems, concepts and services a mapping 

between existing IoT systems, concepts and services and the previously identified components is to be 

achieved in the next research step. This step aims to answer RQ2.1 as well as RQ2.2 and thus to achieve 

RO2. Now having detailed information of the relationships and perspectives of the architecture 

elements as well as an understanding about which existing IoT systems, services and concepts can be 

mapped to these elements, this information can then be combined to create detailed component 

specifications of the high level IoT architecture framework (see RO3). The last research objective (RO4) 

is achieved by conducting a review of suitable implementation technologies that could support the 
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prototypical implementation of the high level IoT architecture framework and the detailed component 

specification which are the result of achieving RO3. Based on the identified technologies, selection 

criteria are created and subsequently, based on these criteria and the detailed component specification 

suitable technologies are selected. The selected technologies are then used to create the prototype 

implementation of the high level IoT architecture framework. During the development of the 

architecture as well as the prototype several implicit evaluation criteria are likely to occur. After the 

development, the evaluation step of the GDC will make these implicit criteria explicit and evaluate the 

architecture framework as well as the prototype. 
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3 Theoretical Foundations 

This chapter gives a definition of the Internet of Things, presents its history and different perspectives 

in section 3.1. Furthermore, this chapter provides a brief definition of IoT platforms in section 3.2. 

3.1 Internet of Things 

The Internet of Things is deemed to have a high impact on every aspect of everyday life (Barnaghi et al. 

2012). It is envisioned to be the integration of the physical world into the digital world or vice versa 

(Fleisch 2010). Enterprises and countries alike have already assessed the importance of IoT and started 

to move into strategically advantageous positions to exploit the most value of IoT. For example, the 

National Intelligence Council (2008) sees IoT as one of the Five Disruptive Civil Technologies, which has 

a potentially important impact on the country´s interests out to 2025. Gartner (2015) advises 

enterprises to start or keep focussing on augmenting their business processes and models with IoT 

solutions and obtain expert knowledge as soon as possible. Gartner (2016a) also speculates that by 2020 

the majority of new business processes will be supported by IoT technologies and solutions in one way 

or another. At the same time, Gartner (2016a) predict that by 2020 more than 20 billion devices are 

connected to the internet. On a side note, Gartner (2016a) also assumes that by 2020 there will be a 

black market worth of five billion US$ for fake sensor data, which emphasises the need for information 

reputation and evaluation techniques in IoT. For IoT to be successful, a trust environment has to be 

established (Botterman 2009). As already elaborated on (see section 1.1) and highlighted again in this 

chapter, IoT can very well be considered as a hyped technology (Fenn & LeHong 2011; 2012; 2013; 2014; 

2015; 2016b). With IoT being a relatively new concept and under high coverage of both media, 

businesses and researchers it is not surprising that the term itself and related research field lack a 

commonly accepted and established definition. The commonly mentioned core ideas of IoT are the 

seamless integration of virtual and physical objects into a network, their contextual interaction and 

cooperation to reach common goals and their pervasive as well as ubiquitous presence in the real and 

digital world (Atzori et al. 2010; Mazhelis et al. 2013; Barnaghi et al. 2012; Fleisch 2010). 

The very first idea that led to today’s concept of IoT was the goal to integrate physical things into digital 

systems. The development was driven by the idea to enhance supply chains, trade and inventory 

management by applying Electronic Product Codes (EPC) to products and items. These EPCs can be used 

to store and share information regarding the items and products they are attached to. The information 

is shared by using standardised interfaces and utilizes Radio Frequency Identification (RFID) as well as 

the internet and related communication systems. Early research and efforts regarding standardisation 

were performed by EPCglobal (2009), which aims to introduce a global standardised architecture for 

EPC, and by the Auto-ID Labs (Auto-ID Lab 2017), which focusses on research regarding RFID networks 

and emerging sensor techniques (Atzori et al. 2010). Objects or Things equipped with RFID tags, usually 

consisting of an antenna and a microchip storing information, can be tracked by RFID readers which can 

read the information stored in the RFID tags. Thus, computer systems can obtain information of the real 
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world, i.e. of physical objects. The term Internet of Things is attributed to the Auto-ID Labs (Ashton 2009) 

and was later formally defined by the International Telecommunications Union (2005). As previously 

mentioned, the driving idea behind this early development stage of IoT was the goal to mesh the 

physical and the digital world. Atzori et al. (2010) theorise that this early research is guided by the Thing 

Oriented Vision of IoT, which will be elaborated on later in this chapter.  

However, Atzori et al. (2010) also say that IoT can and will not merely be a global EPC system based on 

RFID. More different and kinds of things will be added and connected by using different communication 

technologies (e.g. NFC, Bluetooth Low Energy (BLE), etc.). Things will need to be managed and organised 

into networks (e.g. Wireless Sensing and Actuating Networks (WSAN)). The upcoming heterogeneity 

was already considered in the formal definition of IoT provided by the International 

Telecommunications Union (2005). The definition states that the internet cannot only connect anyone 

at any time and any place but anything at any time and any place. This view focusses more on the 

networking aspect of IoT and Atzori et al. (Atzori et al. 2010) name it the Internet Oriented Vision of IoT. 

Having agreed upon these ideas and with IoT gaining significant interest, both research and industry 

tried to develop relevant use cases for IoT. Among others, advantageous use cases in supply chain 

management, logistics and inventory management were identified. Apart from that, the smart fridge 

presented by LG in the year 2000 is used as a prominent example of IoT for consumers (Sone 2001; 

Rothensee 2008). With decreasing costs and increasing availability of relevant IoT technologies (e.g. 

RFID tags, low energy sensors and BLE, etc.), the number of things connected to the internet increased 

and rapidly outgrew the number of addressable devices used by the current addressing scheme of the 

internet (IPv4). With the introduction of IPv6 to accommodate a practically inexhaustible number of 

addressable devices in 2011 and the introduction of IoT to Gartner´s Hype Cycle of Emerging 

Technologies in the same year, the concept of the Internet of Things finally became visible for the broad 

public (Fenn & LeHong 2011; Madakam et al. 2015). Gartner considered IoT at this time as an Innovation 

Trigger, thus many prototype products, systems and supporting technologies were developed (see 

section 1.1) (Fenn & LeHong 2011). With a vast number of connected things, issues regarding 

information search, organisation and storage became apparent. As already noted, IoT inevitably implies 

a certain degree of heterogeneity. Therefore, traditional means of managing and searching information 

are rendered impractical (Atzori et al. 2010). Semantic technologies (e.g. Resource Description 

Framework (RDF), Web Ontology Language (OWL), etc.) are regarded as a potential solution for these 

challenges. This is why the Semantic Oriented Vision of IoT emerged (Atzori et al. 2010).  
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Figure 7: Perspectives of IoT (adapted from Atzori et al. 2010) 

As mentioned earlies in this chapter, IoT is said to lack a commonly accepted and established definition 

due to high media coverage and interest from all different domains as well as the novelty of the research 

domain. Each of these domains or groups of interest, which focus on different aspects of the core ideas 

of IoT and enter different stages of the “rise of IoT”, can loosely be assigned to one of the mentioned 

Perspectives of IoT (Atzori et al. 2010). These perspectives are the Thing Oriented -, Internet Oriented - 

and the Semantic Oriented Perspective of IoT (see Figure 7). In the following paragraphs, each 

perspective will be explained in more detail. 

Thing Oriented Vision of IoT 

As already mentioned, this perspective can be regarded as the first perspective of IoT. Focussing on 

RFID, WSANs and Smart Items it considers Things, along with their identity, functionality and 

information as the core of IoT (International Telecommunication Union 2005). According to Atzori et al. 

(2010) the core technologies of this vision are RFID and NFC, which provide wireless short to medium 

range communication. Everyday objects are then enhanced with these technologies to become Spimes. 

Spimes are theoretical objects that can be tracked throughout space and time, beginning from their 

manufacturing until their disposal (Atzori et al. 2010). A Spime is associated with an owner and contains 

information regarding their previous owners and their contents (e.g. which materials it is made of, etc.) 

(Sterling 2005). Furthermore, these objects are uniquely identifiable. This requires advanced addressing 

schemes, capable of maintaining great numbers of objects (Atzori et al. 2010). The concept of Spimes is 
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rather theoretical, however it already has practical application in form of Smart Items. Smart Items are 

devices with sensing-, storing-, (wireless-) communication- and elaboration capabilities. Moreover, 

Smart Items should be capable of autonomous actions based on contextual awareness and collaborative 

communication (Botterman 2009). These requirements for Smart Items are in line with the previously 

mentioned core ideas of IoT. Additionally, Mazhelis et al. (2013) state that the concept of a Thing doesn’t 

have to be limited to physical items, they argue that virtual entities can also be a Thing. The IoT 

Architecture Reference Model, proposed by Bassi et al. (2013), backs this idea by allowing entities to 

either be physical or virtual. Things are responsible for gathering, (short term) storing and transmitting 

information and can be categorised according to their purpose (see Figure 8) (Mazhelis et al. 2013). 

Identifying Things assign a unique identity to an object and thus assign it to an addressing scheme. 

Sensing Things are not only identifiable but are also able to gather information regarding their 

environment and convert, store and communicate this information. Embedded Things have access to 

this sensed information and can process it and may be able to act upon the processed information. As 

Things must not necessarily be physical objects, Embedded Things can be some kind of service (Mazhelis 

et al. 2013). In conclusion, the Thing Oriented Vision of IoT focusses on the nature, purpose and use of 

the basic element of IoT, the things. 

 

Figure 8: Categories of Things in the Thing Oriented Vision of IoT ( own illustration, concept based on 

Mazhelis et al. 2013; International Telecommunication Union 2005) 
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Internet Oriented Vision of IoT 

This vision of IoT aims to incorporate existing developments of the current internet into the new 

infrastructure for IoT or vice versa. IoT can be very well considered as merely an extension of the current 

internet, with prosumers7 being not necessarily humans anymore. However, with the inevitable 

heterogeneity of IoT, the current internet must adapt to be able to not only connect to anyone at any 

time and place, but to anything (International Telecommunication Union 2005). The majority of devices 

being connected to the internet will be constrained in either power consumption, computing power or 

data storage and will very likely need to rely on opportunistic communication availability. With the 

TCP/IP stack requiring relatively large amounts of power and computing capacity, connecting 

constrained devices to the internet via IP is a challenging task. Hence, one of the core ideas of this vision 

is to simplify the IP-stack to accommodate constrained devices (Atzori et al. 2010). Furthermore, this 

vision favours “IP over anything”. Both the IP for Smart Objects Alliance (IPSOS) and Internet Ø aim to 

propagate the use of the IP stack as a light weight communication protocol for all kinds of devices 

(Mazhelis et al. 2013). Hui et al. (2009) argue that IoT vendors have embraced the use of proprietary 

protocols to connect their constrained devices, which creates the “Gateway Problem” as described in 

section 1.1 (Zachariah et al. 2015). One solution, that will exploit the already existing infrastructure, 

which is the aim of the Internet Oriented Vision of IoT, is the adoption of 6LoWPAN, which can be 

deployed on constrained devices due to its novel adaption layer (Atzori et al. 2010; Hui & Corporation 

2009). In conclusion, the Internet Oriented Vision of IoT aims to use the internet and its related 

technologies as the drivers and solutions for IoT networking issues. 

Semantic Oriented Vision of IoT 

With interfaces mainly designed for humans or “simple”, well defined and known services, the current 

architecture of the internet faces challenges when dealing with many kinds of interfaces or actors. The 

large amounts of devices further increase the difficulty of this challenge. Thus, the Semantic Oriented 

Vision of IoT focusses on semantic technologies to represent, search and store information in IoT. 

Furthermore, this vision aims to use semantic descriptions for interfaces, services, things and their 

corresponding identities (Mazhelis et al. 2013; Atzori et al. 2010). Bottermann et al. (2009) consider 

ontology languages, flexible storages (e.g. schema-less databases) and reasoning engines as important 

key technologies for this vision. The use of these technologies promotes semantic interoperability of IoT 

resources and the use of information models and semantic annotation of data (Barnaghi et al. 2012). 

Another focus of this vision is the use of semantic execution environments or context and semantic 

middlewares. Semantic middlewares are capable of negotiating between different kinds of devices with 

each device possibly having different data or information models (Katasonov et al. 2008; Botterman 

2009). The use of context, for example the provisioning of services based on environmental information 

                                                           

7 With the current internet (Web2.0) being focussed on collaboration, the borders between producers of content 
and consumers of content are blurred. Hence, prosumers create and consume information/ content (Ferna et 
al. 2015; Vazquez & Lopez-de-ipina 2008). 
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(e.g. location, weather, etc.) for a user or contextual collaboration based on common tasks, also relies 

on semantic annotations and descriptions (Atzori et al. 2010). 

Having briefly described the history of IoT along with the interwoven development of the different 

visions of IoT, one can now better understand why different researchers emphasise different aspects in 

their respective attempts to define the Internet of Things. Mazhelis et al. (2013, p.9) consider IoT as “A 

world-wide network of interconnected objects uniquely addressable based on standard communication 

protocols” (INFSO D.4 Networked Enterprise et al. 2008, p.6). This definition can be associated with both 

the Thing Oriented- as well as the Internet Oriented Vision of IoT. In fact, Atzori et al. (2010) suggest that 

each vision overlaps in certain areas with other visions. In the case of this definition the focus is on 

communication objects and the suggested use of standardised communication protocols. Another 

definition provided by EpoSS (2008, p.6) states that “Things having identities and virtual personalities 

operating in smart spaces using intelligent interfaces to connect and communicate within social, 

environment, and user contexts.”. While this definition specifies the nature of Things, it further 

emphasises the need for communication and intelligent interfaces tied to environments or contexts. 

Hence this definition can be associated with both the Thing Oriented – as well as the Semantic Oriented 

Vision of IoT. A definition aimed to encompass all three visions given by Tarkoma and Katasonov (2011, 

p.6) states that IoT is “A global network and service infrastructure of variable density and connectivity 

with self-configuring capabilities based on standard and interoperable protocols and formats. IoT 

consists of heterogeneous things that have identities, physical and virtual attributes, and are seamlessly 

and securely integrated into the Internet.”. 
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3.2 IoT Platforms 

IoT platforms aim to simplify communication, storage, transformation, processing and control of data 

as well as devices that gather this data (Efremov et al. 2015). As stated in section 1.1, IoT platforms are 

considered an integral part in IoT architectures because they act as the middleware, translating and 

orchestrating communication between devices and (on-platform-) applications (Mineraud et al. 2016). 

Kim et al. (2014) propose an “ideal Machine to Machine (M2M) platform model” (see Figure 9) that 

addresses various business models for the platforms as well as meets most requirements for IoT 

platforms identified in the literature. The terms IoT platform and M2M platform can be used 

equivalently. Mineraud et al. (2016) specify requirements for IoT platforms in order to perform a gap 

analysis of current IoT platforms. These platform requirements are presented in the following 

paragraphs, followed by the description of the “ideal Machine to Machine platform model”. 

Security and privacy 

Enabling secure communication between devices and platforms is one key requirement IoT platforms 

need to meet. Hence, IoT platforms must include security and privacy mechanisms (Mineraud et al. 

2016). This requirement is especially difficult to fulfil because IoT currently lacks communication 

standards (Perera, Jayaraman, et al. 2014). To meet these requirements, an IoT platform must provide 

means of device authentication, privacy of physical devices and communication, protection of data 

storage and devices, trust management, governance and fault tolerance. To authenticate devices IoT 

platforms mostly use keys that are transmitted with every communication to authenticate and identify 

the devices (Mineraud et al. 2016). The authentication of users can be handled by using the OAuth 2.0 

as a standardised protocol. Additionally, IoT platforms should provide different levels of granularity for 

authorization e.g. for stored data or devices. 

Integration of sensing and actuating technologies 

As IoT platforms aim to simplify communication between heterogeneous devices, they need to provide 

toolkits and Software Development Kits (SDK) supporting a pool of standardised communication 

protocols (Mineraud et al. 2016). Due to the lack of standardised protocols in the current stages of the 

development of IoT, the platform should offer as many protocols as possible to accommodate as many 

different types of devices as possible. Mineraud et al. (2016) relate the value of an IoT platform to the 

variety of supported devices, which highlights the requirement to support many kinds of devices. 

Furthermore an IoT platform should make the integration of devices as simple as possible and provide 

the respective owner of the device with full control over the device by means of device management 

(Mineraud et al. 2016; Kim et al. 2014). 
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Data ownership 

Data generated by devices attached to an IoT platform must be owned by the user of the respective 

data generating device. Large volumes of data, being an important aspect of IoT and having potentially 

high financial value, are of utmost importance for the users of IoT platforms (Mineraud et al. 2016; 

Perera et al. 2013). Users must have full control over the data collected by their devices and must be 

able to decide with whom the data is shared. Furthermore, it must be legally guaranteed that the data 

is in their possession. Unfortunately, Mineraud et al. (2016) state that the data ownership is rarely 

guaranteed among current IoT platforms. 

Data processing and sharing 

With various kinds of devices, each collecting and transmitting data in different formats with different 

and sometimes unknown quality, an IoT platform must provide some means of processing and 

transforming this data (Mineraud et al. 2016). Additionally, it must be possible to share this data with 

other users, services or entities, so that this requirement is related to the data ownership requirement. 

In addition, processing and transforming data must be able to handle large bandwidths to process the 

vast amounts of data collected (Mineraud et al. 2016). In addition to sharing the data or data streams, 

users must be able to search for data and data streams. This requires that the data is annotated and the 

IoT platform provides some means of searching (daCosta 2013). 

Application Development 

IoT platforms must provide standardised application programming interfaces (APIs) that facilitate the 

development of IoT applications. These APIs should provide high-level access to the functionalities of 

the IoT platforms (e.g. querying data streams, requiring access to data or devices, retrieving data, etc.) 

(Mineraud et al. 2016). Ideally, these APIs should be uniform across different platforms. Fortunately, 

Mineraud et al. (2016) find that most IoT platforms provide APIs that follow the same principle, which 

are RESTful8 APIs. However, the data models and specific characteristics of each API differs between 

each platform (Mineraud et al. 2016). 

 

                                                           

8 Representational state transfer (REST or RESTful) is an architectural principle that uses a predefined set of 
stateless operations. These state transfer operations are usually tied to request methods of HTTP and 
abbreviated as CRUD (Create, Read, Update, Destroy) operations. 
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Figure 9: Ideal M2M platform model (adapted from Kim et al. 2014) 

The “ideal Machine to Machine platform model”, proposed by Kim (2014), aims to meet the previously 

described requirements. The model is used by service users, which can be either customers, businesses 

or governmental bodies. The service users gain access to the functionalities of the platform via web- or 

mobile-applications. Additionally, the IoT platform provides a means of direct communication between 

service users and devices or things. The web- and mobile-application as well as direct API access to the 

platform is achieved by using a RESTful API. Service and Software providers may use RESTful APIs as well 

provide pre-built applications or additional, possibly external services or consumer data. The entities an 

IoT platform consists of are device management along with device searching, user management, data 

& service management, user access and network management. In general, service users register their 

devices with the platform. The devices can then be shared with other users and transmit their data to 

the platform in various intervals, when events occur or continuously (Kim et al. 2014). The transmitted 

data is then converted into meaningful knowledge that can be accessed by using dedicated services over 

the web- or mobile-application. Devices or things can be either individually addressed or are managed 

in M2M Area Networks and accessed via gateways which in turn are special devices registered with the 

platform. The functionalities offered by the proposed platform model are shown in more detail in Figure 
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Device Profile Management can provide devices with authentication keys and a authentication-key 

management system (Kim et al. 2014). The Device and M2M Area Network Management monitors the 

status of devices and controls them (e.g., it ensures connectivity between devices or performs low-level 

network organisation tasks). By having all device information stored in a database, the Device Searching 

module can execute queries to search for devices (Kim et al. 2014).  

User Management 

The user management entity of an IoT platform consists of the modules User Profile Management, 

Authentication and Charging and closely interoperates with the Device Management. The User Profile 

Management module allows users to register, modify their profiles and manage access to (shared-) 

devices and data. Users who registered devices are the owners or administrators of these devices and 

can grant or revoke access to their devices (e.g. direct P2P connection, access over IoT platform, etc.). 

The Authentication module is responsible for authenticating users and authorizing access according to 

their respective rights and roles. The Charging module monitors which resources users have consumed 

(e.g., which applications, services, etc. they used) and charges the users accordingly. Most IoT platforms 

facilitate the pay-as-you-go approach for charging (Perera et al. 2015; Mosser et al. 2012). 

Application Management 

The Application Management entity of IoT platforms is responsible for Data Collection and Control, 

Services and Mash-up Management as well as Connection Management. It provides access to a variety 

of services which either can be created by users, provided by external service and software providers 

(see Figure 9) or built-in into the IoT platform (Kim et al. 2014). The Data Collection and Control modules 

are responsible for collecting and reasoning over data. Based on the data collected by the devices 

connected to the IoT platform, these modules suggest appropriate services. The service and mash-up 

management module manages the services provided by the IoT platform. As the platform is either 

considered as an Infrastructure as a Service (IaaS) or as a Platform as a Service (PaaS), users can allocate 

instances of services (e.g. data storage, data processing, reasoning engines, etc.) or computing capacity 

for custom applications (Kim et al. 2014). The connection management module is responsible for the 

seamless integration into the various networks (see Figure 9 and Figure 10). 

Access Platform 

The purpose of the Access Platform is to provide users with access to the platform by either using a web 

application, a mobile application or an open RESTful API. 
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Figure 10: Ideal M2M platform architecture (adapted from Kim et al. 2014) 
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4 Developing the Holistic IoT Architecture Framework 

This chapter covers the development process of the Holistic IoT Architecture Framework. It begins with 

a discussion why S2aaS was selected as a baseline in section 4.1. Subsequently, both IoT Architecture 

Perspectives and IoT Architecture Components are identified and discussed in section 4.2. Based on the 

findings and insights gained in section 4.2, a novel IoT Architecture Component is developed in section 

4.3. The last section of this chapter concludes with the presentation of the Holistic IoT Architecture 

Framework. 

4.1 Sensing as a Service as a Baseline 

This section introduces the Sensing as a Service (S2aaS) architecture which is used as a baseline for the 

analysis of existing IoT architecture proposals as well as the development of the holistic IoT architecture 

framework to be performed in the subsequent sections. Furthermore, this section highlights why S2aaS 

was selected as the baseline in the first place. 

Sensing as a Service is a novel concept first presented by Sheng et al. (2013) to refine existing, 

proprietary mobile phone sensing applications and propose a generic, reusable and extendable 

architecture for mobile phone sensing applications. Mobile phones as a sensing platform have become 

popular due to their widespread availability and the extensive sensor array built in to most of them. 

Abdelwahab et al. (2016) state that with today´s availability of smartphones and the population density 

in urban areas very high densities of sensors per square kilometre can be achieved (e.g., it is suggested 

that the smartphone-sensor-density in London could exceed 14000 sensors per square kilometre, based 

on an approximation of Abdelwahab et a. al (2016, p.1) , which is based on the assumption that London 

has 4000 inhabitants per square kilometre while the smartphone penetration in the UK reaches 55%). 

With today’s smartphones being a powerful platform for a variety of applications, outsourcing the 

collection of data to smartphones is a reasonable concept to quickly collect large amounts of location 

specific data. However, Sheng et al. (2012) state that mobile phone sensing applications are mainly 

designed for a single purpose or domain. To collect a variety of data, in diverse contexts or locations 

and for different “customers” would require smartphone users to install a plethora of different 

applications to perform sensing tasks. This issue motivated Sheng et al. (2013) to propose a new model 

for mobile phone sensing. In addition, this new model aims to leverage the advantages of the cloud 

computing model. Sheng et al. (2013) state that the core component of their model are smartphone 

users, which can perform both the roles of a content consumer and cloud service. Smartphone users 

act as a cloud service when they accept and perform sensing tasks and act as content consumers when 

they issue sensing tasks. Figure 11 illustrates a S2aaS cloud as envisioned by Sheng et al. (2013). Cloud 

users issue sensing requests by using a web application or some other application having access to the 

cloud´s external API. These sensing requests are then pushed to smartphone users who fulfil the sensing 

task and send the collected data back to a sensing server which stores the sensing data. The data can 
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then be sent back to the cloud user who issued the request. During this process the task of issuing 

sensing tasks is both crucial and complex.  

 

Figure 11: Sensing as a Service Cloud (adapted from Sheng et al. 2013) 
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sensing is used to assign sensing tasks, the underlying incentive mechanism must be considered during 

the assignment of sensing tasks as well (Yang et al. 2012).  

Sheng et al. (2013) state that S2aaS heavily relies on smartphone users to perform sensing tasks and 

transmit their data. When depending on such a crowdsourcing solution smartphone users must be 
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sufficiently motivated or rewarded for performing sensing tasks. Smartphone users use their energy, 

their devices and their own time to gather the information, hence incentive mechanisms are important 

(Yang et al. 2012). These mechanisms determine how and which smartphone users are selected to 

perform a sensing task and how much they are rewarded. Yang et al. (2012) mention two paradigms of 

incentive mechanisms, a platform centric and a user centric incentive mechanism. In the platform centric 

incentive mechanism approach, a platform (e.g. the sensing server), publishes a sensing task. The 

sensing task specifies how long, where, when and which kind of data is to be sensed and how much 

reward is provided. Users in turn try to maximise their reward by being willing to provide a specific 

amount of time and energy for performing the task, however they also try to minimise their amount of 

time and energy. The platform then tries to find the optimal reward which allows the maximum sensing 

time. Yang et al. (2012) provide an exemplary mechanism using the platform centric approach in the 

Stackelberg game, where the platform is the leader and users are followers. In the user centric incentive 

mechanism approach, a set of sensing tasks is published. Each of these tasks again contains information 

regarding required time and energy. Additionally, each task has a value for the platform (e.g. for the 

sensing server). Users then select tasks and their individual costs for performing the tasks. The platform 

then tries to maximise the number of tasks to be performed and minimise the required rewards for the 

tasks (Yang et al. 2012). In the original S2aaS architecture envisioned by Sheng et al. (2013) the sensing 

server is responsible for issuing the sensing tasks while taking the incentive mechanisms, energy 

consumption and sensing paradigms into account. 

Based on the need for a variety of incentive mechanisms and the assumption that a S2aaS cloud should 

support both participatory and opportunistic sensing paradigms as well as the requirement that the 

S2aaS cloud must support a wide array of different sensor devices (e.g. different smartphones with 

different operating systems and different sensors), Sheng et al. (2013) established a set of general 

requirements for a S2aaS cloud: 

• A S2aaS cloud must be general in the sense that it supports both opportunistic and participatory 

sensing paradigms. 

• A S2aaS cloud must support a variety of different sensors and mobile phones. 

• A S2aaS cloud must be quickly and easily reconfigurable (e.g. to change algorithms incorporated 

into the architectural elements). 

• A S2aaS cloud should minimise energy consumption when issuing sensing tasks. 

• A S2aaS cloud must support various incentive mechanisms to foster smartphone user 

participation. 

Beside the already explained requirements to support different sensing paradigms, incentive 

mechanisms and types of sensors and devices, the requirement to be able to quickly reconfigure the 

inner workings of a S2aaS cloud´s component is interesting in particular. In order to comply with this 

requirement, the behaviour exposed to the “outside” must be meticulously specified (Sheng et al. 2013). 

One advantage of this approach is that the detailed inner workings can then be omitted. By following 
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this behaviour driven9 approach one could concentrate on the high-level aspects of the architecture 

while indirectly providing a set of criteria for the inner workings of each component. These implicit 

criteria for the inner workings of the conceptual components yielded by this approach may be helpful 

for achieving RO2 (see section 1.2).  

Sheng et al. (2013) mention three different high level components of S2aaS, namely mobile phone users, 

S2aaS cloud and cloud users. The components mobile phone user and cloud user can be performed by 

the same entity as mentioned earlier. Mobile phone users, or smartphone users, collect data and are 

recruited by the S2aaS cloud. The S2aaS cloud, consisting of web applications and frontends, databases, 

and sensing servers (see Figure 11), manages sensed data and acts upon the sensing tasks issued by the 

cloud users. These components are further refined by Perera et al. (2014) (see Figure 12). 

 

Figure 12: Refined S2aaS architecture (adapted from Perera, Zaslavsky, Liu, et al. 2014) 

Perera et al. (2014) distinguish between sensor owners, sensor publishers, extended service providers 

and sensor data consumers. The sensor owners in Perera et al.´s (2014) architecture can be mapped to 

mobile phone users in Sheng et al.´s (2013) architecture. The same applies to sensor data consumers 

and cloud users. However, Perera et al. (2014) distinguish between sensor publishers and extended 

service providers while Sheng et al. (2013) combine these single components into their S2aaS cloud. The 

sensing server and the web server in the architecture by Sheng et al. (2013) are the sub-components 

providing the respective functionalities. While Sheng et al. (2013) focus on mobile phone sensing, where 

all sensing tasks are performed by mobile phones or smartphones, Perera at al. (2014) do not limit these 

tasks to mobile phones but address sensors in general by including the additional component sensor 

publisher. The next paragraphs will provide a brief overview of the components envisioned by Perera et 

al. (2014) for a S2aaS architecture (see Figure 12). 

  

                                                           

9 This behaviour driven approach for the development has great similarities with the behaviour driven development 
(BDD) pattern used in software development, as this pattern encourages focussing one the structured 
specification of the behaviour of a software system to be developed (Solis & Wang 2011). 
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Sensor owner 

Sensor owners have full control over sensors they are owning, thus the name of this component. 

Essentially this component consists of two elements, the sensor owners and the sensors. Sensors are 

devices or things that can measure physical phenomena (Perera, Zaslavsky, Christen, et al. 2014). 

Furthermore, multiple sensors can be attached to the same physical object which in turn can be owned 

by a sensor owner. This relation between physical objects is in line with the description of things from 

section 3.1 and Figure 8. Sensors, regardless of whether attached to or built into objects, are always 

owned by some entity, which is either a person, private organisation or public organisation (Perera, 

Zaslavsky, Christen, et al. 2014). However, ownership of sensors can change over time. The fact that 

sensors always have an identifiable owner and that they contain information regarding the data they 

gather, their type etc., supports the conclusion that a sensor in Perera et al.´s (2014) definition shares 

many characteristics with the concept of spimes mentioned in section 3.1 (Sterling 2005). Sensors are 

classified according to the type of their corresponding owner (see Figure 13). 

 

Figure 13: Sensor classification based on ownership (adapted from Perera, Zaslavsky, Christen, et al. 

2014) 

Sensors owned by private entities, such as natural persons or households, are classified as personal and 

household sensors. These sensors may be built into other devices, such as mobile phones, laptops or 

other consumer electronic devices. In short, every sensor of which ownership can be attributed to a 

single person or family can be classified as a private and household sensor (Perera, Zaslavsky, Christen, 

et al. 2014). Before sensors become personal and household sensors they have very likely been owned 

by a private organisation. All objects belonging to a private organisation with built-in sensors that 

cannot be attributed to a single person can be classified as a private organisation sensor. This includes 

sensors built in or attached to any other object the private organisation owns (e.g. real estates, offices, 

factories, products). When a private organisation manufactures products with built-in sensors, the 

organisation is responsible for these sensors. However, when these products are sold, these sensors 

change ownership and are considered personal and household sensors (Perera, Zaslavsky, Christen, et 
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al. 2014). The new owner of the sensor can then decide if the data of the sensor is published or not. 

Sensors built into public infrastructures, such as bridges, streets, and other public installations, are 

classified as public organisation sensors. A special category of sensors and sensor owners are the 

commercial sensor data providers. These are private organisations that own, deploy and manage large 

sensor networks. The gist of the business model of these commercial sensor data providers is to gather 

and sell sensor data on a large scale. Regardless of the type of sensor owner, each sensor owner is 

responsible for the data each of the sensors gathers in his possession (Perera, Zaslavsky, Christen, et al. 

2014). Thus, reputation and value of a sensor´s data is related to its respective owner. Sensor owners 

form contracts with sensor publishers who offer the sensor´s data on behalf of his owner.  

Sensor publisher 

Sensor publishers are responsible for detecting sensors, determining the respective sensor owners and 

communicating with them. Furthermore, sensor publishers request permission to access and publish 

the data sensed by the sensors. Sensor owners form a contract with sensor publishers. Upon forming 

this contract, the sensor publisher gathers metadata (e.g., sensor type, data scheme, information model, 

owner preferences, availability, etc.). This metadata is later used to determine if a sensor belonging to 

a sensor owner is suitable to perform a specific sensing task (Perera, Zaslavsky, Christen, et al. 2014). 

When a sensing task is received by the sensor publisher, the task is being forwarded to the respective 

owner of the sensor. Sensing tasks are usually issued by extended service providers. A sensor publisher 

negotiates between extended service provider and sensor owner, thus it can ensure privacy and security. 

The owner of a sensor must not necessarily be known to the entity that issued a sensing task. When a 

sensor owner receives a sensing task, he can decide if he wants to accept the terms of the task. Upon 

accepting the sensing task, the corresponding sensor publisher transmits the sensed data to the 

requesting extended service provider (Perera, Zaslavsky, Christen, et al. 2014). 

Extended service provider 

Extended service providers provide value added services to sensor data consumers. Perera et al. (2014) 

consider this component of S2aaS as the most “intelligent” one, as it provides a wide variety of different 

services, where each requires different methods, technologies and approaches to transform the 

requirements set by sensor data consumers to sensing tasks and analyse as well as present the resulting 

data. One of the main tasks of an extended service provider is to formalise the informal sensing requests 

of sensor data consumers into sensing tasks. These tasks must be generic and universal, so that each 

sensor publisher can understand and handle the task (Perera, Zaslavsky, Christen, et al. 2014). 

Additionally, extended service providers need to be able to support different sensing paradigms as well 

as incentive mechanisms. While Sheng et al. (2013) assigned these tasks to the sensing server, these 

tasks are to be performed by the extended service provider in Perera et al.´s (2014) architecture. 

Additionally, Perera et al. (2014) note that a sensor publisher as well as an extended service provider can 

be realised by the same entity (e.g. a business offering both services). An existing example for an 
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extended service provider envisioned by Perera et al. (2014) is the Azure Data Market 10mentioned by 

Mineraud et al. (2016). On this market, businesses can publish data streams, which essentially are 

sensors. Access to these data streams can then be purchased for a specified amount of time. However, 

the Azure Data Market does not support creating specific sensing tasks at all. It basically combines the 

sensor data base of a sensor publisher and the service model of an extended service provider. 

Sensor data consumer 

The Sensor data consumer is the component which creates sensing tasks. These tasks will be created on 

a higher level of abstraction (e.g. “Air pollution in a period of time in some city”). These high-level sensor 

task descriptions are transformed by the extended service providers as mentioned before (Perera, 

Zaslavsky, Christen, et al. 2014). However, sensor data consumers can also directly communicate with 

sensor publishers when they have sufficient technical abilities and capabilities. Directly communicating 

with sensor publishers can be a difficult task because the sensor data consumer needs to transform his 

high-level sensor task manually (e.g. measuring “air pollution” requires different sensor types, time 

periods must be specified and geo-fences must be created to find sensors in a city). Before an entity can 

become a sensor data consumer it must obtain a certificate that certifies their identity. This identity is 

embedded into the respective sensing task and forwarded to each sensor owner, who then can decide 

if he accepts the task or not. According to Perera et al. (2014) the majority of sensor data consumers are 

mostly governments, businesses and academic or scientific institutions. 

Both S2aaS architectures, the mobile sensing focussed approach proposed by Sheng et al. (2013) and 

the extensions suggested by Perera et al. (2014), specify behaviours and relationships between 

components. Furthermore, they define responsibilities and tasks for these components and suggest 

patterns, approaches and concepts (e.g., incentive mechanisms, sensor search techniques, sensing 

paradigms) that should be embedded into these components. However, they do not restrict or define 

the inner workings of each component in detail. Both approaches merely require that new concepts 

must be able to be “plugged in” to the respective components (Sheng et al. 2013). This high level of 

abstraction used to design the S2aaS architecture is one reason why it was selected as a baseline for 

further analysis in this thesis. Furthermore, S2aaS is an architecture that focusses on participation and 

considers both commercial sensor data providers as well as single users and the sensor-enabled devices 

they own. Besides regarding the different characteristics, intentions and requirements of personal-, 

private-, and public owned sensors, the S2aaS architecture does allow users to assume both the roles 

of data consumers and producers. Especially the focus on private sensors (e.g. sensors in mobile phones) 

is notable, because it facilitates dealing with concerns of privacy and trust management.  

In conclusion, the S2aaS architecture was selected as a baseline for the further analysis and 

development performed as part of this thesis, because it is an extendable, high level architecture which 

focusses on participation of every kind of actor (e.g. data producer or consumer, mediating business 

                                                           

10 http://datamarket.azure.com/browse/data 
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entities). In addition, it addresses a wide array of concerns ranging from privacy and trust to energy 

efficient sensor search techniques and economic sensor task scheduling without limiting the 

architecture through too much detail. 

4.2 IoT Architecture Perspectives and Components 

This section marks the beginning of the development step of the GDC described in section 2.2. It 

elaborates on both the development of the IoT architecture perspectives and components on which the 

further development of the holistic IoT architecture framework is based. As a first step, the IoT 

architecture perspectives, which were identified based on the literature, are presented (see section 

4.2.1). As a second step the components and conceptual elements of various IoT architecture proposals 

are analysed and uniformly described (see section 4.2.2). Both steps rely on a literature review of which 

the collection method was described in section 2.3 and 2.5. 

4.2.1 IoT Architecture Perspectives 

In contrast to the IoT visions presented in section 3.1, which distinguish between the Thing Oriented-, 

Internet Oriented- and Semantic Oriented Vision of IoT, the analysis in this section uses another 

approach to determine architectural perspectives. The interpretation of IoT Architecture Perspectives 

is based on a combination of both the Visions of IoT presented by Atzori et al. (2010) and the Generic 

IoT Architecture proposed by Khan et al. (2012). The five layer architecture proposed by Khan et al. 

(2012) consists of the layers Perception-, Network-, Middleware-, Application-, and Business Layer (see 

Figure 14b). The Perception Layer consists of physical objects, Things, and is responsible for gathering 

environmental data and providing object related information. How the information is gathered, stored, 

and later transmitted to the Network Layer depends on properties of each individual Thing (e.g. 

communication technology and protocols)(Khan et al. 2012). The Network Layer is responsible for 

transmitting data that is provided by the Perception Layer. The communication and networking 

technology used in this layer varies and depends on the technologies supported by the Things of the 

Perception Layer. Both the Perception- and Network Layer are closely connected and highly fragmented 

according to the variety of communication technology. Establishing and maintaining reliable 

communication with a variety of different types of Things using different communication technologies 

(e.g. Wi-Fi, Bluetooth, etc.) and different protocols (e.g. MQTT11, CoAP12) is a challenging task as 

highlighted by Zachariah et al. (2015). The Middleware Layer is built on top of the Network Layer. The 

main task of this layer is to provide uniform communication end-points used by the Application Layer 

by combining the fragments of the Network Layer (Mashal et al. 2015). Besides these mediating tasks, 

                                                           

11 Message Queue Telemetry Transport (MQTT) is a lightweight publish-subscribe communication protocol 
especially suited for constrained and unreliable environments (Stanford-Clark & Nipper 2017). 

12 Constrained Application Protocol (CoAP) a lightweight RESTful based communication protocol designed for the 
use on highly constrained devices (ARM Limited 2017). 
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some proposals for IoT architectures and models do not only use this layer to cover mediating tasks but 

also to represent the capability to store data, process and normalise data streams, to reason over data, 

and to manage services (Mashal et al. 2015; Khan et al. 2012). However, some of these requirements 

for middlewares in the context of IoT can be considered inappropriate when referring to the original 

concept and definition of middlewares (Naur & Randell 1968; Emmerich et al. 2008). Originally, the 

concept of a middleware was introduced in Naur & Randell (1968) as an additional abstraction layer to 

decouple applications from underlying operating system and thus to manage heterogeneity issues 

(Emmerich et al. 2008). Hence the requirement to store data in databases, as stated by Mashal et al. 

(2015) inter alia, may require further explanation. The applications which are part of the Application 

Layer, consume the normalised web services and API endpoints exposed by the Middleware Layer to 

provide actual IoT applications that can be used by users or other services (Mashal et al. 2015). IoT 

applications in general revolve around data-acquisition, -integration, and -representation as well as 

autonomous actions based on the gathered data. The Business Layer is on top of the Application Layer 

and manages an IoT system, its related services and business models (Khan et al. 2012; Miao Wu et al. 

2010). Additionally, Wu et al. (2010) consider the Business Layer as a driver for the development of IoT 

applications. They argue that the development of successful business models facilitates the 

advancement of IoT related technologies. In conclusion, the responsibilities of each layer of the five 

layer IoT architecture is as follows (based on Miao Wu et al. 2010; Khan et al. 2012; Mashal et al. 2015). 

• Perception Layer, gathers environmental data and annotates/ identifies physical objects with 

digital properties. 

• Network Layer, transports information through various channels with various technologies. 

• Middleware Layer, normalises heterogeneous data and exposes uniform interfaces. 

• Application Layer, provides domain specific applications which use sensed data. 

• Business Layer, drives application development and defines “value” for information obtained 

through processed and sensed data. 
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Figure 14: IoT Architecture Perspectives combined with Visions of IoT and five layer IoT architecture 

(own illustration, b) based on Khan et al. 2012; c) based on Atzori et al. 2010) 

Based on the responsibilities and tasks assigned to each layer and the focus of each IoT vision mentioned 

in section 3.1 a mapping between the layers and visions can be performed. With the Perception Layer 

consisting of a multitude of different sensory devices and dealing with the collection of environmental 

data or identification of real world objects, its aspects resemble the focus of the Thing Oriented Vision 

of IoT. As mentioned, this vision focusses on Things as the basic building blocks of IoT (Atzori et al. 2010). 

Providing addressing schemes, enabling Things to transmit data and to enrich everyday objects with 

digital properties are additional topics the Thing Oriented Vision of IoT addresses. However, the Thing 

Oriented Vision of IoT additionally aims to deal with heterogeneity and networking issues. As illustrated 

in Figure 7, both the Thing Oriented- as well as the Internet Oriented Vision of IoT share the common 

topics of enabling things to communicate with each other (Mazhelis et al. 2013). With the heterogeneity 

of Things and the resulting variety of supported communication technologies and protocols, the Thing 

Oriented Vision of IoT additionally shares topics, tasks and responsibilities with the Network Layer. The 

Internet Oriented Vision of IoT aims to incorporate the novel requirements and technologies into the 

current internet. It mainly addresses communication technology and protocol issues, e.g. it aims to 

facilitate the use of 6LoWPAN as a communication technology for constrained devices. With the 

Network Layer being responsible for ensuring the transportation of data from the Perception Layer / the 

Things to the Middleware Layer, both the Internet Oriented Vision of IoT and the Network Layer share 

common tasks and goals. Additionally, the Internet Oriented Vision of IoT partly addresses issues or 

responsibilities of the Middleware Layer, as both aim to cope with heterogeneity (e.g. with the gateway 

problem mentioned in section 1.1 and 3.1). The Semantic Oriented Vision of IoT also tries to specifically 
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address heterogeneity issues, however it utilises a different approach. While the Internet Oriented 

Vision of IoT suggests using the existing internet architecture, modifying it where necessary (e.g. 

6LoWPAN), and using it as a standardised communication approach for all new devices and scenarios, 

the Semantic Oriented Vision of IoT suggests using semantic technologies to deal with heterogeneity 

issues. For example, this means that this vision of IoT proposes to use “semantic adapter components” 

as suggested by Katasonov et al. (2008). In essence, instead of relying on syntactical standards to ensure 

heterogeneous communication and interaction, the semantic representations of devices, data and 

services are used to dynamically create interfaces to access the respective devices, data and services 

(Katasonov et al. 2008). The Semantic Oriented Vision of IoT can additionally be assigned to the 

Application Layer, especially the intention of this vision to promote the development and use of context 

aware applications and reasoning over data is relevant for this layer. The relations between each vision 

of IoT and the respective layers of the generic IoT architecture are illustrated in Figure 14b and 14c.  

Based on the visions of IoT and the layers of the generic IoT architecture, an additional type of 

perspective became apparent during the analysis of IoT architecture proposals presented in the 

literature obtained through the literature search described in section 2.3. The architecture proposals 

regarded in this thesis can either be assigned to the Organisational IoT Architecture Perspective or the 

Network IoT Architecture Perspective (see Figure 14a).  

The Network IoT Architecture Perspective is focussed on establishing network communication between 

devices or things. Devices or things are considered as network nodes in this perspective and are 

decoupled from other aspects like ownership, identity, privacy, security, or reputation. Architecture 

proposals implicitly using this perspective address issues on the Perception-, Network- and on the 

Middleware Layer and are likely using either the Thing Oriented- or Internet Oriented Vision of IoT. 

Zachariah et al. (2015) discuss the “gateway problem”, which is a heterogeneity issue of IoT. They state 

that most constrained devices rely on low power wireless communication (e.g. BLE) instead of using Wi-

Fi or other more well connected technologies (Zachariah et al. 2015). These constrained devices require 

an application layer gateway to communicate with the internet (e.g. a smartwatch needs to be 

connected to a smartphone to be able to download updates from the internet). This connection 

between a constrained device and a gateway is usually achieved by using a device specific proprietary 

application. For each different constrained device a new application must be installed on the gateway, 

which is usually a smartphone, in order to connect the constrained device to the internet (Zachariah et 

al. 2015). Zachariah et al. (2015) define this multitude of different, proprietary gateways with a narrow 

application context as the IoT Gateway Problem.  
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Figure 15: IoT Smartphone Gateway Architecture (adapted from Zachariah et al. 2015) 

To solve this problem, Zachariah et al. (2015) propose a smartphone-centric architecture (see Figure 

15). Constrained devices should be connected to the internet by using a smartphone as a general-

purpose gateway. Constrained devices communicate with the smartphone via BLE, while the 

smartphone uses cellular networks to connect to the internet. Zachariah et al. (2015) suggest two 

possible communication mechanisms to be used in this architecture. The first mechanism considers the 

smartphone as a temporary IPv6 router, which forwards all communication to the connected IPv6 

enabled constrained devices. This mechanism allows a direct communication between IPv6 enabled 

constrained devices and the internet. However, for these constrained devices to be directly addressable, 

they need to be able to run a full IPv6 stack which requires relatively much computational power 

(Zachariah et al. 2015). However, 6LoWPAN, as a simplified approach for IPv6 communication, is 

deemed to be a suitable solution for enabling constrained devices for IPv6 (Hui & Corporation 2009). 

Alternatively, Zachariah et al. (2015) suggest an approach based on the “web of things” paradigm, that 

aims to use device metadata to expose RESTful endpoints. In this approach, the constrained devices 

send additional metadata (e.g. which kind of data they provide, their location, the address where sensed 

data is to be sent to, etc.) to the smartphone which currently acts as the gateway for the constrained 

device. The gateway then transforms this metadata into a RESTful http endpoint. When the metadata 

of the constrained device contains an address where the sensed data should be send to, the gateway 

may send a HTTP request to the specified address containing the information provided by the 

constrained device (Zachariah et al. 2015). The architecture proposed by Zachariah et al. (2015) 

addresses communication issues at the Perception-, Network-, and Middleware Layer. This architecture 

aims to empower smartphones to act as gateways for constrained devices. Due to the mobility of 

smartphones the connection between a constrained device and a gateway cannot be permanent, thus 

ensuring and acknowledging that data was transmitted successfully remains an issue (Zachariah et al. 

2015). The architecture proposed by Zachariah et al. (2015) does not consider ownership issues of 

constrained devices or things. They suggest that mobile smartphone gateways connect to every 

constrained device within range of the gateway and forward the data provided by the respective device, 
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thus one can infer that gateways and constrained devices in Zachariah et al.´s (2015) proposal can be 

interpreted as network nodes. Additionally, they suggest the usage of existing internet technologies 

(e.g. BLE, IPv6, 6LoWPAN) to enable heterogeneous connectivity between constrained devices and 

things. Hence, their approach can be assigned to the Internet Oriented Vision of IoT.  

 

Figure 16: Heterogeneous Network Architecture (adapted and simplified from Jo et al. 2015) 

The architecture proposed by Jo et al. (2015) (see Figure 16) follows a similar approach. They present 

an architecture focussed on heterogeneous device-to-device communication with four types of devices 

and three modes of usage, with each type of device being considered as a personal item such as 

wearables, mobile phones, smartphones, tablets or personal computers. Terminal- and Sensing Devices 

are the most constrained devices in the architecture proposed by Jo et al. (2015). Terminal Devices can 

only act as Mobile as a Service Consumers, which means that they cannot share their own resources but 

depend on the shared resources, which are offered as a service, of other devices in the architecture. 

The services these type of device consumes are provided by the General Static Cloud, which is a network 

of high performance data centres offering various kinds of services. In order to consume a service 

offered by the General Static Cloud, a Terminal Device communicates with a Gateway Device. This type 

of device operates as a Mobile Device as a Service Broker mode, which in the context of Jo et al.´s (2015) 

means that this type transfers data from Terminal Devices to Master Devices and vice versa. Sensing 

Devices are similar to Terminal Devices but are specialized in performing sensing tasks. However, in 

contrast to the Terminal Device, this device operates in the Mobile as a Service Provider mode and thus 

provides only the sensed data and is not able to communicate or collaborate otherwise. These sensing 

services are provided to the Mobile Dynamic Cloud, which encompasses all mobile devices and is 

introduced to offload and decrease network traffic to the General Static Cloud. While the General Static 

Cloud relies on large scale data centres, the Mobile Dynamic Cloud utilises computing capacities near 
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the network edge. The fourth type of device, the Master Device operates in the Mobile as a Service 

Representer mode (Jo et al. 2015). This type of device has the highest computing capacity and supports 

a wide array of different wireless communication technologies and protocols. The Master Devices are 

directly connected to the Gateway Devices, the General Static Cloud and to other Master Devices. They 

solely represent their respective cloudlet which consist of all Gateway Devices and Terminal Devices and 

offload any task they cannot perform on their own to services in the General Static Cloud. Likewise, they 

represent the services provided by Sensing Devices and enable all other types of devices access to 

sensed data. Jo et al. (2015) additionally suggest that each type of device maintains a backup connection 

to the General Static Cloud in case no reliable connection through the Mobile Dynamic Cloud can be 

achieved. By heavily relying on computing capacities near the network edge, this architecture is 

supposed to scale well with increasing amounts of devices. Hence, the architecture proposed by Jo et 

al. (2015) provides a possible solution for scalability issues of IoT. Additionally, Jo et al. (2015) suggest 

that each type device uses either Bluetooth, cellular networks or Wi-Fi in combination with IPv6 for 

communication purposes. This architecture is specifically designed to address scalability and 

heterogeneity issues by relying on standardised communication based on existing internet technologies. 

Hence, it can be assigned to the Internet Oriented Vision of IoT as well as addresses issues relating to 

the Perception-, Network-, and Middleware Layer.  

Both architectures presented by Zachariah et al. (2015) and Jo et al. (2015) can be assigned to the 

Network IoT Architecture Perspective as both focus on “low level” network issues of IoT, and to the 

Internet Oriented Vision of IoT and address issues on the Perception-, Network- or Middleware Layer of 

the Generic IoT Architecture (see Figure 14). It must be noted that the architectures presented 

previously and subsequently are only described with regard to their respective elements and their 

corresponding relations as defined in section 2.4. 

The Organisational IoT Architecture Perspective focusses on the organisational aspects of an 

architecture and specifically addresses organisational relationships between each element, e.g. the 

stakeholders of an element or the characteristics of the relationship between two components. In 

contrast to the Network IoT Architecture Perspective it focusses on the organisational flow of data and 

not on network traffic or routing issues. The reputation of the data producers and the value of data in 

context of its intended use are important, while the format of the data or the required communication 

technologies are of secondary importance. The Organisational IoT Architecture Perspective interprets 

Things as “business entities” and focusses on ownership, security, identity and reputation rather than 

communication technologies or network communication aspects. Architecture proposals that implicitly 

refer to the Organisational IoT Architecture Perspective address issues on the Middleware-, Application-

, or on the Business Layer of the Generic IoT Architecture. Furthermore, these proposals tend to use 

either the Internet Oriented- or Semantic Oriented Vision of IoT.  

The original architecture proposals for S2aaS presented by Sheng et al. (2013) and Perera et al. (2014) 

apply the Organisational IoT Architecture Perspective. Both proposals are specifically concerned with 

the organisational relationships between the different components and intentionally omit details on 
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inner workings of the components as well as technical aspects (see section 4.1). Abdelwahab et al. 

(2015) as well as Chang et al. (2015) follow the same approach. The Cloud of Things Architecture for 

S2aaS presented by Abdelwahab et al. (2016) consists of four components (see Figure 17). Cloud Users 

create sensing tasks that are managed and transformed by First Tier Clouds. Sensing tasks contain 

information regarding the type of data to be collected, the area to be covered and various other aspects 

depending on the sensing tasks domain (Abdelwahab et al. 2015). First Tier Clouds provide unified 

interfaces for Cloud Users and abstract as much complexity as possible (e.g. a user does not have to 

specify sensor types or deal with scheduling or discovering sensors). After being converted into Sensing 

Task Requests, which are merely a formalisation of the task created by a Cloud User, the First Tier Cloud 

issues this request to their Cloud Agents. The Cloud Agents are highly connected components, vary in 

terms of computing capacity (e.g. a Cloud Agent can be a server-cluster, a normal personal computer or 

a smartphone) and create as well as manage Virtual Sensor Networks based on the respective Sensing 

Tasks they currently perform (Abdelwahab et al. 2015). The Cloud Agents presented in Abdelwahab et 

al.´s (2015) architecture proposal share similarities with the Smartphone Gateways and the Master 

Devices presented by Zachariah et al. (2015) and Jo et al. (2015), respectively. However, whereas the 

latter focus on enabling and managing network connections between different components of their 

respective architecture, Abdelwahab et al. (2015) focusses on patterns for resource or sensor discovery 

and allocation of sensor networks, regardless of any communication technology and protocol, or 

network structure. The Cloud Agent in Abdelwahab et al.´s (2015) proposal are connected to a variety 

of individual sensing devices and create a virtual network based on the Sensing Request they are 

currently performing based on these connected sensing devices. The data gathered by these virtual 

networks is then sent to the Cloud User via the First Tier Cloud. 

 

Figure 17: Cloud of Things Architecture for S2aaS (adapted from Abdelwahab et al. 2015) 
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The architecture proposed by Chang et al. (2015) follows a similar approach (see Figure 18). In the 

Mobile Device as a Sensory Service Mediation framework, Clients issue sensing requests to Mobile Hosts 

that provide access to sensor networks. The Mobile Hosts are either discovered by direct peer-to-peer 

communication or via Discovery Servers which manage a database of available Mobile Hosts along with 

metadata describing the services provided by each Mobile Host (Chii Chang et al. 2015). The Mobile Host 

provides three modes of service access: one-time sensing, real-time sensing and periodical sensing. The 

data collected through the sensor networks managed by the Mobile Host is stored in the Utility Cloud 

Service, which acts as an on-demand data storage. Clients who have issued Sensing Tasks are granted 

access to the respective Utility Cloud Service instances by the Mobile Hosts. When multiple Clients have 

issued similar Sensing Tasks to a Mobile Host, the data is stored on a single Utility Cloud Service instance 

and all Clients are granted access to the data. This reduces network load and energy consumption (Chii 

Chang et al. 2015). Similar to the proposal provided by Abdelwahab et al. (2015), this proposal focusses 

on the organisational relationships, on resource discovery as well as data and access flow rather than 

network and communication issues. As both architecture proposals focus on the either the Application- 

or the Middleware-Layer of the Generic IoT Architecture they can be assigned to the Organisational IoT 

Architecture Perspective. 

 

Figure 18: Mobile Device as a Sensory Service Mediation (adapted from Chii Chang et al. 2015) 
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Mobile Sensing Terminal Operator and the Mobile Sensing Network. Entities belonging to the Mobile 

Sensing Network are sensors which capture environmental data and are assigned either to specific users 

(persons), private or public organisations or communities. This categorisation is similar to the 

classification of sensors related to their respective Sensor Owners of the S2aaS architecture described 

by Perera et al. (2014) (see Figure 13 and section 4.1). 

 

Figure 19: Mobile Phone Sensing as a Service Business Model (adapted from Mizouni & El Barachi 

2013) 
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gets paid for his services by the other End-Users. The third charging model considers the operator as a 

representative of the Mobile Network Operator. The Mobile Network Operator benefits from the sensed 

data and in return pays the Mobile Sensing Terminal Operator. In the last charging model, the operator 

either acts alone or collaborates with other operators to collect data in the first place; this includes 

paying the owners of sensors. When the data is accessed, the individual operator or the group is paid 

for their services. This proposal focusses primarily on the Business Layer of the Generic IoT Architecture. 

Additionally, it aims to use mobile networks as existing technologies to enable IoT sensing services, thus 

it can also be assigned to the Internet Oriented Vision of IoT. 

All architectures, frameworks and models presented in relation to the Organisational IoT Architecture 

Perspective can either be assigned to the Business-, Application- or Middleware Layer of the Generic IoT 

Architecture. Furthermore, they are either using the Internet Oriented or Semantic Oriented Vision of 

IoT. In conclusion, two IoT Architecture Perspectives, namely the Network IoT Architecture Perspective 

and the Organisational IoT Architecture Perspective, have been identified and explained. Additionally, 

these new perspectives were combined with the Visions of IoT and embedded into the Generic 

Architecture of IoT (see Figure 14). These tasks where performed in order to answer research question 

RQ1.2 (see section 1.2). 

4.2.2 IoT Architecture Components 

Based on the Generic IoT Architecture, proposed by Khan et al. (2012), described in section 4.2.1, and 

illustrated in Figure 14b, the individual components of IoT architecture proposals are analysed in order 

to work out common concepts of each component´s tasks, responsibilities and requirements. Therefore, 

each IoT architecture proposal is examined and the descriptions, requirements, tasks and intentions of 

each component are categorised based on the Generic IoT Architecture’s layers. Ideally, each 

component is described with each layer of the Generic IoT Architecture in mind, which would mean in 

conclusion that the component is holistically described. A holistic IoT architecture component 

description will consider the Business-, Application-, Middleware-, Network- and Perception Layer of the 

Generic IoT Architecture. However, depending on the component not all layers are necessary for 

describing all aspects of an IoT architecture component, e.g. the Mobile Network Operator in Mizouni 

and Barachi´s (2013) architecture proposal does not require a description on the Perception Layer 

because it does not directly interact with the environment to sense data. The IoT architectures which 

are regarded as part of this thesis are shown in Table 1. The components are grouped with the 

architecture they belong to. Each component is described on different layers, whereas the Business 

Layer is abbreviated with the character B, the Application Layer with the character A and so forth.  

The descriptions for each component are extracted from the articles proposing the respective 

architecture, normalised, and assigned to one of the layers. For example, Perera et al. (2014) and 

Zachariah et al. (2015) i.a. suggest that Sensor Owners and Smartphone (-owners) must be incentivised 

to perform their assigned task and that these components usually seek compensations for the services 

they provide. Hence, one part of the common, normalised description of these components states that 
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they want to be compensated for providing access to sensing data. When reviewing the extracted 

component descriptions (see Table 1) it becomes apparent that all IoT architecture proposals share 

several common elements or components. These common components are presented in the next 

paragraphs. 

Consumer 

All architecture proposals considered in this thesis mention the component Consumer or Data 

Consumer, respectively, which is essentially characterised by its demand for data (Perera, Zaslavsky, 

Christen, et al. 2014; Mizouni & El Barachi 2013; Abdelwahab et al. 2015). Regarding the Business Layer, 

Consumers are always legal persons who have an interest in data and its potential information or 

knowledge and are generally willing to compensate for the data and services they consume (Mizouni & 

El Barachi 2013; Jo et al. 2015). Besides the demand for data, Jo et al. (2015) mention that Consumers 

are also interested in offloading computational tasks onto cloud infrastructures. Consumers generally 

do not provide any applications, services or are involved in managing communications between 

different devices. Thus, the Application-, Middleware-, and Perception Layer are not considered in the 

architecture proposals analysed in this thesis. However, Consumers either use web applications offered 

by Service Providers to obtain sensing data or directly connect to components which provide sensing 

data. For example, Perera et al. (2014) state that the Sensor Data Consumers can directly access the 

Sensors maintained by a Sensor Publisher. However, this approach requires the Sensor Data Consumer 

to strictly formalise his sensing requests. The architecture proposed by Chang et al. (2015) allows the 

Client to directly issue sensing requests to the Mobile Host in a peer-to-peer connection. Depending on 

the communication interfaces, technologies and protocols provided by the Mobile Host or the directly 

accessed Thing, which can be as powerful as a smartphone or a highly constrained device, the Consumer 

must support compatible communication interfaces, technologies and interfaces. Thus, the Network 

Layer is addressed in some proposals when describing the Consumer component (e.g. Consumers must 

support BLE or Wi-Fi to connect to Things in the vicinity) (Perera, Zaslavsky, Christen, et al. 2014; Chii 

Chang et al. 2015). In conclusion, Consumers are entities that are mainly interested in data or 

consumption of services, are willing to provide incentives for the data or services, and regularly use 

services provided by Service Providers to issue sensing requests or rarely directly access Things to obtain 

the desired data. 

Thing 

Every architecture proposal presented in Table 1 contains components that either resemble a single 

Thing or a network of Things. These components can be virtual services or physical devices (Abdelwahab 

et al. 2015). On the Business Layer, Things act as service providers, they provide access to their sensing 

or data gathering capabilities. In return, Things can, but need not, demand compensation for the 

services they provide. Additionally, the access to a Thing´s services must follow certain rules that the 

Owner of the Thing might define. Such rules can specify access schedules, energy consumption 

thresholds, restrict the data that can be accessed (e.g. no private data can be accessed, location must 

be anonymised) and define what kind of compensation is required to access the services (Jo et al. 2015; 
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Mizouni & El Barachi 2013; Perera, Zaslavsky, Christen, et al. 2014). Some architecture proposals 

consider Things as personal devices (e.g. smartphones) (Chii Chang et al. 2015), while others consider 

Things as highly constrained devices that have little computational power or storage capabilities. 

However, every IoT architecture proposal either explicitly or implicitly mentions that Things are always 

managed by an Owner, who defines access rules, compensations and other properties. On the 

Perception Layer, Things merely have unique sensing capabilities which no other component of the 

respective architecture has. Due to the constrained nature of most Things, descriptions addressing the 

Network Layer describe the limited communication technologies and protocols of Things. The 

architectures considered in this analysis suggest that highly constrained Things should be connected via 

BLE, 6LoWPAN or Wi-Fi (Jo et al. 2015; Zachariah et al. 2015). Less constrained Things, such as 

smartphones, can additionally be connected via cellular networks (Abdelwahab et al. 2015; Chii Chang 

et al. 2015). In conclusion, Things provide unique sensing capabilities within the respective architecture, 

are connected via limited communication channels and are mainly defined or shaped (e.g. properties, 

metadata, access rules) by their respective Owner. 

Owner 

Although the component Owner is included in every IoT architecture proposal considered in this thesis, 

it is rarely explicitly defined as an individual component. The reasons for this lack of a differentiated 

view on the Owner component is twofold. At first, due to the origin of S2aaS in Mobile Phone Sensing, 

Owner and Thing were basically considered as the same component (Sheng et al. 2013). In a traditional 

Mobile Phone Sensing approach, a smartphone is considered as a Thing which provides unique sensing 

capabilities. Additionally, the smartphone is considered as a personal device, which is owned by a 

person who can immediately decide if a sensing task is performed (participatory sensing) or who can 

define a set of rules for automatically performing sensing tasks (opportunistic sensing) (Yang et al. 2012; 

Sheng et al. 2013). The second reason for the lacking differentiation between Things and their respective 

Owners relates to the respective IoT Architecture Perspective of the corresponding IoT architecture. For 

example, the architecture proposals of Jo et al. (2015) and Zachariah et al. (2015), which were assigned 

to the Network IoT Architecture Perspective (see section 4.2.1), assume that access rules and expected 

compensations are provided by the Thing, regardless who defines these rules. Hence, Jo et al. (2015) 

and Zachariah et al. (2015) abstract and thus elude the ownership relation between Thing and Owner 

and focus only on the metadata (e.g. access rules, data provided, etc.) exposed by the Things and how 

to establish connections to these Things. On the Business Layer the Owner wants to be compensated 

for the services his Things offer. Additionally, the Owner wants to specify access rules and restrictions 

for the Things he owns. Access rules and restrictions include specifications on which kind of data and in 

what detail the data is provided by a Thing. For example, an Owner might not want to expose the 

location of a device and requires that the location is either anonymised or not exposed at all (Krause et 

al. 2008). In conclusion, the Owner is the main stakeholder of a Thing and imposes his requirements and 

specifications onto the Things he owns. 
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Service Provider 

The main purpose of this component across all architecture proposals is the provision of value added 

services to Consumers. Individual Service Providers can specialise in providing domain specific services 

(e.g. weather information, industrial sensor networks, etc.), however the gist of each service is the 

discovery of Things and the collection, storage, transformation, analysis and presentation of data 

(Perera, Zaslavsky, Christen, et al. 2014; Abdelwahab et al. 2015). To be able to provide these services, 

most IoT architecture proposals consider this component as the most intelligent (Perera, Zaslavsky, 

Christen, et al. 2014) component which is very well connected and has vast computing capabilities (Jo 

et al. 2015). In general, Service Providers transform high level and informal sensing tasks made by 

Consumers into formalised Sensing Requests and issue these requests to available and matching Things 

via an arbitrary infrastructure. Consumers must provide compensation for using the services offered by 

Service Providers. The Service Provider in turn provides compensation for accessing the data provided 

by the involved Things. Furthermore, the Service Provider can also be interested in collecting or issuing 

Sensing Tasks on his own (Mizouni & El Barachi 2013). Besides the previous descriptions on the Business 

Layer, the Application Layer of Service Providers is also addressed in the literature on IoT architecture 

proposals. To fulfil their respective Business Layer oriented tasks, Service Providers offer a variety of 

applications that are used by Consumers. A Service Provider usually offers a web application that allows 

Consumers to easily create Sensing Tasks. Thus, this application aims to support the main business task 

of the Service Provider, which is to formalise Sensing Tasks (Chii Chang et al. 2015; Abdelwahab et al. 

2015; Perera, Zaslavsky, Christen, et al. 2014). Furthermore, the web application handles compensations 

as well as data representation. In addition, the Service Provider offers a variety of API endpoints, e.g. for 

registering, discovering Mobile Hosts (Chii Chang et al. 2015), or issuing/ offering Sensing Tasks 

(Abdelwahab et al. 2015). These “back end” applications or API endpoints allow the Service Provider to 

be well connected with other components of the IoT architecture. To conclude, the Service Provider 

collects, transforms and presents sensing data to Consumers based on Sensing Tasks. 

The components Consumer, Thing, Owner and Service Provider are used in all IoT architecture proposals, 

regardless of the IoT Architecture Perspective or the Vision of IoT the respective authors of the 

architecture proposals used. However, the subsequently presented Gateway and Publisher are either 

valid in the Network IoT Architecture Perspective or in the Organisational IoT Architecture Perspective. 

Albeit having some similarities, these components must be distinguished according to the IoT 

Architecture Perspectives in order be able to highlight the differences between them, the corresponding 

architectures and the consequences arising from these different perspectives on an IoT architecture. 

Gateway 

The Gateway component is associated with the Network IoT Architecture Perspective and its main 

purpose is to establish and maintain communication between Things and Service Providers. Both IoT 

architecture proposals which were previously assigned to the Network IoT Architecture Perspective 

include a component of which the sole purpose is to establish and maintain communication (Zachariah 

et al. 2015; Jo et al. 2015). Zachariah et al. (2015) suggest that a Smartphone acts as a gateway to 
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establish communication between the Peripherals and the Cloud, which can be mapped to Things and 

Service Providers, respectively. On the Business Layer, Zachariah et al. (2015) as well as Jo et al. (2015) 

suggest that the Gateway component offers the establishment and maintenance of communication as 

a service for which they demand compensation. In Jo et al.´s (2015) IoT architecture proposal both 

Gateway Devices and Master Devices provide a network infrastructure that allows the Terminal Devices 

to communicate with other devices. In return, Terminal Devices offer compensation for the services 

they consume. The Business Model for Mobile Sensing as a Service proposed by Mizouni and Barachi 

(2013), albeit assigned to the Organisational IoT Architecture Perspective (see 4.2.1), also describes a 

component that offers gateway services. The Mobile Sensing Terminal Operator proactively establishes 

connections to Mobile Network Sensing Entities in its vicinity, retrieves data and publishes it to the 

Mobile Network Operator (Mizouni & El Barachi 2013). In all mentioned cases, the Gateway establishes 

a peer-to-peer connection with the respective Things via BLE, Wi-Fi or a similar low energy wireless 

communication technology. Thus, the Gateway always establishes a direct network connection with a 

Thing in order to collect data. Due to this reason, the Middleware Layer is the most important aspect of 

this component throughout the IoT architecture proposals considered in this thesis. Regarding this layer, 

the Gateway is responsible for normalising communication between Things and Service Providers. It 

supports a wide array of different communication protocols and provides sufficient computing capacity 

to perform near network edge data transformation and routing tasks (Zachariah et al. 2015; Mizouni & 

El Barachi 2013). To summarise, the Gateway´s main purpose is to enable communication between 

Things and Service Providers. 

Publisher 

The Publisher component is associated with the Organisational IoT Architecture Perspective and 

maintains a database of Things along with their metadata and offers applications as well as interfaces 

to query or discover Things based arbitrary criteria. Publishers act as a proxy between Things and their 

respective Owners, and between Service Providers or Consumers (Perera, Zaslavsky, Christen, et al. 

2014). On the Business Layer, a Publisher maintains a set of Things which have been registered with the 

Publisher by the Owner of the respective Thing. During the registration, the Owner can define access 

restrictions and other rules for accessing his Thing through the Publisher (e.g. the Owner wants to 

remain private or defines a threshold for a minimum compensation). The Publisher then either 

advertises the Thing´s services, e.g. sensing capabilities, or waits for Sensing Tasks issued by Service 

Providers. Depending on the specifications the Owner provided during the Thing´s registration, the 

Publisher can automatically perform the Sensing Task (opportunistic sensing) or requests the Owner´s 

permission beforehand (participatory sensing, see section 4.1). Additionally, the Publisher provides 

services for discovering or querying Things (Chii Chang et al. 2015). For all these services the Publisher 

may demand compensations (Perera, Zaslavsky, Christen, et al. 2014). In essence, the Publisher acts as 

a Thing repository and as a proxy for the Thing he manages. In contrast to the Gateway, the Publisher 

must not necessarily establish a peer-to-peer connection with Things. In contrast, Publishers and Things 

are connected via contracts or registrations defined by the Owners of Things. 
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Table 1 summarises the previous component descriptions and assigns each IoT architecture component 

to one of the synthesised Consumer, Thing, Owner, Service Provider, Gateway, and Publisher 

components. The first three columns of Table 1 contain the source for the architecture proposal, the 

considered architecture component in terms of the respective architecture proposal and the mapped 

component in terms of the Holistic IoT Architecture Framework to be developed in this thesis. The fourth 

column contains the description of the respective architecture component. The description 

characterises each component using the Generic IoT Architecture layers (see Figure 14). The architecture 

proposals and each component were examined with each of these layers in mind, thus each 

component´s description consists of specialised descriptions addressing a specific layer. The layers and 

respective descriptions are colour coded (see Figure 14 for reference) and contain the abbreviated name 

of the respective layer (e.g. B for Business Layer, etc.). The last column lists requirements which have 

been derived from the component´s descriptions. Each requirement is considered as either a “must-

have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for successfully 

fulfilling the expectations for a system and a “could-have” requirement merely provides supplementary 

functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994). 

Figure 20 and Figure 21 utilise these components and highlight the differences between IoT architecture 

proposals applying either the Network IoT Architecture Perspective or the Organisational IoT 

Architecture Perspective. The differences between both IoT Architecture Perspectives are discussed in 

more detail in the next section. The analysis of IoT architecture components was conducted in order to 

answer RQ1.1, RQ1.3 and RQ3.1 as well as achieve RO1 and RO3. 
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Table 1: IoT Architecture Component Descriptions based on the Generic IoT Architecture Layers and 

component requirements (own listing) 
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• Smartphone users want to be 

compensated for transmitting data 
between Peripherals and the Cloud • Must be able to support 

various Incentive 
Mechanisms 

• Must transform 
characteristics of 
connected Peripherals into 
unified API endpoints 

• Must be able to scan/ 
discover Peripherals in 
vicinity and establish 
connections 
 

A • Exposes unified API endpoints when 
acting as a BLE gateway 

M 

• Normalises communication between 
Cloud and Peripheral by abstracting 
proprietary interfaces of Peripheral 
devices 

• Acts as IPv6 gateway and allows 
Peripherals to be directly addressable 

• Acts as BLE gateway for Peripherals  

• builds API endpoints based on the 
characteristics of the Peripherals  
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• Is connected to Terminal Devices via 
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General Static Cloud directly or 
through Gateway- and Master Devices 

• Outsources computational tasks 
through Gateway Devices to Master 
Devices 
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various Incentive 
Mechanisms 

• Must be able to scan/ 
discover Gateway Devices 
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• Is connected to Gateway Devices via 
BLE or Wi-Fi 

• Is connected to General Static Cloud 
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• Translates Sensing Tasks and forwards 
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Agents 

• Must be able to transform 
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provided by Cloud Users 
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web applications, endpoints) 
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Things 

• Handles Sensing Tasks and selects 
appropriate connected device from 
the Cloud of Things 

• Must be able to forward 
Sensing Tasks to Sensor 
Owners 

• Must be able to support 
various Incentive 
Mechanisms 

M 

• Normalises communication between 
various types of devices belonging to 
the Cloud of Things 

• Selects devices of the Cloud of Things 
to perform Sensing Tasks, adheres to 
various selection requirements (e.g. 
energy consumption, distance, etc.) 

• Manages Virtual Sensor Networks 
created based on the criteria of the 
Sensing Tasks 

N 
• Supports many kinds of 

communication technologies and 
protocols 

 

C
lo

u
d

 o
f 

Th
in

gs
 

Se
rv

ic
e 

P
ro

vi
d

er
 

B 

• Provides various degrees of available 
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Hosts  

• Selects appropriate Mobile Hosts 
based on Sensing Tasks 
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Sensing Network Entities and aims to 
be compensated for the collected 
data 

• Compensates Mobile Sensing Network 
Entities access to their data 

• Must be able to support 
various Incentive 
Mechanisms 
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• Provides applications to collect data 
from Mobile Sensing Network Entity 
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Figure 20: Preliminary generic IoT architecture applying the Organisational IoT Architecture 

Perspective (own illustration) 
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Figure 21: Preliminary generic IoT architecture applying the Network IoT Architecture Perspective (own 

illustration) 
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4.3 Thing Management – An underdeveloped component 

Based on the IoT Architecture Perspectives presented in the previous sections, this section further 

elaborates their differences and draws conclusions about potentially missing components or features in 

the IoT architectures analysed in this thesis. Based on the conclusions presented in section 4.3.1, the 

principles of Identity Management are discussed for the further development of a new component for 

the Holistic IoT Architecture to be developed as part of this thesis (see section 4.3.2). Based on the 

findings of the previous sections, the development of the new component Thing Management is 

described in section 4.3.3. 

4.3.1 Differences between Network- and Organisational IoT Architecture Perspectives and 

Conclusions 

To highlight the differences between the architectures applying either the Organisational IoT 

Architecture Perspective or the Organisational IoT Architecture Perspective, two scenarios regarding the 

deployment-environment of Things are described (see Figure 22). The main difference between the 

scenarios is the degree of control an Owner has regarding the environment his Things are deployed in. 

In the first scenario, which is essentially described by Perera et al. (2014), the Owner of a Thing has full 

control over the environment. In Perera et al.´s (2014) example, an Owner deploys a smart fridge in his 

home network. Thus, the Owner controls and establishes the connectivity of the smart fridge and can 

directly connect or register the smart fridge with a Publisher. Furthermore, the Owner can directly 

access his Things and modify restrictions, privacy settings and other parameters of his Things with ease. 

In this scenario, the Owner additionally acts as the Gateway because he establishes a permanent 

network connection between his Things and the internet. Publishers can act as proxies between Things 

and Service Providers. This is possible because Publishers are directly connected to the Things registered 

to them and they do not need to rely on external or uncontrolled Gateways to establish a network 

connection (see Figure 22). 
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Figure 22: IoT Architecture Perspectives on different scenarios based on the Owner´s degree of control 

in the deployment environment (own illustration) 

Contrasting the first scenario, the second scenario regards Things deployed in a “foreign” environment 

(see Figure 22). Owners still own their Things from an organisational view, but deploy their Things in an 

environment they do not completely control (e.g. commercial sensor data providers deploy sensors in 

public spaces). The deployment of Things in “foreign” environments indicates that Owners do not have 

permanent access to their Things and that they neither provide nor control the communication between 

their Things and the corresponding Publishers. This scenario is described by almost every architecture 

proposal regarded in this thesis. For example, the IoT Smartphone Gateway presented by Zachariah et 

al. (2015) (see section 4.2.1 and Figure 15) indicates that Peripherals, which are Things, need to rely on 

the opportunistic and unreliable communication channels provided by mobile gateways. The Mobile 

Phone Sensing as a Service Business Model presented by Mizouni and El Barachi (2013) also relies on a 

gateway component to establish a non-permanent connection between Things and Service Providers. 

In all the above-mentioned cases, the respective Publisher of a Thing, which should act as a proxy 

between Things and Service Providers, is not considered at all. In essence, in this scenario Gateways 

directly communicate with Things. This leads to two consequences. First, Publishers cannot fulfil their 

role of managing access rules and restriction, or maintain the privacy of the respective Owner of a Thing. 

This consequence indicates that these restrictions must be stored and managed directly by the 

respective Thing. However, due to the deployment of Things in a “foreign” environment, which includes 

limited, uncontrolled and unreliable access, managing Things could become a onerous task for Owners. 

Second, considering the fact that a Thing should always be registered to at least one Publisher, the 
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corresponding Publisher´s metadata must also be stored on the Thing itself (Perera, Zaslavsky, Christen, 

et al. 2014). This further complicates the management of Things and increases the technical 

requirements for them as well (e.g. additional storage capacities, additional computing capacities to 

support simplistic authentication, etc.). Things need to store their Publisher´s and Owner´s metadata. 

Gateways need to determine the correct Publisher to transfer the data to, based on the metadata 

provided by each Thing. This requirement for the Owners to permanently be able to access and manage 

their Things and keep the metadata up-to-date could significantly hamper the deployment of large scale 

WSNs due to increased operating costs. This is because the Owners of these networks very likely need 

to provide network access themselves in order to guarantee up-to-date metadata of the Things in the 

WSN. The additional metadata stored on Things is required because Gateways directly communicate 

with Things and bypass the corresponding Publishers. Without this metadata the Gateway cannot 

determine the receiver of the data, what kind of data they collect or if they are allowed to access the 

Thing´s data in the first place.  

In conclusion, the following problems arise when the Network IoT Architecture Perspective and the 

Organisational IoT Architecture Perspective and the corresponding scenarios are considered in 

combination.  

• Lack of privacy and anonymity 

With the ability to bypass the Publisher, which should act as a proxy and ensure privacy and 

anonymity, neither the privacy nor anonymity of an Owner of a Thing are guaranteed. 

• Onerous Thing management 

With each Thing being able to be directly but not permanently addressed by Gateways, the metadata 

describing the Thing must be manageable at all times. However, this becomes an issue in “foreign” 

environments when communication cannot be guaranteed. Furthermore, this issue scales with the 

number of Things to manage. 

• Increased requirements for Things 

The requirement to be able to store additional metadata, to host a simplistic authentication 

framework and to provide some means of remote management requires the Things to provide 

additional storage and computational capacities. 

• Reliance on potentially untrusted Gateways 

Gateways currently do not have an organisational relation with Publishers. Thus, they can be 

considered as untrusted because it is not guaranteed that the Gateway conscientiously transmits the 

data to the respective Publisher. Likewise, a Thing cannot determine if a Gateway that tries to access 

it´s data or services acts on behalf of the Thing´s associated Publisher. This untrusted communication 

can lead to issues ranging from publishing false data, negative impacts in a Thing´s reputation all the 

way to the denial of services provided by a Thing, or publishing data which violates the privacy of the 

Thing´s Owner. 

To solve the above-mentioned problems, Owners need a system to easily manage their Things. This 

system should be able to manage the restrictions, access rules and other settings of a Thing. 
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Furthermore, the system should be able to manage the registrations of each Thing with a Publisher. The 

guiding principles and development of this Thing Management System (TMS) are discussed in section 

4.3.2 and section 4.3.3, respectively. After having discussed the Thing Management System as a new 

component for the Holistic IoT Architecture Framework based on S2aaS, it will be embedded into the 

architecture in section 0. However, the Thing Management System only solves the problems “Lack of 

privacy and anonymity“ and “Onerous Thing management”. In order to tackle the problems “Increased 

requirements for Things” and “Reliance on potentially untrusted Gateways”, the relation between 

Gateways, Publishers and Things as well as the role of a Gateway itself must be revised (see Figure 22). 

For Gateways to become trusted entities in relation to Publishers and being able to access Things on 

behalf of a Publisher an authentication system between Gateways and Publishers, and between 

Gateways and Things must be designed (see section 4.3.4). 

4.3.2 Utilising Principles of Identity Management for Thing Management in IoT 

The previous section suggested the so-called Thing Management System as a tool for Owners to manage 

their Things and share their Things services with Publishers. By being responsible for these tasks, the 

Thing Management System is expected to ensure the privacy and anonymity of a Thing´s Owner while 

simultaneously simplifying the management of these Things. In order to be able to design and develop 

such a system guiding principles or a domain model need to either be developed or identified and 

transferred from other research or problem domains. As described in section 2.2, the suggestion and 

the development phase of the GDC are to be guided by the patterns Theory Development and Problem 

Space Tools and Techniques (Vaishnavi & Kuechler 2007). Based on the task, which is to develop a system 

to manage and share Things, and the nature of these Things, the principles of Identity Management 

shall be utilised to develop the Thing Management System.  

Vaishnavi and Kuechler (2007) suggest that the pattern Problem Space Tools and Techniques can be 

applied when a research problem has been identified and the researcher wants to assess the problem 

space and utilise his general knowledge in order to identify tools and techniques that assist in the 

solution of the research problem. In this particular case the sharing of data (e.g. what kind of data) and 

providing access to services (e.g. specific users are granted or denied access), the maintaining of privacy 

and anonymity, and the management of shared data and access (e.g. granting and revoking access) 

make up the problem space. In essence, the problem space consists of issues regarding the management 

of Things by their corresponding Owners. However, as described in section 2.4, IDM deals with issuing 

credentials to users, identifying users with identifiers and granting access to services and data. As 

mentioned earlier, the nature of Things led to the conclusion that IDM provides suitable principles to 

guide the development of a system for managing Things.  

In section 4.2.2, Things have been defined as components that provide unique sensing capabilities and 

have rules for accessing the services they provide. This definition of Things bears similarities with the 



 Developing the Holistic IoT Architecture Framework 

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 71 

Service Providers13 described in the context of IDM in section 2.4. Users wanting to access a Thing´s 

services can authenticate themselves and are authorised to access the sensing or metadata of the Thing. 

While authentication and authorisation are not necessarily required for accessing a Thing´s services, 

these mechanisms are required when the service of a Thing must be compensated, as described in 

section 4.2.2. As soon as a Thing requires compensation for its services, it must be able to identify users 

and grant or deny access, depending on the compensation the respective user provides. In order to be 

able to identify a user and if he needs to, or already has provided compensation for the services, the 

Thing needs to issue credentials to its users. Hence, a Thing is “surrounded” by an Identity Domain and 

uniquely identifies it´s users Identities based on a set of Identifiers defined by the Identity Domain of 

the Thing. Based on this description, a Thing can be regarded as a Service Provider in the context of IDM. 

However, with regard to the relationship between a Thing and its corresponding Owner, which has also 

been defined in section 4.2.2, a Thing can additionally be interpreted as an Identity of an Owner. The 

Owner of a Thing imposes his requirements regarding the compensation of services and the access 

restrictions onto the Things he owns. As described by Perera et al. (2014) i.a., Owners have full control 

over the Things they own and thus can decide if Things are published and which characteristics are made 

available by publishing a Thing. The characteristics of a Thing generally consist of descriptions of the 

services a Thing provides (e.g. sensor type, data scheme, information model, owner preferences, 

availability, etc.) and additional metadata (e.g. location) (Zachariah et al. 2015; Perera, Zaslavsky, 

Christen, et al. 2014). These characteristics, primarily denoting and designating the Thing´s entity and 

identity respectively (see Figure 3), could very well be used to infer characteristics of the Thing´s Owner. 

Thus, the Identity of a Thing also refers to its Owner, which is its Entity in terms of IDM. For example, 

when the metadata of a Thing contains location information, one could infer that the Owner of that 

Thing is or was active in that general area, e.g. because he had to deploy the device. Additionally, since 

an Owner imposes his own requirements and specifications onto his Things, e.g. by specifying access 

rules or defining what kind of compensation is required, he implicitly transfers characteristics denoting 

his own Entity to the Thing´s characteristics, which can later be used to designate the Thing´s Identity. 

Hence, a Thing can also be regarded an Identity referring to his Owner as its Entity. Figure 23 illustrates 

this relationship between Things and Owners in terms of IDM. 

                                                           

13 It must be noted that the term Service Provider is ambiguous. Whenever a Service Provider in terms of IDM is 
meant, it is mentioned in the text. Otherwise the Service Provider defined in section 4.2.2 is meant. 
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Figure 23: Relationship between Things and Owners in terms of IDM (own illustration) 

In conclusion, in the domain of IDM, Things can be regarded as both Identities and Service Providers 

alike. A Thing can act as a Service Provider, requiring users to authenticate themselves and granting 

access to the services it provides. At the same time, in order to be able to be discovered, a Thing exposes 

its Identity, which consists of characteristics describing the Thing, its services explicitly and its Owner 

implicitly. Hence, a Thing must always be considered in combination with its respective Owner. 

The insight that a Thing is an Identity will help significantly during the development of the Thing 

Management System because the “Laws of Identity” (Cameron 2005) (see section 2.4) can be used as 

requirements for the consecutive development steps of the Axiom Based Design which is applied in the 

following section. Furthermore, the Personal Authentication Device (see Figure 5) proposed by Jøsang 

and Pope (2005) can also be used to guide the development of the Thing Management System as it has 

been designed to manage and share multiple sets of credentials or Identities with Service Providers. 

Simultaneously, the insight that a Thing can also be considered as a Service Provider in terms of IDM will 

be helpful in section 4.3.4, where the roles and relations of Gateways are revised. With Things acting as 

Service Providers, Gateways can be interpreted as users who need to authenticate with a Thing. 

However, this requires a Thing to provide an authentication system, which increases the technical 

requirements for it (see section 4.3.1). 

4.3.3 Development of the Thing Management System 

Having discussed the need for a convenient, anonymity and privacy preserving system for managing 

Things in section 4.3.1 and having identified suitable existing concepts and technologies in section 4.3.2 

which can be used to guide the development of such a Thing Management System, this section will now 

present the development of the Thing Management System. The development of this new component 
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for the Holistic IoT Architecture Framework to be designed in this thesis, will apply the principles of the 

Axiomatic Design method (see section 2.2). 

 

Figure 24: Relationship of domains, mapping and design space in axiomatic design (adapted from Suh 

& Do 2000) 

The first step of the development process applying Axiomatic Design consists of mapping Functional 

Requirements or deriving them from the Customer Domain (see Figure 24). The set of Customer 

Attributes (CA) that will be used to derive the Functional Requirements (FR) are provided by Jøsang and 

Pope (2005) and Cameron (2005). The Personal Authentication Device (PAD) described by Jøsang and 

Pope (2005) (see Figure 5) will be used to retrieve requirements for the Thing Management System. The 

PAD is based on the idea that Service Providers, in terms of IDM, generally have access to systems that 

allow the automated management of Identities, while users do not use or have access to such systems. 

Jøsang and Pope (2005) discuss that the growing number of Service Providers a user can and will 

consume might lead to security and usability issues when users need to manage these identities 

manually (e.g. by memorising credentials for each Service Provider). Consequently, the concept of 

Federated Identity Management Models was introduced which in theory only requires a single set of 

credentials for the users to memorise or manage. However, Jøsang and Pope (2005) argue that if users 

only needed to manage a single set of credentials this would imply some sort of global federated Identity 

Domain, which is unlikely to be feasible. This is because due to different requirements regarding the 

characteristics or Identifiers making up an Identity across different Identity Domains (e.g. different legal 

or security requirements) (Jøsang & Pope 2005). To address the issues of poor usability regarding the 

management of identities, Jøsang and Pope (2005) present the PAD, which is a device or service 

controlled by a single user that securely stores an arbitrary number of credentials which are linked to 

corresponding Service Providers. Consequently, a user only needs to remember a single set of 

credentials for authentication with his own PAD to be able to authenticate with every other Service 

Provider he uses. Jøsang and Pope (2005) suggest that this can create a so called “virtual single-sign-on” 
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environment, where a user is authenticated by single set of credentials across multiple Service Providers. 

The different sets of credentials for each Service Provider are handled by the PAD, thus the prefix 

“virtual” single-sign-on. Furthermore, the PAD can be backwards-compatible and can be implemented 

in every existing Service Provider´s authentication framework because it only manages the credentials 

or Identifiers and not the authentication (e.g. it can be interpreted as a database of a user´s credentials) 

(2005). 

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the 

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes 

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD, 

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be 

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful 

for generating requirements for the Thing Management System because the laws are addressing 

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service 

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management 

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of 

Identity”, can be also be applied to the Thing Management System. These requirements are also listed 

in Table 2. 

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and 

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that 

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are 

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and 

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements 

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided 

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the 

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and 

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following 

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary 

requirements, the FRs and the notable exceptions of them. 

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and 

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the 

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in 

column three addresses one or more actors or components and defines an expected behaviour or 

functionality for these actors or components. In addition, each requirement is considered as either a 

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for 

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides 

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994). 

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding 

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary 
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requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1, 

CA26, i.a.). 

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from 

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some 

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or 

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom 

described in section 2.2. 

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could 

be able to be deployed on a portable device. However, considering the intended application of the PAD 

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD 

only stores the Credentials and Identities of a single user and that the PAD is only used when the user 

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In 

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even 

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device 

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3), 

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power 

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the 

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour. 

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map 

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These 

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS. 

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials 

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners 

and not as an identity provider. The services offered by the TMS include the management of Things and 

their corresponding Identities which are then used or shared with other Service Providers. It is not 

intended that the Owners manage their Identities (themselves)14. The fact that the TMS acts as a Service 

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a 

single Identity Provider, is not relevant for the development of the TMS. 

  

                                                           

14 Although it has been stated in section 4.3.2 that a Thing can be considered as an Identity referring to an Owner, 
it must be noted that the TMS is only intended to manage Identities that transitively refer to the Owner´s Entity.  



Patrick Nitschke 

76 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group 

Table 2: Customer Attributes and a first set of preliminary requirements for the TMS (own listing) 
C

A
 R

eq
. I

D
 

Description Requirement 

C
A

1
 

“A solution, which seems quite obvious, is simply to let users 
store identifiers and credentials from different service 
providers in a single tamper resistant hardware device which 
could be a smart card or some other portable personal 
device.” (Jøsang & Pope 2005, p.7) 

C
A

1.
1

 An Owner must be able 
to store Identifiers and 
Credentials in the TMS. 

C
A

1.
2

 

The TMS must be able to 
handle different types of 
Credentials for different 
Service Providers. 

C
A

1.
3

 

The TMS must be 
tamper-resistant. 

C
A

1.
4

 The TMS must be able to 
be deployed on portable 
devices. 

C
A

2
 “Because its main purpose would be authentication, the 

device can be called a personal authentication device 
(PAD).” (Jøsang & Pope 2005, p.7) C

A
2.

1
 

The TMS must only 
provide authentication 
and necessarily related 
services. 

C
A

3
 

“The user must authenticate himself to the PAD, 

e.g. with a PIN, before the PAD can be used for 
authentication purposes.” (Jøsang & Pope 2005, p.7) C

A
3

.1
 The TMS must provide 

authentication 
mechanisms for Owners. 

C
A

4
 

“A more advanced solution could be to connect the PAD to 
the client platform via a communication channel such as 
bluetooth or wireless LAN, or to let the PAD communicate 
directly with the server through a secondary channel. This 
would allow the PAD to be fully integrated into the 
authentication process. This is described in more detail in 
Sec.6” (Jøsang & Pope 2005, p.8) 

C
A

4.
1

 

The TMS must be able to 
communicate with 
different Service 
Providers. 

C
A

4.
2

 

The TMS must support 
various communication 
protocols and 
technologies. 

C
A

4.
3

 

The devices a TMS is 
deployed on should 
support LAN, IPv4, IPv6, 
Wi-Fi, BLE. 
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C
A

5
 

“The functionality of a PAD could be integrated into 
other devices such as a mobile phone or personal 

digital assistant (PDA) which many people carry 
already. Using a mobile phone would also allow 
advanced solutions such as registration and challenge- 
response authentication through a mobile secondary 
channel.” (Jøsang & Pope 2005, p.8) 

C
A

5.
1

 

The TMS could be able to be 
deployed on portable devices. 

C
A

5.
2

 

The TMS must be able to 
communicate with Service 
Providers (e.g. to perform 
authentication / validation 
automatically). 

C
A

6
 

“With a PAD connected to the client platform, virtual 
SSO solutions are possible. This could be implemented 
by letting the PAD automatically authenticate itself on 
behalf of the user as long as the PAD is connected to 
the client platform.” (Jøsang & Pope 2005, p.8) 

C
A

6.
1

 The TMS must be able to 
automatically authenticate 
with a Service Provider. 

C
A

7
 

“The PAD should be under the control of the user, and 
not under the control of the identifier providers, 

the credential issuers or the service providers.” (Jøsang 
& Pope 2005, p.8) 

C
A

7.
1

 

The TMS should be under the 
Owner’s control (e.g. hosted 
on his resources, only he has 
access, etc.). 

C
A

8
 

“In order to gain full advantage of the PAD, it should be 
a general security device capable of handling many 
types of identities and credentials. Some level of 
standardisation, such as that described in the Personal 
Transaction Protocol [7], might be needed for that to 
be practical.” (Jøsang & Pope 2005, p.8) 

C
A

8.
1

 

The TMS should support as 
many different authentication 
protocols and technologies as 
possible. 
C

A
8.

2
 

The TMS could use a 
standardised protocol for 
transmitting Identity related 
information, if available. 

C
A

9
 

“No one is as pivotal to the success of the identity 
metasystem as the individual who uses it. The system 
must first of all appeal by means of convenience and 
simplicity. But to endure, it must earn the users trust 
above all.” (Cameron 2005, p.6) 

C
A

9.
1

 

The TMS must be simple to 
use. 

C
A

9.
2

 

The TMS must be convenient 
to use. 

C
A

9.
3

 

Owners must trust the TMS. 

C
A

10
 “The system must be designed to put the user in control 

- of what digital identities are used, and what 
information is released.” (Cameron 2005, p.6) 

C
A

10
.1

 

Owners must always give their 
consent before actions 
regarding their Identities are 
performed (e.g. sharing, 
publishing). 

C
A

10
.2

 Owners must decide which 
Characteristics or Identifiers 
are shared with other third 
parties. 
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C
A

11
 “The system must also protect the user against 

deception, verifying the identity of any parties who ask 
for information.” (Cameron 2005, p.6) C

A
11

.1
 The TMS must verify the 

Identity of third parties 
inquiring the Identity a Thing. 

C
A

12
 “Should the user decide to supply identity information, 

there must be no doubt that it goes to the right place.” 
(Cameron 2005, p.6) C

A
12

.1
 The TMS must ensure that 

Identities are shared only with 
certified third parties. 

C
A

13
 “And the system needs mechanisms to make the user 

aware of the purposes for which any information is 
being collected” (Cameron 2005, p.6) C

A
13

.1
 

The TMS must inform the 
Owner about which Identity of 
which of his Things is used by 
which party for which 
purpose. 

C
A

14
 “The system must inform the user when he or she has 

selected an identity provider able to track internet 
behaviour” (Cameron 2005, p.6) C

A
14

.1
 

The TMS must inform the 
Owner when the Owner 
selected an Identity Provider 
that tracks his internet 
behaviour. 

C
A

15
 

“Further, it must reinforce the sense that the user is in 
control regardless of context, rather than arbitrarily 
altering its contract with the user.” (Cameron 2005, 
p.6) 

C
A

15
.1

 
An Owner must give his 
consent regardless of the 
context or consequences of 
allowing or denying sharing an 
Identity of one of his Things. 

C
A

15
.2

 An Owner must be asked for 
his consent regardless of the 
context of an inquiry in 
general. 

C
A

16
 

“The Law of User Control and Consent allows for the 
use of mechanisms whereby the metasystem 
remembers user decisions, and users may opt to have 
them applied automatically on subsequent occasions.” 
(Cameron 2005, p.6) 

C
A

16
.1

 An Owner must be asked for 
his consent before every 
action taken by the TMS. 

C
A

16
.2

 The TMS can be able to store 
or remember an Owner’s 
decision regarding specific 
actions. 

C
A

16
.3

 

The TMS can be able to 
automatically apply decisions/ 
automatically act when the 
Owner previously has allowed 
it to. 
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C
A

17
 

“To mitigate risk, it is best to acquire information 
only on a “need to know” basis, and to retain it only 
on a “need to retain” basis. By following these 
practices, we can ensure the least possible damage 
in the event of a breach.” (Cameron 2005, p.7) 

C
A

17
.1

 The TMS must only retain the 
minimal amount of Identity-
information. 

C
A

17
.2

 The TMS must only acquire the 
minimal amount of Identity-
information. 

C
A

17
.3

 The TMS must only use or 
provide Identity-information in 
scenarios that inevitably require 
the Identity-information. 

C
A

18
 

“At the same time, the value of identifying 
information decreases as the amount de- creases. A 
system built with the principles of information 
minimalism is therefore a less attractive target for 
identity theft, reducing risk even further” (Cameron 
2005, p.7) 

C
A

18
.1

 

The TMS must store as little 
Identity-information as possible. 

C
A

19
 

“The concept of “least identifying information” 
should be taken as meaning not only the fewest 
number of claims, but the information least likely to 
identify a given individual across multiple contexts. 
For example, if a scenario requires proof of being a 
certain age, then it is better to acquire and store the 
age category rather than the birth date.” (Cameron 
2005, p.7) 

C
A

19
.1

 

Wherever possible, the TMS 
should select the Characteristics 
or Identifiers that satisfy the 
needs of the inquirer and that 
can least likely be used to 
denote the Identity of an Owner. 

C
A

20
 

“We can also express the Law of Minimal Disclosure 
this way: aggregation of identifying information also 
aggregates risk. To minimize risk, minimize 
aggregation.” (Cameron 2005, p.7) C

A
20

.1
 The TMS must store the least 
amount of Identity-information 
as possible to provide the 
desired services. 

C
A

21
 

“Digital identity systems must be de- signed so the 
disclosure of identifying information is limited to 
parties 

having a necessary and justifiable place in a given 
identity relationship.” (Cameron 2005, p.7) 

C
A

21
.1

 The TMS must verify if a party 
has a necessary / justifiable 
claim for accessing Identity-
information. 

C
A

22
 “The identity system must make its user aware of the 

party or parties with whom she is interacting while 
sharing information.” (Cameron 2005, p.7) C

A
22

.1
 

The TMS must provide Identity-
information about other parties 
that want to access the Identity-
information managed by the 
TMS. 

C
A

23
 “The justification requirements apply both to the 

subject who is disclosing information and the relying 
party who depends on it.” (Cameron 2005, p.7) C
A

23
.1

 

The Identities used to access 
Service Providers must be 
justifiable / necessary. E.g. 
“Official” Identities must not be 
necessary when wanting to 
access a private service (e.g. 
family wiki). 
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C
A

24
 

“We know from the law of control and con- sent that 
the system must be predictable and "translucent" in 
order to earn trust. But the user needs to understand 
who she is dealing with for other reasons, as we will 
see in law six (human integration).” (Cameron 2005, 
p.7) 

C
A

24
.1

 An Owner must always be 
informed about who (e.g. third 
parties) he is dealing with. 

C
A

24
.2

 The parties involved in an 
authentication process must 
always be presented / shown. 

C
A

25
 

“Every party to disclosure must provide the disclosing 
party with a policy statement about information use. 
This policy should govern what happens to disclosed 
information. One can view this policy as defining 
"delegated rights" issued by the disclosing party.” 
(Cameron 2005, p.8) 

C
A

25
.1

 

A third party wanting to access 
Identity-information must 
provide reasons / a policy that 
states what the information is 
used for. 

C
A

25
.2

 An Owner using the TMS must 
be asked for his consent when a 
party wants to access an Identity 
of one of his Things. 

C
A

25
.3

 

A TMS should be able to 
automatically decide if Identity-
information is shared or not, 
based on the policies if the 
Owner wishes so. 

C
A

26
 

“A universal identity system must support both 
“omnidirectional” identifiers for use by public entities 
and “unidirectional” identifiers for use by private 
entities, thus facilitating discovery while preventing 
unnecessary re- lease of correlation handles” 
(Cameron 2005, p.8) 

C
A

26
.1

 A TMS must allow the Owner to 
select omni- and uni-directional 
Identifiers or Identities. 

C
A

26
.2

 Omnidirectional Identifiers or 
Identities must be public, 
invariant and well know. 

C
A

26
.3

 Unidirectional Identifiers or 
Identities must remain private 
and only be used when the 
Owner wishes so. 

C
A

26
.4

 Unidirectional Identifiers or 
Identities shall be used in private 
communication contexts. 

C
A

26
.5

 Omnidirectional Identifiers or 
Identities must be discoverable 
and "emit" or act as beacon for 
Identity (of the respective Entity) 

C
A

26
.6

 Omnidirectional Identifiers or 
Identities shall be used in public 
communication / certification 
scenarios. 
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C
A

27
 

“A universal identity system must channel and enable 
the inter-working of multiple identity technologies 
run by multiple identity providers” (Cameron 2005, 
p.9) 

C
A

27
.1

 A TMS must support various 
kinds of representations of 
Identities. 

C
A

27
.2

 A TMS must be able to interface 
with various types of operators / 
Service Providers. 

C
A

28
 

“But in many cultures, employers and employees 
would not feel comfortable using government 
identifiers to log in at work. A government identifier 
might be used to con- vey taxation information; it 
might even be required when a person is first offered 
employment. But the context of employment is 
sufficiently autonomous that it warrants its own 
identity, free from daily observation via a 
government-run technology.” (Cameron 2005, p.9) 

C
A

28
.1

 Depending on the context or 
scenario, an Owner must be able 
to choose which Identity he uses 
/ provides to a Service Provider. 

C
A

28
.2

 Identities must have different 
characteristics and must be able 
to be assigned to different 
Service Providers. 

C
A

29
 

“A universal system must embrace differentiation, 
while recognizing that each of us is simultaneously - 
in different contexts - a citizen, an employee, a 
customer, a virtual personal.” (Cameron 2005, p.9) 

C
A

29
.1

 

A TMS must be able to 
distinguish between contexts 
(e.g. based on the Service 
Provider which inquires Identity-
information). 

C
A

29
.2

 A TMS must support different 
roles for its Owners, which can 
be customers, employees, 
citizens, etc. at the same time. 

C
A

30
 

“This demonstrates, from yet another angle, that 
different identity systems must exist in a 
metasystem. It implies we need a simple 
encapsulating protocol (a way of agreeing on and 
transporting things). We also need a way to surface 
information through a unified user experience that 
allows individuals and organizations to select 
appropriate identity providers and features as they 
go about their daily activities.” (Cameron 2005, p.9) 

C
A

30
.1

 A TMS must use a standardised 
communication protocol for 
transmitting Identity-
information. 

C
A

30
.2

 A TMS must display / present 
Identities in a similar manner 
across different Identity 
Domains / application contexts. 

C
A

30
.3

 Owners must be able to select 
Identity Providers through a 
TMS. 

C
A

30
.4

 

A TMS must not be tied to a 
specific Identity Provider. 

C
A

30
.5

 

A TMS must be able to 
communicate with other TMS. 
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C
A

31
 

“The universal identity metasystem must not be 
another monolith. It must be polycentric (federation 
implies this) and also polymorphic (existing in 
different forms). This will allow the identity ecology 
to emerge, evolve and self-organize.” (Cameron 
2005, p.10) 

C
A

31
.1

 

A TMS embedded into a 
metasystem should be 
polycentric and polymorphic, 
thus a TMS should be able to 
communicate with different 
kinds of TMS. 

C
A

32
 

“Carl Ellison and his colleagues have coined the term 
„ceremony‟ to describe interactions that span a 
mixed network of human and cybernetic system 
components – the full channel from web server to 
human brain. A ceremony goes beyond cyber 
protocols to ensure the integrity of communication 
with the user. 

This concept calls for profoundly changing the user´s 
experience so it becomes predictable and 
unambiguous enough to allow for informed 
decisions.”(Cameron 2005, p.10) 

C
A

32
.2

 

A TMS must inform the Owner 
unambiguously regarding the 
Identities the Owner is using and 
dealing with while he accessing 
Identity-information / sharing 
Identity-information with Service 
Providers. 

C
A

33
 

“Since the identity system has to work on all 
platforms, it must be safe on all platforms. The 
properties that lead to its safety can't be based on 
obscurity or the fact that the underlying platform or 
software is unknown or has a small 
adoption.”(Cameron 2005, p.10) 

C
A

33
.1

 
A TMS should be platform 
agnostic. 

C
A

33
.2

 The Identity-information, 
transmitted from the digital 
system to the Owner must be 
reliable. 

C
A

34
 

“The unifying identity metasystem must guarantee 
its users a simple, consistent experience while 
enabling separation of contexts through multiple 
operators and technologies.”(Cameron 2005, p.10) 

C
A

34
.1

 A TMS must be able to 
distinguish between application 
contexts (e.g. based on different 
Service Providers). 

C
A

34
.2

 A TMS must support the usage 
of different Identities for 
different contexts. 

C
A

35
 

“To make this possible, we must “thingify” digital 
identities – make them into “things” the user can see 
on the desktop, add and delete, select and share. 
How usable would today´s computers be had we not 
invented icons and lists that consistently represent 
folders and documents? We must do the same with 
digital identities.”(Cameron 2005, p.11) 

C
A

35
.1

 

A TMS must present/ display an 
Identity in a way the Owner 
understands. An Identity should 
be an object with properties and 
applications / instances in 
specific contexts (e.g. browsing, 
personal, community, etc.). 

 

The CAs and corresponding preliminary requirements listen in The first step of the development process 

applying Axiomatic Design consists of mapping Functional Requirements or deriving them from the 

Customer Domain (see Figure 24). The set of Customer Attributes (CA) that will be used to derive the 

Functional Requirements (FR) are provided by Jøsang and Pope (2005) and Cameron (2005). The 

Personal Authentication Device (PAD) described by Jøsang and Pope (2005) (see Figure 5) will be used 
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to retrieve requirements for the Thing Management System. The PAD is based on the idea that Service 

Providers, in terms of IDM, generally have access to systems that allow the automated management of 

Identities, while users do not use or have access to such systems. Jøsang and Pope (2005) discuss that 

the growing number of Service Providers a user can and will consume might lead to security and usability 

issues when users need to manage these identities manually (e.g. by memorising credentials for each 

Service Provider). Consequently, the concept of Federated Identity Management Models was introduced 

which in theory only requires a single set of credentials for the users to memorise or manage. However, 

Jøsang and Pope (2005) argue that if users only needed to manage a single set of credentials this would 

imply some sort of global federated Identity Domain, which is unlikely to be feasible. This is because due 

to different requirements regarding the characteristics or Identifiers making up an Identity across 

different Identity Domains (e.g. different legal or security requirements) (Jøsang & Pope 2005). To 

address the issues of poor usability regarding the management of identities, Jøsang and Pope (2005) 

present the PAD, which is a device or service controlled by a single user that securely stores an arbitrary 

number of credentials which are linked to corresponding Service Providers. Consequently, a user only 

needs to remember a single set of credentials for authentication with his own PAD to be able to 

authenticate with every other Service Provider he uses. Jøsang and Pope (2005) suggest that this can 

create a so called “virtual single-sign-on” environment, where a user is authenticated by single set of 

credentials across multiple Service Providers. The different sets of credentials for each Service Provider 

are handled by the PAD, thus the prefix “virtual” single-sign-on. Furthermore, the PAD can be 

backwards-compatible and can be implemented in every existing Service Provider´s authentication 

framework because it only manages the credentials or Identifiers and not the authentication (e.g. it can 

be interpreted as a database of a user´s credentials) (2005). 

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the 

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes 

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD, 

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be 

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful 

for generating requirements for the Thing Management System because the laws are addressing 

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service 

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management 

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of 

Identity”, can be also be applied to the Thing Management System. These requirements are also listed 

in Table 2. 

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and 

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that 

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are 

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and 

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements 
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(FR). This refinement or mapping is guided by the information axiom and independence axiom provided 

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the 

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and 

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following 

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary 

requirements, the FRs and the notable exceptions of them. 

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and 

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the 

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in 

column three addresses one or more actors or components and defines an expected behaviour or 

functionality for these actors or components. In addition, each requirement is considered as either a 

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for 

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides 

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994). 

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding 

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary 

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1, 

CA26, i.a.). 

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from 

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some 

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or 

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom 

described in section 2.2. 

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could 

be able to be deployed on a portable device. However, considering the intended application of the PAD 

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD 

only stores the Credentials and Identities of a single user and that the PAD is only used when the user 

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In 

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even 

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device 

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3), 

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power 

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the 

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour. 

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map 

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These 

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS. 

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials 
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referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners 

and not as an identity provider. The services offered by the TMS include the management of Things and 

their corresponding Identities which are then used or shared with other Service Providers. It is not 

intended that the Owners manage their Identities (themselves). The fact that the TMS acts as a Service 

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a 

single Identity Provider, is not relevant for the development of the TMS. 
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Table 2 are mapped to Functional Requirements, which are listed in Table 3. The first column of Table 3 

contains unique identifiers for each requirement while the second column contains the associated 

Customer Attributes from The first step of the development process applying Axiomatic Design consists 

of mapping Functional Requirements or deriving them from the Customer Domain (see Figure 24). The 

set of Customer Attributes (CA) that will be used to derive the Functional Requirements (FR) are provided 

by Jøsang and Pope (2005) and Cameron (2005). The Personal Authentication Device (PAD) described by 

Jøsang and Pope (2005) (see Figure 5) will be used to retrieve requirements for the Thing Management 

System. The PAD is based on the idea that Service Providers, in terms of IDM, generally have access to 

systems that allow the automated management of Identities, while users do not use or have access to 

such systems. Jøsang and Pope (2005) discuss that the growing number of Service Providers a user can 

and will consume might lead to security and usability issues when users need to manage these identities 

manually (e.g. by memorising credentials for each Service Provider). Consequently, the concept of 

Federated Identity Management Models was introduced which in theory only requires a single set of 

credentials for the users to memorise or manage. However, Jøsang and Pope (2005) argue that if users 

only needed to manage a single set of credentials this would imply some sort of global federated Identity 

Domain, which is unlikely to be feasible. This is because due to different requirements regarding the 

characteristics or Identifiers making up an Identity across different Identity Domains (e.g. different legal 

or security requirements) (Jøsang & Pope 2005). To address the issues of poor usability regarding the 

management of identities, Jøsang and Pope (2005) present the PAD, which is a device or service 

controlled by a single user that securely stores an arbitrary number of credentials which are linked to 

corresponding Service Providers. Consequently, a user only needs to remember a single set of 

credentials for authentication with his own PAD to be able to authenticate with every other Service 

Provider he uses. Jøsang and Pope (2005) suggest that this can create a so called “virtual single-sign-on” 

environment, where a user is authenticated by single set of credentials across multiple Service Providers. 

The different sets of credentials for each Service Provider are handled by the PAD, thus the prefix 

“virtual” single-sign-on. Furthermore, the PAD can be backwards-compatible and can be implemented 

in every existing Service Provider´s authentication framework because it only manages the credentials 

or Identifiers and not the authentication (e.g. it can be interpreted as a database of a user´s credentials) 

(2005). 

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the 

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes 

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD, 

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be 

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful 

for generating requirements for the Thing Management System because the laws are addressing 

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service 

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management 

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of 
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Identity”, can be also be applied to the Thing Management System. These requirements are also listed 

in Table 2. 

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and 

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that 

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are 

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and 

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements 

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided 

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the 

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and 

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following 

paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary 

requirements, the FRs and the notable exceptions of them. 

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and 

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the 

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in 

column three addresses one or more actors or components and defines an expected behaviour or 

functionality for these actors or components. In addition, each requirement is considered as either a 

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for 

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides 

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994). 

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding 

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary 

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1, 

CA26, i.a.). 

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from 

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some 

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or 

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom 

described in section 2.2. 

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could 

be able to be deployed on a portable device. However, considering the intended application of the PAD 

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD 

only stores the Credentials and Identities of a single user and that the PAD is only used when the user 

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In 

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even 

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device 

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3), 
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which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power 

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the 

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour. 

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map 

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These 

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS. 

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials 

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners 

and not as an identity provider. The services offered by the TMS include the management of Things and 

their corresponding Identities which are then used or shared with other Service Providers. It is not 

intended that the Owners manage their Identities (themselves). The fact that the TMS acts as a Service 

Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a 

single Identity Provider, is not relevant for the development of the TMS. 
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Table 2 or other related Functional Requirements. The third column determines the severity of the 

requirements, which are again grouped into “must-have”, “should-have” and “could-have” (Bradner 

1997; Clegg & Barker 1994). The fourth and last column contains the description of the Functional 

Requirement.  

The FRs listed in Table 3 are grouped into six modules that encapsulate similar functionalities. These 

modules are Access and Authentication, Management, Communication and Publishing, Provisioning, 

and Thing and Identity Representation (see Figure 25). Each module is responsible for a specific and 

decoupled set of tasks and responsibilities. The modules have been created by semantically grouping 

similar CAs and corresponding preliminary requirements together. For example, the CAs CA1.3, CA3.1, 

C9.1, CA9.2 and CA2.1 state that the TMS need some means of authentication module that is tamper 

resistant, easy and convenient to use. It must be noted that some Customer Attributes, e.g. CA1.3, 

CA9.1, CA9.2, CA28.1, CA28.2, i.a., can be assigned to multiple modules at the same time. This is because 

these CAs are either non-functional requirements (e.g. CA1.3, CA9.1, CA9.2) or that they are generic in 

such a way that they address multiple issues in multiple modules (e.g. CA28.1, CA28.2). The modules 

created by this grouping are described in the following paragraphs. 

 

Figure 25: Component diagram for TMS based on FRs (own illustration) 
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Access and Authentication 

This module is responsible for allowing Owners to securely access the TMS by requiring them to 

authenticate themselves with an Identity consisting of Characteristics and Credentials defined by the 

Identity Domain of the TMS. Furthermore, this module provides functionalities to register new users or 

Owners with the TMS. During this process the Credentials and corresponding Identity referring to the 

user or Owner are created and securely stored. In order to ensure that only authenticated users have 

access to the TMS, the Access and Authentication module monitors every action and request that is 

handled by the TMS and validates that the respective issuers of the requests and actions are properly 

authenticated. Requests made by unauthenticated issuers are rejected. Issuers of request can be either 

Owners, Things or Service Providers (e.g. Publishers). 

Management 

This module is responsible for storing and managing Things with their corresponding Identities. To fulfil 

its responsibilities, this module provides means of creating, listing, updating and deleting both Things 

and corresponding Identities. Users, which act as Owners, of the TMS must be able to create an arbitrary 

representation of a Thing and add Identities to this Thing. An Identity of a Thing must contain a 

reasonable amount of information to uniquely identify a Thing attached to the TMS. Furthermore, the 

Owner must be able to define access rules and restrictions for each Thing individually and the Owner 

must be able to specify if a single Identifier of an Identity is publicly available or if it must remain private. 

The Management module is also responsible for publishing Identities containing public Identifiers and 

allowing the Owner to assign Identities to Service Providers by forming contracts, which are provided by 

the Contracting as well as Communication and Publishing module (see section 4.2.2). Additionally, this 

module allows Owners to keep track which Identities are assigned to which Service Provider.  

Communication and Publishing 

The Management module uses the Communication and Publishing module when assigning Identities to 

Service Providers. Thus, this module´s main responsibility is to enable and control communication 

between the TMS and other third parties which are usually Service Providers. This module acts as an 

adapter to allow the TMS to communicate with a variety of different Service Providers via various 

communication technologies and protocols. The module abstracts the communication details (e.g. data 

format, communication protocol, etc.), hence the Management module is capable of assigning Identities 

to different types of Service Providers without issues. Furthermore, the Communication and Publishing 

module is responsible for handling inquiries for Identity-information and obtaining the Owners consent. 

Before any action is performed (e.g. publishing a Thing´s Identity), this module requests the consent of 

the Owner. The “request for consent” contains information regarding the Identity of the inquirer and 

the usage policy of the requests Identity-information and is presented to the Owner. Subsequently, the 

Owner can either accept or decline the inquiry and save this decision so that the TMS can automatically 

perform the same decision if the same inquirer asks for the same Identity with the same policy again. 

Thing and Identity Representation 
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While the Management module is responsible for managing Things, this module is responsible for a 

uniform representation of Things across different contexts and for different Service Providers. Like the 

Management module, the Thing and Identity representation module acts as an adapter which abstracts 

the technical details (e.g. storing a Thing´s data, different Identifiers or Characteristics, data formats, 

etc.) of Things and provides a uniform representation of both Things and their corresponding Identities. 

Furthermore, this module is also responsible for uniformly representing the Identities of various third 

parties (e.g. Service Providers) during the “request for consent” handled by the Communication and 

Publishing module.  

Provisioning 

This module specifies how the TMS should be able to be provisioned. Due to the heterogenetic nature 

of IoT in general (see section 1.1), the TMS should be platform agnostic and should be able to be 

deployed in a variety of different environments. In order to accomplish this, the TMS could be designed 

as a web-service that provides a number of endpoints and services, which are represented by the 

modules Access and Authentication, Management and Communication and Publishing. Subsequently, 

the TMS could either be deployed on the infrastructure provided by an Owner (on premise) or be 

deployed as a Service Provider in the internet, where many Owners share use the TMS together. 

However, to ensure privacy and the respective Owners full control over the system, the TMS should 

properly encapsulate the data of each Owner (e.g. by providing multitenancy functionalities).  

Contracting 

Similar to the Thing and Identity Representation module, the Contracting module abstracts the details 

of assigning and forming contracts between the TMS and third parties (e.g. Service Providers), thus 

acting as an adapter. This module is used by the Communication and Publishing module during the 

process of assigning an Identity to a Service Provider. A contract contains an Identity as well as a set of 

access rules and restrictions which have been defined using the Management module. Essentially, this 

module is responsible converting the Identity and the set of access rules and restrictions into a 

transferable format that can be handled by the Service Provider with whom a contract is to be formed. 

Because the TMS must be able to communicate with a variety of different third parties, this module 

should support a variety of transferable formats for contracts. 

Having described each module in general, Table 3 lists the detailed functional requirements for each 

module. 
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Table 3: Functional Requirements and Customer Attribute mapping for the TMS (own listing) 

FR Req. ID 
Related 

Req. ID 
Severity Description 

FR
1

 

 CA1.3 

CA3.1 

CA9.1 

CA9.2 

CA2.1 

Must 
The TMS must only allow authenticated Owners to access 

the system. 

FR1.1 CA1.1 Must The TMS must be able to store an Owner´s Credentials. 

FR1.2 CA9.3 Must 

The TMS must provide an authentication mechanism and 

function for Owners, denying unauthenticated Owners 

access.  

FR1.3 

CA17.1 

CA18.1 

CA19.1 

CA20.1 

Must 

The TMS must store the smallest possible set of Credentials 

to authenticate an Owner. The Credentials must be selected 

in such a way that they cannot be used easily to infer the 

Owners Identity. 

FR1.4 
CA1.3 

CA3.1 
Must 

The TMS must provide a function to initially register an 

Owner. 

FR1.5 
CA1.3 

CA3.1 
Must 

The TMS must provide a function for authenticating with the 

system. 
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FR
2

 

FR
3

 

 

FR5 

CA1.2 

CA8.1 

CA9.1 

CA9.2 

CA17.2 

CA19.1 

CA28.1 

CA28.2 

Must 
The TMS must be able to manage different types of Things 

and Identities for different Service Providers. 

FR2.1 

CA17.2 

CA18.1 

CA19.1 

CA28.1 

CA28.2 

Must 

The Identity-information stored in the TMS must not require 

unnecessary information. It must be able to store a minimal 

amount of Identity-information to uniquely identify or 

assign an Identity. 

FR2.2 CA1.2  
The TMS must provide a function to create, list, view, 

update and delete Things. 

FR2.3 CA1.2  
The TMS must provide a function to create, list, view, 

update and delete Identities for each Thing. 

FR2.4 

CA5.2 

CA28.1 

CA28.2 

CA34.2 

CA10.2 

 
The TMS must be able to assign an Identity of a managed 

Thing to a Service Provider. 

FR2.5 

CA26.1 

CA28.1 

CA28.2 

 
Each Characteristic of a Thing´s Identity must be defined as 

either public or private. 

FR2.6 
CA26.1 

CA26.3 
 

A private Characteristic must only be used in private 

communication contexts. 
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FR2.7 
CA26.1 

CA26.2 
 

A public Characteristic can be used on public 

communication contexts. 

FR2.8 
CA26.5 

CA26.6 
 

An Identity consisting of at least one public Characteristic 

must be discoverable by Service Providers. 

FR2.9 FR2.8  
A TMS must expose information regarding Identities 

consisting of public Characteristics. 

FR2.10 
FR2.4 

CA13.1 
 

An Owner must be able to see which Identities of which of 

Thing are used or assigned to which Service Provider. 

FR
3 

 

CA4.1 

CA1.3 

CA30.5 

Must 
The TMS must be able to securely communicate with 

different Service Providers and other TMS. 

FR3.1 

CA4.2 

CA4.3 

CA27.2 

CA31.1 

 
The TMS must support various communication technologies 

and protocols. 

FR3.2 
FR3.1 

CA31.1 
 

The TMS´s must provide a modularised communication that 

allows polymorphic communication with other systems. 

FR3.3 

CA6.1 

FR3.2 

CA9.1 

CA9.2 

 
The TMS must be able to automatically authenticate with a 

Service Provider. 

FR3.4 

FR3.3 

FR3.2 

FR4.1 

CA8.1 

FR2 

 
The TMS should provide as many different authentication 

protocols as possible. 
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FR3.5 

FR3.3 

FR3.2 

FR3.1 

CA8.2 

CA30.1 

 
The TMS should support a standardised communication 

protocol, if one is available. 

FR3.6 

FR3.3 

CA9.3 

CA10.1 

CA15.1 

CA15.2 

CA16.1 

CA24.1 

 
Before any action is performed by the TMS, the Owner must 

be consented. 

FR3.7 

FR3.6 

CA16.2 

CA16.3 

CA25.3 

 
The TMS can automatically authenticate with other 

systems, if the Owner wishes so. 

FR3.8 

FR3.7 

CA16.1 

CA16.2 

CA16.3 

 

The Owner must be able to decide if and with which other 

systems the TMS can automatically communicate and which 

Identity is used. The decisions must be manageable and 

revocable.  

FR3.9 

FR3.6 

CA9.3 

CA24.1 

CA21.1 

CA11.1 

CA12.1 

CA22.1 

CA33.2 

 
Each system or third party that communicates with the TMS 

must reliably authenticate itself. 
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FR3.10 

FR3.9 

CA24.2 

CA32.2 

CA30.2 

CA35.1 

 

The TMS must show/ provide the Identity of any third party 

requesting to inquire Identity-information from the TMS to 

the Owner. 

FR3.11 

FR.10 

CA23.1 

CA17.3 

 
A third party inquiring Identity-information from a TMS 

must state the reasons why the information is required. 

FR3.12 CA25.1  

A third party inquiring Identity-information from a TMS 

must state what the Identity-information is to be used for. 

These usage principles must be provided in a form of a 

policy. 

FR3.13 
FR3.9 

FR3.10 
 

The Owner must be able to accept or reject an inquiry from 

a third party. 

FR3.14 

FR3.7 

FR3.8 

CA25.3 

 

The TMS can automatically respond and share Identity-

information with authenticated third parties if the Owner 

wishes so. 

FR3.15 

FR2.6 

FR.4.14 

CA29.1 

CA34.1 

 

The TMS must be able to decide if Identity-information is 

shared based on the authenticated third party, the 

justifications for the inquiry and the Owners previous 

decisions. 

FR
4

 

 

CA30.2 

CA35.1 

CA27.1 

 
A TMS must display Things and their corresponding 

Identities in a similar manner across different contexts. 

FR4.1 
FR2.3 

FR4 
 A Thing must be able to have one or more Identities. 

FR4.2 FR4  
An Identity must consist of an arbitrary number of 

Characteristics/ Identifiers. 
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FR4.3 

FR2.6 

FR2.7 

FR2.8 

 
The Characteristics of each Identity corresponding to a 

Thing managed by the TMS must be manageable. 

FR4.4 FR4  
The Identity of a Thing and any other third party must be 

displayed in a similar manner. 

FR
5

 

 
CA33.1 

CA7.1 
 

The TMS should be platform agnostic and either be hosted 

by or fully under control of the Owner. 

FR5.1 

CA4.1 

CA7.1 

CA33.1 

 
The TMS could be provided as a web application and either 

be hosted on the Owner´s resources or by a third party. 

FR5.2 CA4.1  The TMS could be accessible via mobile devices. 

FR
6

 

 FR2.4  

Upon assigning Thing´s Identities to Service Providers, 

contracts or agreements must be formed that mediate the 

subsequent usage or access to the corresponding Identity´s 

resources and services. 

FR6.1   

An agreement between the TMS and a Service Provider 

regarding a Thing´s Identity must consist of an Identity and 

a set of rules and restrictions. 

FR6.2 FR6.1  

The rules and restrictions of an agreement must be able to 

govern the usage of the corresponding Thing´s services (e.g. 

time based access, required compensations, etc.).  

 

After having identified the Customer Attributes (see The first step of the development process applying 

Axiomatic Design consists of mapping Functional Requirements or deriving them from the Customer 

Domain (see Figure 24). The set of Customer Attributes (CA) that will be used to derive the Functional 

Requirements (FR) are provided by Jøsang and Pope (2005) and Cameron (2005). The Personal 

Authentication Device (PAD) described by Jøsang and Pope (2005) (see Figure 5) will be used to retrieve 

requirements for the Thing Management System. The PAD is based on the idea that Service Providers, 

in terms of IDM, generally have access to systems that allow the automated management of Identities, 

while users do not use or have access to such systems. Jøsang and Pope (2005) discuss that the growing 

number of Service Providers a user can and will consume might lead to security and usability issues when 
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users need to manage these identities manually (e.g. by memorising credentials for each Service 

Provider). Consequently, the concept of Federated Identity Management Models was introduced which 

in theory only requires a single set of credentials for the users to memorise or manage. However, Jøsang 

and Pope (2005) argue that if users only needed to manage a single set of credentials this would imply 

some sort of global federated Identity Domain, which is unlikely to be feasible. This is because due to 

different requirements regarding the characteristics or Identifiers making up an Identity across different 

Identity Domains (e.g. different legal or security requirements) (Jøsang & Pope 2005). To address the 

issues of poor usability regarding the management of identities, Jøsang and Pope (2005) present the 

PAD, which is a device or service controlled by a single user that securely stores an arbitrary number of 

credentials which are linked to corresponding Service Providers. Consequently, a user only needs to 

remember a single set of credentials for authentication with his own PAD to be able to authenticate 

with every other Service Provider he uses. Jøsang and Pope (2005) suggest that this can create a so called 

“virtual single-sign-on” environment, where a user is authenticated by single set of credentials across 

multiple Service Providers. The different sets of credentials for each Service Provider are handled by the 

PAD, thus the prefix “virtual” single-sign-on. Furthermore, the PAD can be backwards-compatible and 

can be implemented in every existing Service Provider´s authentication framework because it only 

manages the credentials or Identifiers and not the authentication (e.g. it can be interpreted as a 

database of a user´s credentials) (2005). 

The descriptions provided by Jøsang and Pope are listed in Table 2. These were extracted from the 

description of the PAD provided by Jøsang and Pope (2005) and will be used as Customer Attributes 

from the Customer Domain. In addition to the requirements extracted from the descriptions of the PAD, 

the “Laws of Identity” described by Cameron (2005), which are briefly described in section 2.4, will be 

used as additional CAs for the Customer Domain. These seven “Laws of Identity” will be especially useful 

for generating requirements for the Thing Management System because the laws are addressing 

Identity Management Systems in general (Cameron 2005). With Things being both Identity and Service 

Provider (see section 4.3.2) and with the Thing Management System aiming to simplify the management 

of Things, the requirements for an Identity Management System, provided in the form of the “Laws of 

Identity”, can be also be applied to the Thing Management System. These requirements are also listed 

in Table 2. 

The Customer Attributes, given in the form of the statements and descriptions provided by Jøsang and 

Pope (2005) as well as Cameron (2005), essentially express the customer needs and expectations that 

the complete design, which in this case is the TMS, must fulfil. These expressions and expectations are 

likely to be vague and unstructured (e.g. extracted from interviews or other informal specifications) and 

thus need further refinement and analysis in order to be able to map the CAs to Functional Requirements 

(FR). This refinement or mapping is guided by the information axiom and independence axiom provided 

by the axiomatic design approach. To illustrate this mapping between the Customer Domain and the 

Functional Domain (see Figure 24), Table 2 lists the CAs as well as some preliminary requirements and 

Table 3 lists the actual FRs and the corresponding mapping between CAs and FRs. The following 
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paragraphs will further elaborate on the structure of the mentioned tables, the CAs, the preliminary 

requirements, the FRs and the notable exceptions of them. 

The first column of Table 2 contains unique identifiers assigned to CAs extracted from either Jøsang and 

Pope (2005) or Cameron (2005) which are shown in the second column. The third column lists the 

preliminary set requirements which have been extracted from these CAs. A preliminary requirement in 

column three addresses one or more actors or components and defines an expected behaviour or 

functionality for these actors or components. In addition, each requirement is considered as either a 

“must-have”, a “should-have” or a “could-have”. Whereas a “must-have” requirement is critical for 

successfully fulfilling the expectations for a system and a “could-have” requirement merely provides 

supplementary functionalities that are not critical for the system (Bradner 1997; Clegg & Barker 1994). 

Furthermore, each requirement is assigned with a unique identifier derived from the corresponding 

CA´s identifier. This additional mapping between a single CA and the corresponding preliminary 

requirements is done because a CA could incorporate one or more preliminary requirements (e.g. CA1, 

CA26, i.a.). 

The preliminary set of requirements listed in Table 2, which has been directly derived or extracted from 

the statements or CAs, still contains duplicates and is generally unstructured. Furthermore, some 

preliminary requirements are either non-functional requirements (e.g. CA1.3, CA9.1 – CA9.3, i.a.) or 

must be further decomposed (e.g. CA3.1, CA8.1, i.a.) to satisfy the independence and information axiom 

described in section 2.2. 

The preliminary requirement CA5.1, provided by Jøsang and Pope (2005, p.8), states that the TMS could 

be able to be deployed on a portable device. However, considering the intended application of the PAD 

or TMS, this requirement is not applicable. This is because Jøsang and Pope (2005) suggest that the PAD 

only stores the Credentials and Identities of a single user and that the PAD is only used when the user 

actually needs these Credentials (e.g. when he needs to authenticate with a Service Provider). In 

contrast, the TMS will need to be able to react to inquiries for Identity-information at any time, even 

when the owner of the mobile device is not actively using a Service Provider. Consequently, the device 

on which the TMS is deployed must be always connected to the internet (e.g. due to CA16.1-3, CA25.3), 

which is unlikely for mobile devices (e.g. due to the lack of available cellular networks, increased power 

consumption, etc.). The Customer Attribute CA14, provided by Cameron (2005, p.6), states that the 

Owner using the TMS must be warned if he selects an Identity Provider that tracks internet behaviour. 

Additionally, CA29.2 states that the TMS must support different roles for its users, which directly map 

to different Identities (e.g. a user can have an employer-, a private- and a public role or Identity). These 

CAs and the corresponding preliminary requirements are not relevant for the development of the TMS. 

This is because Cameron (2005) assumes that Owners use the TMS to manage Identities and Credentials 

referring to themselves instead to their Things. However, the TMS acts as a Service Provider for Owners 

and not as an identity provider. The services offered by the TMS include the management of Things and 

their corresponding Identities which are then used or shared with other Service Providers. It is not 

intended that the Owners manage their Identities (themselves). The fact that the TMS acts as a Service 
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Provider for Owners is also the reason why CA30.4, which states that the TMS should not be tied to a 

single Identity Provider, is not relevant for the development of the TMS. 

  



Patrick Nitschke 

102 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group 

Table 2) and having derived Functional Requirements from the Customer Domain (see Table 3), the 

Axiomatic Design approach requires the assignment of Design Parameters (DP) to the Functional 

Requirements, which must satisfy the respective requirements. For the design to be considered a “good 

design” in terms of the Axiom Based Design, the assigned DPs should to fulfil the Independence Axiom. 

This means the corresponding Design Matrix should be either a triangular matrix or a diagonal matrix 

(Suh & Do 2000). A triangular design matrix refers to a decoupled design, whereas a diagonal matrix 

refers to an uncoupled design (see section 2.2). When considering the previously defined modules as 

Design Parameters that should fulfil the corresponding Functional Requirements (e.g. the module 

Management should fulfil FR2) and considering the interdependencies between each of the modules 

described earlier, the Design Matrix shown in Figure 26 can be created. Note that the numbering of the 

FRs listed in Table 3 are based on the order in which they were mentioned in the documents they were 

extracted from. Hence, the numbering of the FRs bears no meaning for the Design Matrix. Suh (2000) 

states that a triangular Design Matrix denotes a decoupled design and fulfils the Independence Axiom 

when design sequence is correct. The rows of Design Matrix for the TMS shown in Figure 26 contains 

the FRs from Table 3 and columns are considered as mapped to the Design Parameters. According to 

the principles of the Axiom Based Design, each FR should have an assigned DP that fulfils only the FR. If 

a one-to-one mapping between FRs and DPs cannot be achieved, the design is either coupled or 

decoupled (Suh & Do 2000). During the description of the modules, which are considered as the Design 

Parameters, the interdependencies between the modules have been mentioned. These 

interdependencies are also contained in the Design Matrix. The matrix is filled with either a zero, which 

denotes no interdependency or with a non-zero value which indicates any kind of dependency (Suh & 

Do 2000). For example, the Design Matrix for the TMS denotes no dependency between the module 

Provisioning and any other module, while the module Communication and Publishing depends on all 

other modules. To fulfil the Independence Axiom when having a triangular Design Matrix, which denotes 

a decoupled design, the correct design sequence must be met.  

 DP1 DP2 DP3 DP4 DP5 DP6 

FR5 X X X X X X 

FR1 0 X 0 0 0 X 

FR4 0 0 X X X X 

FR2 0 0 0 X 0 X 

FR6 0 0 0 0 X X 

FR3 0 0 0 0 0 X 

Figure 26: High level design matrix for the TMS (own illustration) 

The numbering of the Design Parameters (see Figure 26) already denotes the design sequence. In order 

to fulfil the Independence Axiom, the following design sequence must be used. The first module to be 

further developed is the Provisioning module because it has no dependency to another module. The 
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next step in the sequence can either be the Access and Authentication module or the Thing and Identity 

Representation module, as both only rely on the Provisioning module. The third step of the sequence 

can either contain the Management module or the Contracting module. The last step of the design 

sequence consists of the Communication and Publishing module. Thus, the Design Parameters are 

assigned to the modules as follows.  

• DP1 implements the Provisioning module (FR5 ≡ DP1) 

• DP2 implements the Authentication and Access module (FR1 ≡ DP2) 

• DP3 implements the Thing and Identity Representation module (FR4 ≡ DP3) 

• DP4 implements the Management module (FR2 ≡ DP4) 

• DP5 implements the Contracting module (FR6 ≡ DP5) 

• DP6 implements the Communication and Publishing module (FR3 ≡ DP6) 

With the functional requirements corresponding to the modules defined earlier still being fairly 

complex, the Axiom Based Design approach demands that these requirements are further decomposed, 

that for each of the new requirements a new Design Parameter is created, that a new more detailed 

Design Matrix is created and this matrix is again evaluated according to the Independence Axiom (Suh 

& Do 2000). However, as described in section 2.4, this thesis aims to develop a high-level architecture 

framework which focusses on the components external relations and dependencies as well as their 

individual responsibilities. Thus, the detailed inner workings of each component, which would be 

described and specified by further decomposing the Functional Requirements listed in Table 3, are not 

relevant for developing the high-level architecture framework.  

In conclusion, the identification of a further component supporting Owners in managing their Things 

and the subsequent development of the Thing Management System that fulfils the derived 

requirements in this section complete the answer to RQ1.1 and RQ1.3. Thus, having answered RQ1.2 in 

section 4.2.1 as well as the initial parts of RQ1.1 and RQ1.3 in section 4.2.2, RO1 is achieved in total. 

Additionally, by transferring and mapping the concepts of Identity Management to architectural 

components of IoT using the DSR pattern Problem Space Tools and Techniques components both RQ2.1 

and RQ2.2 have been answered and RO2 has been achieved. 

4.3.4 Revising and discussing the Gateway´s Roles and Relations 

Considering the IoT Architecture Perspectives which have been exemplarily visualised in Figure 20 and 

Figure 21 and considering the insights from section 4.3.2 that a Thing does not only act as a Service 

Provider but can also be interpreted as an Identity, the special role of the Gateway component becomes 

apparent. From the Network IoT Architecture Perspective´s point of view, the Gateway´s role 

responsibility is to provide a communication channel between a Thing and a Publisher. In this view, 

Things are willing to accept connections and communicate with anyone. Considering the Organisational 

IoT Architecture Perspective, the Gateway is considered as a business entity that collects and sells 

sensing information on its own behalf. Besides occasionally selling the sensed data to a Publisher, the 
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Gateway has no organisational ties with the Publisher at all. Both, the Network IoT Architectures 

Perspective and the Organisational IoT Architecture Perspective assume that a Thing willingly 

communicates with any other component. However, considering section 4.3.2, where it was discussed 

that a Thing can also be interpreted as an Identity referring to its Owner, one must re-evaluate the 

assumption that a Thing willingly communicates with any other component. With Things being 

“organisationally” registered to a Publisher who then acts as a proxy between the Thing and Service 

Providers, it becomes apparent that a Gateway should also be related to a Publisher when the intention 

is to establish a communication between a Thing and a Publisher. In order to maintain the Publisher´s 

role as a proxy and thus the only way of accessing a Thing´s services, a Gateway must be able to act on 

behalf of the Publisher when establishing a network connecting with a Thing. This intended role of the 

Gateway is similar to the Mobile Sensing Terminal Operator suggested by Mizouni and El Barachi (2013) 

which has been described in section 4.2.1. With Gateways acting on behalf of Publishers to establish a 

communication with Things, a system for allowing Gateways to authenticate themselves as 

representatives of Publishers must be devised (see Figure 27). 

 

Figure 27: Revised roles and responsibilities of Gateways for the Holistic IoT Architecture Framework 

(own illustration) 

In this system, the TMS, which has been described in the previous section, manages many Identities of 

Things. The specific Characteristics of these Identities are defined by the Thing-Identity-Domain of the 

TMS. This domain contains all Identities of all Things the TMS manages. These Identities may be able to 

directly refer to the Owner of its corresponding Thing and are shared or assigned to a Publisher. A 

Publisher maintains many Things, or their respective Identities, which are owned by many different 

Owners. The Publisher additionally has many registered Gateways who act on the behalf of the 

Gateway

Publisher
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TMS

TMS-Thing-
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Publisher. The Identities of the Gateways are defined by the Gateway-Identity-Domain of the Publisher. 

This domain specifies which Characteristics are required for a Gateway to register itself with a Publisher. 

Furthermore, the Publisher maintains another Thing-Identity-Domain which contains the Identities of 

the Things the Publisher manages. The Identities of this domain are shared with the authenticated 

Gateways of the Publisher. However, it must be noted that the Identities of the Thing-Identity-Domain 

of the Publisher are not the same Identities that are shared with the Publisher via the Thing-Identity-

Domain of the TMS. The Publisher´s “Thing-Identities” are mapped to the “Thing-Identities” of the TMS, 

which is illustrated in Figure 27. This mapping between the Identities that are shared with Gateways and 

the Identities that have been shared with the Publisher allows the Publisher to maintain its role as a 

proxy. Only the Publisher knows which Identity that is shared with a Gateway refers to a certain Owner, 

thus the Publisher is able maintain the privacy of the Owners of the Things he manages.  

However, this system additionally needs to consider the network-relation between a Gateway and a 

Thing. The fact that a Gateway acts on behalf of a Publisher needs to be incorporated into the “network-

level” relation between a Gateway and a Thing. The Gateway needs to authenticate itself as a 

representative of the associated Publisher of a Thing with which it intends to establish a communication 

channel. For this purpose, it could be possible for the Publisher to issue an authentication-token to all 

its Gateways. A Gateway can then provide this token to the Thing it intends to communicate with. The 

Thing must then validate the token and grant or deny access accordingly. However, as described in 

section 4.3.2, this would require a Thing to provide an authentication system. This system must either 

be able to validate the token on its own or communicate with its Publisher to let it validate the token. 

The first option is similar to the credential-focussed identity management approach and the latter is 

similar to the relationship-focussed approach to identity management (see section 2.4). However, both 

options are equally problematic. The first option requires the token “valid on its own” (e.g. like a 

passport, as described in section 2.4), which is unlikely to be feasible because it will become increasingly 

difficult to validate a token when the number of Things, Publishers or Gateways grows. The second 

option would require the Thing to be able to directly communicate with its associated Publisher, which 

is similar to the credit card example described in section 2.4, which is also not applicable. This is because 

if the Thing would be able to directly communicate with its Publisher there is no need for a Gateway in 

the first place.  

In conclusion, Gateways need to have a relation to the Publisher to be able to access Things on behalf 

of a Publisher who then can maintain the privacy and anonymity of the Owner corresponding to the 

Things. However, the authentication issue between Gateways and Things remains to be solved. 

4.4 Holistic IoT Architecture Framework based on S2aaS 

Based on the IoT Architecture Perspectives identified in section 4.2.1 and the IoT Architecture 

Components described in section 4.2.2 the lack of a component in the overall architecture has been 

identified. The TMS, which has been developed in section 4.3.3, is a novel component which will be 

integrated into the Holistic IoT Architecture Framework in this section.  
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Table 4 provides an overview of all components the Holistic IoT Architecture Framework consists of. The 

fist column denotes the component, while the second column provides a description of the respective 

component. The third column of Table 4 contains the relations a component has with other components 

of the architecture. Furthermore, each relation is described from both, the Network IoT Architecture 

Perspective and the Organisational IoT Architecture Perspective. 

Table 4: Overview of the components of the Holistic IoT Architecture Framework (own listing)  

C
o

m
p

o
n

en
t 

Description Relations 

C
o

n
su

m
er

 

• Is exclusively interested in 
obtaining data and 
information as well as 
offloading tasks it cannot 
perform with its own 
resources to other 
components. 

• Will provide compensation 
or incentives for using 
services like consuming data 
and information or 
offloading tasks to other 
components. 

Se
rv

ic
e 

P
ro

vi
d

er
 

• Network: Can directly access a Service Provider`s 
services via the internet (e.g. by accessing the web 
application provided by the Service Provider). 

• Organisational: Provides compensation when 
accessing services (e.g. issuing Sensing Tasks) 
provided by the Service Provider. 

P
u

b
lis

h
er

 

• Network: Can issue Sensing Tasks by directly 
accessing the Publishers API endpoint via the 
internet. 

• Organisational: Provides compensation when 
accessing services (e.g. API endpoint of the 
Publisher). 

Th
in

g 

• Provides unique services in 
form of either sensing or 
actuating capabilities. 

• Mode of use (e.g. when it 
can be accessed, what 
compensations are 
demanded, etc.) is 
predetermined by the 
corresponding Owner. 

• Is generally restricted 
regarding energy 
consumption, computational 
power and data storage. 

• Needs to rely on 
opportunistic 
communication channels if 
deployed in foreign 
environment. 

• The Characteristics of a 
Thing (e.g. metadata like 

O
w

n
er

 

• Network: If deployed in an environment that is 
fully controlled by the Owner, the Owner can 
establish a direct connection with the Thing, 
optionally via the TMS. If deployed in a foreign 
environment, a direct connection between Owner 
and a Thing cannot be established. 

• Organisational: All aspects and properties of the 
Thing are managed by the Owner. 

P
u

b
lis

h
er

 

• Network: If deployed in an environment that is 
fully controlled by the Owner of the Thing, the 
Publisher can establish a direct connection with 
the Thing. If deployed in a foreign environment, 
the Publisher needs to rely on Gateways to 
establish an opportunistic connection. 

• Organisational: The Thing is “registered” to one or 
more Publishers, which act as a proxy between the 
Thing and other third parties and represent the 
interests of the Thing´s Owner. The interests of the 
Owner are held down in a “contract”, which is 
formed during the registration of the Thing with 
the Publisher. 
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location data, or sensing 
data in general) denote its 
Owner. 

TM
S 

• Network: If deployed in an environment that is 
fully controlled by the Owner of the Thing, the 
TMS can establish a direct connection with the 
Thing. If deployed in a foreign environment, the 
TMS cannot establish a direct connection at any 
time, the TMS must rather rely on an opportunistic 
connection that is manually provided by the 
Owner (e.g. to register a new Thing with the TMS). 

• Organisational: A Thing is initially registered with 
the TMS (e.g. network addresses and metadata 
are initially stored). From then on, the TMS 
handles all Sensing Tasks issued by the 
corresponding Publishers. 

G
at

ew
ay

 

• Network: If deployed in a foreign environment, 
the Thing can establish a connection with a 
Publisher via a Gateway. The Gateway can directly 
establish a connection with the Thing and the 
corresponding Publisher(s). 

• Organisational: The Thing does not have an 
organisational tie with a Gateway.  

O
w

n
er

 

• The Owner is the main 
stakeholder of a Thing and 
imposes his requirements 
and interests onto the 
Things he owns. 

• The Things owned by the 
Owner refer to himself and 
are considered as the 
Owner´s Identities because 
each Characteristic of a 
Thing can potentially denote 
a property of the Owner 
(e.g. the location of a Thing 
could denote the address of 
the Owner). 

Th
in

g 

• Network: The Owner can establish a connection 
via the TMS, depending on the environment the 
Thing is deployed in. 

• Organisational: The Owner manages the 
Characteristics of a Thing via the TMS. 

TM
S 

• Network: The Owner can directly access the web 
application provided by the TMS. The connection 
is either established by using the “home-network” 
of the Owner (when the TMS is hosted on premise) 
or via the internet. 

• Organisational: The Owner manages his Things via 
the TMS. However, the Owner has no direct 
organisational relation with the TMS. 

P
u

b
lis

h
er

 

• Network: The Owner does not establish a network 
connection with the Publisher, except for an 
indirect connection during the registration of a 
Thing with a Publisher, however this connection is 
handled by the TMS. 

• Organisational: The Publisher acts on behalf of the 
Owner when advertising the Services offered by 
the Things of the Owner. The Owner may provide 
some compensation for using the Publisher as 
representative or proxy. 

TM
S 

• The TMS manages the 
Things and their 
corresponding Identities on 
behalf of its Owner. 

• Owners consume the 
management services 
provided by the TMS. 

Th
in

g 

• Network: Depending on the environment the 
Thing is deployed in (controlled or foreign), the 
TMS can establish a direct connection or needs to 
rely on a connection that is manually created by 
the Owner of the Thing. 

• Organisational: The TMS manages the 
Characteristics of each of its Things on behalf of 
the Owner. 
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• The TMS can automatically 
react to Sensing Tasks based 
on the policies the Owner 
has defined. 

• The TMS provides Identities 
for Things and assists 
Owners in assigning these 
Identities to Publishers. 

P
u

b
lis

h
er

 

• Network: The TMS can establish a permanent and 
direct connection with a Publisher via the internet. 

• Organisational: The TMS receives the Sensing 
Tasks forwarded by the Publisher. It initially forms 
contracts regarding an individual Thing or a set of 
Things with a Publisher. 

O
w

n
er

 

• Network: The TMS can establish a permanent and 
direct connection with the Owner via the internet 
or the local home network. 

• Organisational: The Owner consumes the 
management services of the TMS.  

P
u

b
lis

h
er

 

• Maintains a database of 
Things along with 
descriptive metadata.  

• Exposes and advertises the 
services of the Things it 
manages. 

• Accepts incoming Sensing 
Tasks and forwards these 
tasks, to Owners of Things 
that could fulfil the 
respective tasks and whose 
Thing´s restrictions and 
access rules do not 
contradict with the 
respective Sensing Task (e.g. 
an Owner might forbid tasks 
requiring non-anonymised 
location data). 

• Conceals the real Identity of 
the Owners of the Things it 
manages. 

• Wants to be compensated 
for the proxy-services it 
provides. 

TM
S 

• Network: The Publisher can establish a permanent 
and direct connection with the TMS via the 
internet. 

• Organisational: The Publisher forwards the 
Sensing Tasks it received to each TMS 
corresponding to a suitable Thing that could fulfil 
the Sensing Task. 

O
w

n
er

  

• Network: The Publisher does not establish a 
network connection with the Owner, except for an 
indirect connection during the registration of a 
Thing with the Publisher, however this connection 
is handled by the TMS. 

• Organisational: The Publisher heeds the policies 
which have been defined by the Owner during the 
registration of a Thing with the Publisher. Hence, 
the Publisher represents the Owners interests and 
demands compensation for its services. 

Th
in

g 

• Network: Depending on the environment the 
Thing is deployed in (controlled or foreign), the 
Publisher can either establish a direct connection 
via the internet or an opportunistic connection via 
a Gateway. 

• Organisational: The Publisher advertises the 
services of a Thing; thus, Things can be interpreted 
as the products a Publisher intends to sell on 
behalf of the Owner. 
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• Network: The Publisher can establish a direct 
connection with the Gateway via the internet. 

• Organisational: The Publisher uses Gateways to 
establish opportunistic network connections with 
Things which are deployed in foreign 
environments. These Gateways act on behalf of 
the Publisher and are compensated for their 
services. 



 Developing the Holistic IoT Architecture Framework 

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 109 

Se
rv

ic
e 

P
ro

vi
d

er
 

• Network: The Publisher can establish a direct 
connection with Service Providers via the internet. 

• Organisational: The Publisher offers the services of 
the Things it acts on behalf of and demands 
compensation for these services on behalf of the 
corresponding Owners of the Things. 

C
o

n
su

m
er

 

• Network: The Publisher can establish a direct 
connection with Consumers via the internet. 

• Organisational: The Publisher offers the services of 
the Things it acts on behalf of and demands 
compensation for these services on behalf of the 
corresponding Owners of the Things. 

Se
rv

ic
e 

P
ro

vi
d

er
 

• The Service Provider offers 
value added services and 
demands compensation for 
these services. 

• Services range from easy 
access to a large number of 
Things to transforming and 
reasoning over sensed data 
and displaying the data 
appropriately. 
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• Network: The Service Provider can establish a 

direct connection with the Publishers via the 
internet. 

• Organisational: The Service Provider issues Sensing 
Tasks to the Publishers it knows and provides 
compensation for the services of the Publishers. 
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• Network: The Service Provider can establish a 
direct connection with Consumers via the internet. 

• Organisational: Provides services and demands 
compensation. 

 

The components and relations of the Holistic IoT Architecture are further illustrated in Figure 28. In 

essence, the architecture framework developed during this thesis is closely oriented towards the 

original S2aaS architecture presented by Perera et al. (2014) and Sheng et al. (2013). The basic concepts 

of all major components, the Publisher, the Owner and Thing, the Service Provider and the Consumer 

can be easily mapped to the architectures presented by Perera et al. (2014) and Sheng et al. (2013). 

However, it has been discussed in section 4.2.1 that both Perera et al. (2014) as well as Sheng et al. 

(2013) can be assigned to the Organisational IoT Architecture Perspective, in which specific possibly 

bothersome aspects of IoT could have been eluded because they were not the focus of the respective 

architecture proposal. By distinguishing between different IoT Architecture Perspectives and using them 

to analyse  a variety of IoT architecture proposals, the need for a novel component and issues regarding 

the network connectivity between Things and Publishers have been identified. The Thing Management 

System, which is the new component, supports Owners in administering their Things and is located 

between Things, Owners and Publishers in the Holistic IoT Architecture Framework (see Figure 28). The 

connectivity issues have been discussed in section 4.3.4 and are superficially incorporated into the 

architecture illustrated in Figure 28. 
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Figure 28: Holistic IoT Architecture Framework (own illustration) 

This section concludes the development of the Holistic IoT Architecture Framework and specifically 

answers and achieves RQ3.1 and RO3 respectively. The following chapter will cover the development of 

a prototype using the Holistic IoT Architecture Framework. 
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5 Implementation of the Prototype 

Based on the developed Holistic IoT Architecture Framework (see Figure 28) and the completed 

corresponding development step of the GDC this chapter addresses the evaluation step of the GDC. As 

stated in section 2.2, this chapter utilises the demonstration pattern (Vaishnavi & Kuechler 2007). 

According to this pattern, the Holistic IoT Architecture Framework is validated through implementation 

work, which is demonstrated in this chapter. In the course of this, the issues raised in section 1.1 are 

covered.  

The implementation of each component of the Holistic IoT Architecture Framework aims to demonstrate 

that the architecture provides sufficient specifications of roles and responsibilities, requirements and 

descriptions of relations so that each component can be implemented separately. Additionally, each 

component must be able to communicate with its related components according to the architecture 

framework. However, due to the fact that the architecture framework merely defines the semantics15 

of inter-component communication, the actual syntax used for the communication in this prototype can 

be simplified. Thus, the prototype only aims to demonstrate a specific situation, which uses only a single 

type of Things, adopting a mock-up communication syntax. Nevertheless, the prototype is designed to 

be extensible to the effect that it supports multiple different communication channels and data formats. 

The following paragraphs will briefly elaborate the most important technologies, frameworks and 

implementation approaches used throughout the implementation of the prototype. 

Ruby on Rails 

The components of the Holistic IoT Architecture have to offer and consume various services over the 

internet and are generally considered as web applications (see section 4.2.2 and 4.3.3). To implement 

these applications, Ruby on Rails16 (RoR) was selected as the server-side web application framework. 

The RoR framework was selected because it is especially suitable for rapid prototyping due to its two 

predominant and guiding principles, which are deeply embedded in the architecture and development 

process of RoR applications. The first principle, “don’t repeat yourself (DRY)”, is a common principle of 

software design and states that every piece of information must have an unambiguous and singular 

purpose or representation within a software system and should be reusable. The second, more 

important principle of RoR is “convention over configuration”. The RoR framework predefines a set of 

conventions which are deemed to be “best practice” (e.g. naming conventions, file- and data-structure). 

                                                           

15 The semantics of inter-component communication refer to the information exchanged between the 
components (e.g. a contract between Thing Management System and Publisher), without specifying any 
requirements regarding the syntax of the communication (e.g. data format, what data a contract consists of, 
etc.). 

16 https://rubyonrails.org/ 
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When adhering to these conventions, applications can be developed rather quickly while remaining 

scalable and extensible. 

PostgreSQL 

Considering the overall heterogeneity of IoT regarding technologies, data formats as well as 

communication protocols and technologies and the sheer scale of IoT in general yield several 

requirements for the selection of a storage engine. Firstly, to be able to represent various types of 

Things, each with different data structures, the storage engine should provide means of storing data 

without requiring a schema. For example, the metadata provided by each Thing can be in a different 

format and may very well contain different key-value pairs. In order to remain flexible and scalable, this 

data should be stored directly in the storage engine without transforming or parsing it beforehand. 

Secondly, the storage engine itself should be scalable. In essence, this means that the storage engine 

should be able to store and handle very large amounts of data, should be able to retrieve data relatively 

fast and should be able to be deployed as a distributed system. However, for the implementation of the 

prototype, the second requirement will not be considered for the selection of a storage engine17. 

Consequently, PostgreSQL18 was selected as the storage engine for the prototype for the following 

reasons. Firstly, it provides means of directly storing, indexing and retrieving schemaless data despite 

being a relational database. Secondly, it is supported by RoR´s built object-relational-mapper which 

further simplifies the development process. 

The subsequent sections of this chapter will briefly present the use cases, data model, interfaces of each 

component of the implemented Holistic IoT Architecture Framework. Additionally, each section will 

discuss the insights, which have been gained during the development process of each component. These 

insights are then further discussed and refined in the last section of this chapter. 

  

                                                           

17 It must be noted that the selected storage engine, PostgreSQL, might face scalability issues when the amount 
of data stored significantly exceeds reasonable amounts deemed appropriate for a prototype (e.g. PostgreSQL 
may experience performance issues when exceeding 1-2TB of data, whereas the average representation of a 
Thing of the prototype implementation ranges from 50B to 200B, which means that performance issues of 
PostgreSQL may arise when exceeding 5 × 109 Things).  

18 https://www.postgresql.org/ 
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5.1 Thing Management System 

The implementation of the Thing Management System is guided by the functional requirements and 

modules defined in section 4.3.3. Based on these requirements, the use cases illustrated in Figure 29 

are supported by the implemented prototype component. 

Users, which are the Owners in terms of the Holistic IoT Architecture Framework, can register 

themselves with the TMS. During this process, users define their Credentials which consist of an e-mail 

and a password. These credentials are encrypted and stored in the database. As soon as a user is 

authenticated, he can access the Management module of the TMS. This module allows the user to 

create or import Things. The prototype representation of a Thing consists of a name, which is defined 

by the user and metadata providing descriptive information of a Thing (see Figure 30). This data may 

contain the address (e.g. IP) of the Thing and details for accessing it (e.g. what protocols to use, which 

data format, etc.). This data is stored and handled as a schemaless JSON19 by the TMS. The user is able 

to create, update and delete each of his own Things. As stated in section 4.3.3, the Provisioning module 

of the TMS distinguishes between on premise deployments and deployments as Service Providers. Thus, 

multiple users can register with the TMS and are able to manage Things simultaneously. This allows 

both the deployment as a Service Provider and as an on premise application with only a single user. 

However, the data of each user and the corresponding Things are stored in the same database and on 

the same server, which might not fulfil advanced data privacy and security requirements. 

For each Thing, a user can create several Identities. Each Identity inherits the metadata of its 

corresponding Thing. Furthermore, a user then can define the visibility of each inherited Characteristic 

of an Identity. When defining a Characteristic as “private”, it will not be shared with other components. 

A Characteristic defined as “public” will be shared with other components (e.g. Publishers). Identities 

are published by assigning them to Contracts and submitting these Contracts to a Publisher. A Contract 

consists of many Identities and metadata. The metadata is again stored and handled as a schemaless 

JSON and may be used to model access rules, restrictions or the compensations demanded for accessing 

the services provided by a Thing. Additionally, a Contract is assigned to a single Publisher. Upon 

submitting a Contract to a known Publisher, the Contract can either be “accepted” or “rejected” by the 

Publisher. When the Publisher accepts the Contract, which means that he is willing to act as a proxy 

between the Identities of the Contract and other components (e.g. Service Providers), the TMS allows 

to receive Sensing Requests for Identities contained in the Contract. As discussed in section 4.3.3, the 

TMS must always retrieve the users’ consent before performing an action. Thus, upon receiving a 

Sensing Request, the user can decide to “accept” or “reject” the Sensing Request. When the request is 

accepted, the corresponding Publisher will access the Things´ specified in the Sensing Request. 

                                                           

19 http://www.json.org/json-de.html 
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Figure 29: Use case diagram of the Thing Management System (own illustration) 

To communicate with other components, the prototype implementation of the TMS uses the following 

RESTful APIs.  

• Contract-API 
The Contract-API sends the Contract data to a registered Publisher via a HTTP POST request. The 

payload of the request consists of the JSON representation of the Contract along with the 

related Identities. 

• Sensing Request-API 
The Sensing Request-API receives Sensing Requests via HTTP POST requests. Upon receiving a 

valid JSON payload, which consists of the Contract the Sensing Request relates to along with an 

additional policy, which specifies the Sensing’s Request purpose, compensation and incentive 

mechanism. 

Additionally, the Sensing Request-API sends an acceptance or rejection to the corresponding 

Publisher via a HTTP POST request. 
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Figure 30 Class diagram of the Thing Management System (own illustration) 

During the implementation of the Thing Management System the challenge of uniformly representing 

Things became more apparent. Considering that different Things may very well provide and require 

different interfaces, different metadata and different addressing mechanisms, a considerable amount 

of effort must be put into addressing this heterogeneity issue. The first step to approach this issue is to 

utilise schemaless databases for storing the Things data. The second, more challenging, step is to 

develop adapters20 that provide the necessary behaviour based on the metadata of a Thing. However, 

the effort required to provide an adapter for each kind of Thing scales with the amount of different 

types of Things, which might be too high. However, this problem could either be solved by relying on 

the vendors of Things to provide the necessary adapters or by following the Semantic Oriented Vision 

of IoT. As discussed in section 3.1, this vision of IoT suggest to utilise semantic technologies which could 

be used to automatically generate the necessary adapters based on the Things metadata. 

  

                                                           

20 This approach is similar to the adapter pattern presented by Gamma et al. (1995). 
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5.2 Publisher 

The implementation of the Publisher is guided by the descriptions and specifications provided in section 

4.2.2. Based on these requirements, the use cases illustrated in Figure 31 are supported by the 

implemented prototype component. 

As discussed in section 4.2.2, the main purpose of the Publisher is to mediate the communication 

between Owners, Things and Service Providers. To illustrate this function, the implemented Publisher 

component only supports a specific set of use cases that are only accessible via a RESTful API. The 

Publisher has no additional stakeholders beside the Publisher´s “system” itself. The system can receive 

contracts, which essentially consist of metadata, rules and Identities. Upon receiving a contract, the 

system may accept or reject it. Both, the contract’s metadata and rules as well as the Identity´s 

Characteristics are stored and handled as a schemaless JSON (see Figure 32).  

 

Figure 31: Use case diagram of the Publisher (own illustration) 

The system can receive Sensing Tasks and create Sensing Requests based on the criteria provided by the 

Sensing Tasks. The criteria for creating and issuing a Sensing Request are extracted from the respective 

Sensing Task´s metadata, which is also stored and handled as a schemaless JSON. The prototype 

implementation of this feature uses the metadata of the Sensing Task and matches it with the Identities 

the Publisher manages. The matching mechanism of the prototype uses a query-string which is divided 

and compared with each value of an Identity´s metadata. For example, if the query-string of the Sensing 

Task contains a certain keyword and any value of the metadata of an Identity contains the same 

keyword, the Sensing Task matches the Identity. However, this matching mechanism is rather simplistic 

and only for demonstration purposes. Subsequently, the system can issue the Sensing Requests which 
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regarding the address of a TMS, the data format and communication protocols to be used is stored in 

the corresponding Contract of the Identity which matches the Sensing Task´s query (see Figure 32). 

 
Figure 32: Class diagram of the Publisher (own illustration) 

As soon as a Sensing Request has been accepted by the TMS (see section 5.1), the system can perform 

sensing by either directly accessing the services of the Things corresponding to the Identities a Sensing 

Request consists of or by granting Gateways access to the Things. This behaviour maps to the different 

kinds of environments Things might be deployed in (see section 4.3.1 and Figure 22 in particular). 

In order to be able to mediate the communication between Things, Owners and Service Providers, the 

Publisher provides several RESTful APIs. 

• Sensing Task-API 
The Sensing Task-API receives Sensing Tasks via HTTP POST requests. Upon receiving a valid 

JSON payload, which consists of the metadata describing the Sensing Task, a Sensing Task is 

being created and associated Sensing Requests are being generated. 

Additionally, the Sensing Task-API sends the data collected by Gateways or by the Publisher 

itself to the Service Provider corresponding to the Sensing Task via HTTP POST requests. 

• Contract-API 
The Contract-API creates Contracts received via HTTP POST requests. The payload of a valid 

request contains the Contract’s metadata and rules as well as a set of Identities which relate to 

the Contract. 

• Sensing Request-API 
This API sends Sensing Requests via HTTP POST requests to a TMS. The payload of a request 

consists of the associated Sensing Task´s metadata, the Contract the Sensing Request relates to 

as well as a set of Identities. 

Additionally, the Sensing Request-API receives the acceptance or rejection of a Sensing Request 

via HTTP POST requests. 

 

SensingTask

+ meta : jsonb

+ uuid : string

SensingRequest

+ policy : jsonb

+ uuid : string

+ state : SensingRequestState

<<enumeration>>
SensingRequestState

open
accepted

rejected

ServiceProvider

+ meta : jsonb

+ uuid : string

Contract

+ name : string

+ meta : jsonb

+ uuid : string

+ rules : jsonb

Identity

+ name : string

+ characteristics: jsonb

+ uuid : string

IdentitiesSensingRequests

BaseAdapter

DemoAdapter

BaseAdapterDemoAdapter

BaseAdapter

DemoAdapter

1

1

1
1

1

0..*
0..*

0..*

0..*

0..*



Patrick Nitschke 

118 © 2017 University Koblenz-Landau, Enterprise Information Management Research Group 

• Identity-API 
This Identity-API collects the sensing data from Things. The type of request depends on the 

specified metadata of the Thing or the corresponding Identity managed by the Publisher. The 

prototype API uses HTTP GET requests to obtain the data from Things. 

During the implementation of the Publisher component, challenges regarding the management and 

dynamic creation of suitable adapters to cope with the heterogeneity of Things, which also has been 

described in the previous section, became apparent. Additionally, the task of matching a Sensing Task 

to fitting Identities based on arbitrary rules, policies and specifications is a challenging task. As 

mentioned, the prototype implementation utilises a simplistic, demonstrative string matching 

mechanism. However, this mechanism should be further developed by using more sophisticated search 

mechanisms such as Apache Lucene21 and Elasticsearch22 which provide sophisticated search and 

matching functionalities that are able to cope with the heterogeneity of Things, their data 

representations and Sensing Tasks with their various requirements. 

5.3 Service Provider 

The implementation of the Service Provider is guided by the descriptions and specifications provided in 

section 4.2.2. Based on these requirements, the use cases illustrated in Figure 31 are supported by the 

implemented prototype component. 

 

Figure 33: Use case diagram of the Service Provider (own illustration) 

                                                           

21 https://lucene.apache.org/core/ 

22 https://www.elastic.co/de/products/elasticsearch 

Authenticate

Register with 

Service 

Provider

Sign-In to 

Service 

Provider

Visualise 

Data

Create 

Sensing Task

Send Sensing 

Task to 

Publisher

View Data

Service Provider

System

Consumer / User



 Implementation of the Prototype 

© 2017 University Koblenz-Landau, Enterprise Information Management Research Group 119 

The Service Provider is mainly used by users who act as Consumers in terms of the Holistic IoT 

Architecture Framework. Users can register themselves with the Service Provider. During this process, 

users define their Credentials, which consist of an e-mail and a password. These credentials are 

encrypted and stored in the database. As soon as a user is authenticated, he can create Sensing Tasks 

and view the data of the tasks he issued. A Sensing Task in this prototype implementation of a Service 

Provider consists of metadata and result-data. The metadata contains a query-string along with 

additional fields, e.g. for describing usage policies or compensations provided. The result-data contains 

the data that is sensed by the Things corresponding to the Sensing Task. The metadata as well as the 

result-data is stored and handled as a schemaless JSON. When a Sensing Task has been created, the 

system can send the task to known Publishers via a RESTful API (see Figure 34). Likewise, the system can 

receive the data associated to Sensing Tasks and visualise the received data for the user.  

 

Figure 34: Class diagram of the Service Provider (own illustration) 

Besides offering a web application for the user to interact with, the Service Provider uses a RESTful API 

to communicate with Publishers. 

• Sensing Task-API 
This API sends Sensing Tasks via HTTP POST requests to a Publisher. The payload of a request 
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5.4 Evaluation Results 

The implementation of the Holistic IoT Architecture Framework as a prototype demonstrated that the 

conceptual design of the framework including the theoretical specifications and descriptions of each of 

its components is technically realisable. The implementation work evaluates and shows the general 

feasibility of the overall architecture. While addressing the technical details of each components deeper 

insights into the operation and performance could be gained. However, looking at the technical details 

and inner workings of each component in detail and evaluating the architecture holistically at all levels 

of analysis may go beyond the scope of the thesis described in section 2.4. In this section, it is stated 

that the thesis aims to develop a high-level architecture framework, which does not emphasise the inner 

workings of components. Nonetheless, the evaluation of the implementation and especially technical 

details yielded evaluation results that may affect the high-level aspects of the Holistic IoT Architecture 

Framework. Thus, considering technical details and inner workings of components during the evaluation 

is justified. The following paragraphs elaborate the evaluation results of the Holistic IoT Architecture 

Frameworks´ prototype implementation.  

Component Addressing System 

Regarding Figures Figure 30, Figure 32 and Figure 34, it becomes apparent that each contains a 

representation of either the Publisher component or the Service Provider component. This is due to the 

fact that each component requires information regarding other components it is intended to talk to. For 

example, the TMS prototype requires users to import Publishers. The Publisher stored in the database 

of the TMS contains information that describes the APIs the Publisher provides (see section 5.2 for the 

APIs provided by Publishers). As described in section 5.1, the TMS sends Contracts to Publishers via HTTP 

POST requests, which requires an address to which the request is sent to. Depending on the API, 

additional information might be required to transmit the information (e.g. when authentication is 

required). Users of the TMS are required to provide this information for the TMS to be able to send 

Contracts to Publishers. The same principles apply for both the Publisher and the Service Provider. 

However, manually importing the required information for each Publisher or Service Provider might not 

be applicable. The reason for this is twofold. Firstly, when the number of components grows, the 

management of the configuration information might become increasingly time consuming and complex. 

Secondly, when individual instances of components cease to exist (e.g. a Service Provider discontinues 

his services) or new instances are created (e.g. a new Publisher services enters the eco system), the 

changes do not reach each component. For example, a TMS might try to submit contracts to a Publisher 

which doesn’t exist anymore. Consequently, this would require the users of each TMS to manually check 

if the Publisher information is still valid. Again, the same applies for the Publisher and Service Provider 

component.  

To address this issue a system similar to the Discovery Server proposed by Chang et al. (2015) might be 

incorporated into the overall architecture. The Component Addressing System would provide 

information regarding available Publishers and Service Providers. This information may range from 

configuration data (e.g. API descriptions) to reputational classifications (e.g. monitoring and publishing 
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the reputation of a Publisher) or certification information (e.g. certifying the identity of a Publisher 

imported to the TMS). 

Heterogeneity 

The multitude of different types of Things, different data formats and representations remains an issue. 

However, with the Holistic IoT Architecture Framework defining the responsibilities, roles and 

relationships for each component, the starting point for addressing this issue is clearly marked out. As 

stated in the previous sections, this issue can be solved by providing a sufficient variety of adapters 

responsible for translating different data formats or communicating via different interfaces. This could 

be achieved by either implementing an adapter for each kind of Thing or by utilising the principles and 

technologies suggested by the Semantic Oriented Vision of IoT discussed in section 3.1 to automatically 

generate adapters or interfaces. 

This chapter finalises the application of the GDC. The discussion of suitable technologies for 

implementing the prototype in the beginning of this chapter addressed RO4 and the corresponding 

research questions RQ4.1 and RQ4.2. 
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6 Summary and Conclusion 

This chapter summarises the key findings of this thesis in section 6.1 by answering each research 

question that was posed in section 1.2. Subsequently the research contribution (see section 6.2) and 

the limitations of this thesis (see section 6.3) are briefly discussed. This thesis concludes with hints for 

future work in section 6.4. 

6.1 Research Questions 

In this section, each of the research questions that guided the research conducted in this thesis (see 

section 1.2) is answered individually. For each research question, a summarising answer is provided 

along with the respective reference to the corresponding section(s) where the research question is 

elaborated on and answered in detail. 

RO1 Identify and evaluate components of S2aaS. 

RQ1.1 Which components of S2aaS are addressed in the pertinent IoT architecture literature? 

Based on the IoT Architecture Perspectives developed in section 4.2.1, the following components have 

been identified in the literature and been described in detail in section 4.2.2. Across the pertinent 

literature the components Consumer, Thing, Owner and Service Provider are mentioned either implicitly 

or explicitly. The Consumer component is essentially interested in sensing data and is willing to provide 

compensation (see page 53). The Thing component, giving IoT its name, provides unique sensing and 

actuating services and is considered the bridge between the digital and physical world (see page 53). 

Things are owned by Owners, who essentially govern their Things by defining access rules or requiring 

compensation for their Things` services (see page 54). Service Providers provide value added services, 

which are employed by Consumers. In order to provide these value-added services, Service Providers 

rely on the sensing data of Things (see page 55). Depending on the respective IoT Architecture 

Perspective, the components Publisher and Gateway are considered in the literature or not. Gateways 

aim to establish communication between the individual components, especially between Things and 

other components (see page 55). Publishers intend to represent the interests of Owners (e.g. privacy), 

thus they act as proxy between Things, Owners and Service Providers (see page 56). Additionally, with 

Owners potentially owning many different Things, the need for an additional component, the Thing 

Management System, has been identified in section 4.3.1. Essentially, the TMS allows Owners to 

manage a multitude of different Things, including the selection of data to be shared or published. The 

details of the TMS are discussed in section 4.3.3. 

RQ1.2 Which perspectives on the components of S2aaS are to be considered? 

During the analysis of IoT architecture proposals in the literature, two new perspectives on IoT 

architectures became apparent. The Network IoT Architecture Perspective focusses on establishing 

communication between individual components of an IoT architecture in general (see section 4.2.1, 

page 45) and is related to the Gateway component described earlier. The Organisational IoT 
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Architecture Perspective concentrates on the description and definition of the organisational 

relationships between components of an IoT architecture (see section 4.2.1, page 48). This perspective 

is related to the Publisher component which was identified as part of the previous research question 

answered in section 4.2.2. 

RQ1.3 What common requirements for S2aaS components can be defined? 

By analysing the pertinent literature in section 4.2.2 requirements for each of the components 

Consumer, Thing, Owner, Service Provider, Gateway and Publisher have been worked out. The 

requirements extracted from the literature are illustrated in Table 1. In general, each component is 

interpreted as an independent software system which exposes specific functionalities via 

communication endpoints. The detailed requirements for each component are guided by the respective 

business level interests of the components stakeholders. For example, Service Providers offer value 

added services (e.g. simplifying searching for and visualising sensing data) and consequently need to be 

able to support various incentive mechanisms. Furthermore, the requirements for the novel component 

of the Thing Management System have been described in section 4.3.3 and illustrated in Table 2 as well 

as Table 3. 

RO2 Map architectural components of S2aaS to existing IoT services, systems and concepts. 

RQ2.1 How can existing services, systems and concepts be mapped to components of S2aaS? 

This thesis applied the DSR pattern Problem Space Tools and Techniques presented by Vaishnavi and 

Kuechler (2007) to identify existing services, systems and concepts that could be mapped to 

components of S2aaS. With the research domain of IoT being relatively new and unstructured, the 

pattern suggested by Vaishnavi and Kuechler (2007) is especially considered useful. This pattern utilises 

researchers´ general knowledge to identify promising tools and techniques to solve a given research 

problem. Therefore, it is employed in this thesis to test novel solutions of existing research problems of 

IoT. 

RQ2.2 Which existing services, systems and concepts can be mapped to components of S2aaS? 

Based on the Problem Space Tools and Techniques pattern identified as part of the previous research 

question, the concepts and techniques of Identity Management have been identified as a suitable 

baseline or guiding principle to develop the novel component of the Thing Management System in 

section 4.3. By interpreting Things as Identities referring to their corresponding Owners as Entities, the 

principles and concepts of Identity Management can be transferred to IoT and used to design a system 

for managing Things. 

RO3 Propose detailed specifications for the components of IoT architecture framework. 

RQ3.1 What are the specifications for each component? 

Having identified a common set of IoT architecture components (Consumer, Thing, Owner, Service 

Provider) as well as two additional components which have been identified by using the novel IoT 

Architecture Perspectives (Publisher and Gateway) and additionally having developed the Thing 

Management System as a completely new component, the detailed specifications of each of these 
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components are listed in Table 4. Following the intended high-level approach for the Holistic IoT 

Architecture Framework described in section 2.4, the specifications for each component focus on 

external relations with other components as well as the roles and responsibilities of each component., 

RO4 Find technologies supporting the implementation of the proposed architecture framework. 

RQ4.1 Which criteria are important for the selection of technologies that support the implementation of 
the proposed architecture framework? 

Based on the theoretical development and specifications of the components of the Holistic IoT 

Architecture as part of the previous research questions, it was evaluated if these specifications and 

descriptions are viable to guide the implementation of a prototype. In order to be able to develop a 

prototype, several choices regarding the selection of technologies had to be made. The discussion 

carried out in the beginning of chapter 5 shows that the sufficient support of heterogeneous data is a 

crucial criterion for selecting appropriate technologies supporting the implementation of such a 

framework.  

RQ4.2 Which technologies are suitable to implement components for the proposed architecture? 

Considering the need to support the representation, storage and handling of heterogeneous or 

schemaless data, the data storage technology for the prototype was selected accordingly. As discussed 

in the beginning of chapter 5, PostgreSQL was selected as the storage engine for the prototype because 

it provides sufficient capabilities to handle schemaless data and is simple to integrate into the other 

technologies of the prototype such as Ruby on Rails. However, it must be noted that while the selection 

of this storage engine is appropriate for a prototype like this, a large-scale implementation of the Holistic 

IoT Architecture should use technologies that scale better than PostgreSQL. 

6.2 Research Contribution 

In the course of this thesis, various aspects of IoT architectures proposed in the pertinent literature were 

interpreted and used to develop a Holistic IoT Architecture Framework that covers these various aspects 

as a whole. During the development of this framework two novel perspectives on IoT architectures in 

general were identified. These perspectives, the Network- and the Organisational IoT Architecture 

Perspective, helped to identify and specify architecture components which are mentioned in the 

literature, either implicitly or explicitly. In addition, the perspectives could be used as a supplemental 

tool to classify the focus of existing IoT architecture proposals in the literature. The components 

Consumer, Thing, Owner, Service Provider, Publisher, and Gateway, which were identified with the help 

of these perspectives, have been thoroughly described. Furthermore, by considering the novel IoT 

architecture perspectives and comparing the differences between the associated architectures, the 

need of an additional component became apparent. This conclusion was further encouraged by the 

realisation that Things can be interpreted as Identities in terms of Identity Management. Based on this 

insight that Things are Identities which refer to their respective Owners and the discrepancies between 

the Organisational IoT Architecture Perspective and the Network IoT Architecture Perspective, a novel 

component was developed which addresses the need to allow Owners to manage their Things. The 
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Thing Management System developed throughout this thesis, which allows Owners to share and publish 

their Identities (or Things), was subsequently embedded into the overall architecture. 

Overall, the Holistic IoT Architecture Framework developed in this thesis provides high level 

specifications and descriptions of IoT architecture components, their relations, roles and 

responsibilities. By applying this architecture, the expected behaviour and tasks of the IoT architecture 

components are clearly defined on a high level of abstraction. Based on the understanding of the role 

of each IoT architecture component and what the semantics of the communication between the 

individual components are, the implementation of a component is a straightforward process, which has 

been demonstrated in this thesis as well. 

6.3 Limitations 

Considering that the evaluation conducted in section 5.4 revealed that dealing with the technical details 

on a low level of abstraction can potentially have an impact on the architecture in general, the mere 

focus on a high level of abstraction might be a limitation of this thesis. In section 5.4, the need for some 

kind of Component Addressing System became apparent while evaluating the implementation of 

prototype of the Holistic IoT Architecture Framework. 

As the evaluation in section 5.4 has shown, the evaluation on a lower level of abstraction can yield 

results that have an impact on higher levels. Thus, one limitation of this thesis is the focus on the high-

level aspects of an IoT architecture. Additionally, only a subset of IoT architecture proposals has been 

considered in the analysis (see section 2.3), which inevitably suggests that some possibly relevant 

aspects addressed by other proposals are not covered by the IoT architecture framework developed in 

this thesis. 

Another limitation of this thesis is mentioned in section 4.3.4. The architecture requires that Gateways 

may act on behalf of Publishers to gather data from Things which have been deployed in foreign 

environments and thus need to rely on opportunistic and non-permanent communication. However, as 

has been discussed in section 4.3.4, Gateways need to authenticate with Things and prove that they act 

on behalf of the associated Publisher of a Thing and have indeed the permission to access the Thing´s 

services. The main issue with this connection between Gateways, Publisher and Things is the lack of a 

suitable authentication mechanism. The mechanism must either provide Gateways with credentials that 

are “valid on their own” and which can be independently validated by a Thing or the Thing must be able 

to directly communicate with its assigned Publisher to check the relationship between the requesting 

Gateway and corresponding Publisher. As discussed in section 4.3.4, both options are equally 

problematic. Using credentials which are “valid on their own” (e.g. sufficiently encrypted tokens, etc.) 

is impractical because managing the tokens becomes increasingly difficult with the number of Things, 

Gateways and Publishers growing. For example, it will be very difficult to revoke access to Things when 

not having access to every Thing and to invalidate specific credentials so that access is denied. While 
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this issue has been discussed, a solution was not presented in this thesis. Hence, it is the main limitation 

of this thesis. 

6.4 Future Work 

As discussed in the previous section, communication and propagation of access rights and a suitable 

authentication mechanism between Gateways, Publishers and Things remain issues to be solved in the 

future. Solving these issues is especially important in order to be able to deploy IoT applications and 

sensor networks on a large scale. It is inevitable that Things are deployed in foreign environments and 

thus need to rely on opportunistic communication. 

Furthermore, with Gartner (2014) forecasting a black market worth five billion US$ by 2020, the need 

for mechanisms and systems which can assess the quality and authenticity of sensing data becomes 

apparent. The Holistic IoT Architecture defines Consumers as components that are interested in sensing 

data and are willing to provide some means of compensation. The intention to provide compensation 

for data implies that sensing data has value that needs to be defined. The value of data could be coupled 

to the reputation of the Owners, Things, Publisher and Gateways involved in obtaining this data. Thus, 

a system must be developed to determine and manage the reputation of all actors involved in gathering 

sensing data. A system for assessing the reputation of an actor could be integrated into each component 

of the Holistic IoT Architecture Framework. 

However, for S2aaS to be successful, a more general issue regarding IoT and sensing data must be 

addressed. S2aaS is designed to offer access to sensing data as a service, which describes various 

dimensions of any environment at anytime and anywhere. Furthermore, S2aaS suggests that this 

service, which is provided by a plethora of actors, needs to be compensated. For this purpose, various 

incentive mechanisms have been developed. The problem is, however, that research regarding S2aaS 

stops at this point. Potential use and value of sensing data, which justifies the compensation for 

gathering this data in the first place, is often disregarded. Consumers need methods to assess what kind 

of data and which amount of data is required in order to be able to derive information and knowledge 

from this data. 
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Appendix 

 

Appendix 1: Source code of the prototype 

The source code of the prototype developed in chapter 5 is available at the following addresses. Each 

component is implemented as a separate web application based on Ruby on Rails and hosted in its own 

repository. 

Thing Management System https://gitlab.uni-koblenz.de/msc/msc-tms 

Service Provider 
https://gitlab.uni-koblenz.de/msc/msc-service-
provider 

Publisher https://gitlab.uni-koblenz.de/msc/msc-publisher 

Thing 
https://gitlab.uni-koblenz.de/msc/msc-
demo_thing 
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Appendix 2: Overview of the icons used in the illustrations 

 

• User of a system or service 

• Stakeholder of a system or service 

 

• User with a mobile device 

 

• Mobile device 

• Smartphone 

 

• Identity of a user 

 

• Credentials of a user 

 
• Identity of a Thing 

 

• Thing 

ID 1

ID 1 
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• Publisher of the Holistic IoT Architecture 

Framework 

 

• Service Provider of the Holistic IoT 

Architecture Framework 

 

• Gateway of the Holistic IoT Architecture 

Framework 

 

• Thing Management System of the Holistic 

IoT Architecture Framework 

 

Publisher

Service 
Provider

Gateway

TMS
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