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ABSTRACT

With the rise in the number of devices in the Internet of Things (IoT), the number of ma-

licious devices will also drastically increase. Smart cities’ decisions are based on data being col-

lected by IoT devices in real-time, of which a connected-vehicle system is included. Behaviors

such as malicious data injection can significantly impact connected vehicles. To aid in combating

this threat, monitoring smart city and connected vehicle’s sensor data will allow for construction

of a behavioral model. Implementing machine learning will aid in constructing a standard be-

havior such that any device that begins to malfunction or behave maliciously can be detected and

mitigated in real-time. This behavioral analysis will be further applied to supplement trust man-

agement approaches such that a more accurate value can be associated with the device’s perceived

trustworthiness without the need to rely on a majority consensus.
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CHAPTER 1

Introduction

The rapid growth of connected devices comprising the Internet of Things (IoT) is trans-

forming traditional elements of city life into next-generation intelligent smart cities where deci-

sions are based on data being collected by IoT devices in real-time. Among the key components

contributing to smart cities’ initiatives is the intelligent transportation system (ITS), which contains

but is not limited to connected vehicles. The technology behind connected vehicles will enable ve-

hicles to communicate with their peers, roadside units (RSUs), and other infrastructure to share

vital transportation information such as current road conditions, congested traffic, and vehicular

collisions [3, 4].

However, as the number of connected devices increases, the number of malicious devices

in the system will also likely rise. The cybersecurity requirements of smart cities are distinct

from conventional and past security issues, as they are constantly evolving because of new trends

in technology and use cases [5]. The network setup can raise another challenge where frequent

topology changes and high mobility characteristics of connected vehicles can create additional

challenges in which cryptographic solutions cannot perform as well as expected so attackers can

easily overtake authorized and authenticated users [6].

Because of the cybersecurity challenges that smart cities suffer from, it was necessary to

create a new approach that sought to build trust between devices in an untrusted environment [6].

One solution offered is the design and implementation of trust management systems, in which

devices will interact with one another and upon analysis of the data received, a device will learn

to either trust or not to trust specific devices [7]. The decision to trust or to not trust is driven by
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the other device’ or devices’ trust value(s), where a higher trust value indicates that the device has

sent overall accurate messages while a lower trust could imply that the device is malfunctioning

or is acting maliciously [7]. Trust management systems [7–10] enable devices to more quickly

determine which other devices are sending accurate data and which are transmitting malicious or

inaccurate data, based upon this trust value. The decision to increase or decrease another device’s

trust value is determined by using the device’s own sensors to analyze the accuracy of the message,

where the neighboring devices will then come to a consensus or agreement on the factual repre-

sentation of the data. If the devices agree on the validity of the message then the initial device’s

trust value will be increased and conversely decreased if the message is deemed inaccurate. By

enabling trust within smart cities, devices will be able to quickly accept data and execute decisions

with a level of confidence that the data received is accurate.

As a result of the fundamentally untrusted environment that is a smart city and connected

vehicles, it is difficult for vehicles to evaluate the credibility of received messages. Trust manage-

ment systems have been shown to mitigate threats [6], however there are unique threats targeting

the consensus mechanisms of trust management approaches such as colluding attacks [11], in

which vehicles who behave maliciously will always not be removed from the system but instead

rewarded for all coming to a majority consensus on the malicious data. Thus, relying solely on

a majority consensus of devices is often not enough to mitigate threats, and therefore it is both

critical and urgent to design and implement a solution that is capable of monitoring the data and

behavior of such devices.

Through monitoring of connected vehicles’ driving statistics, a localized behavioral model

can be constructed that will accurately represent the standard behavior of vehicles driving in this

area. This behavioral model will allow for future data to be compared to determine whether the

data reasonably fits the expected behavior for that area. The results from this analysis of data will

aid in the calculation of device behavior that can be further applied to more accurately represent

the device’s perceived trustworthiness in the system, that in its current state relies on a majority
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consensus instead of the accuracy of the data itself. However, the need to remove threats against the

majority consensus mechanism in current trust management approaches requires another method

of determining data accuracy, providing motivation for machine learning to be implemented to

construct this behavioral model. Given the numerous sensors and the massive amounts of data

necessary for a connected vehicle network [12], machine learning will be capable of compiling

the information to form the standard behavioral model that can be used as a basis for future data

comparisons. This machine-learning approach allow for a more rapid detection and mitigation of

threats which will further enable the real-time security needs of smart cities and connected vehicle

networks.

1.1 Research Questions

In this thesis, we address the following research questions:

• Is it possible for a vehicle’s behavior to be monitored and assessed in evaluating the trust in

the network?

• What data is necessary to determine the overall behavior of a vehicle?

• How can machine learning enhance traditional trust management approaches?

• How will this behavioral analysis model assist in mitigating threats better than traditional

trust management approaches?

• What level of accuracy is necessary for the behavioral analysis model to mitigate threats?

• What machine learning algorithm will best meet the real-time requirements of smart cities?

3



1.2 Motivation and Contributions

For trust management approaches to be successful, there is a critical and urgent need to

detect and mitigate threats in real time. Emerging technologies such as smart cities and connected

vehicles require novel cybersecurity approaches that are able to meet the needs that these advanced

technologies require, trust management had proven its ability to satisfy these needs [7–10]. How-

ever, it is vital that trust management systems adapt to prevent new threats and detect and mitigate

existing threats in real time. To accomplish this and to allow for a expeditious reaction to malicious

behavior, the contributions of this work can be summarized as follows:

• Construct of a behavioral model: Constructing a behavioral model involves monitoring

each vehicle’s driving statistics to gathering a understanding of a specific geographical loca-

tion and the typical behavior of the vehicles that participate there. The monitoring of driving

statistics is vital to the real-time nature the system provides because to detect and mitigate

threats in real-time, the system needs to have the most recent data available. Collecting data

must be done for a small geographical area so that the system does not become impacted,

which would negatively impact the real-time needs of the system. This behavioral model

forms the foundation to the remainder of the thesis and can be expanded upon by creating

many different behavioral models each corresponding to their own geographical area.

• Develop a method to compare current behavior to the known behavioral model: Using

the behavioral model and the continued monitoring of vehicle driving statistics, the system

will then be capable of creating a behavioral pattern identification process in which a vehicle’s

current behavior will be compared against the known behavioral model. Any vehicle that does

not reasonably model the standard or expected behavior can be assumed to be an anomaly.

These anomalies will provide the means of detection in this system, which will in turn lead

to a mitigation process. Further, classification of the behavior is critical to the evaluation

of these anomalies, because devices could be malicious/malfunctioning and thus classifying

their behavior will aid in mitigation of such threats. The analysis accomplished will provide
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critical insight into the detection and mitigation of threats in the system.

• Formulate behavior-based trust mechanism To further aid in the determination of the per-

ceived trustworthiness of a vehicle, a behavior-based formula will be used to derive a distinct

value that directly correlates to a given vehicle’s likelihood of following the established pat-

tern. This behavioral value can then be used in future implementations of trust management

systems to more accurately define and calculate any vehicle’s overall trustworthiness.

1.3 Organization

The remainder of the thesis is organized as follows. A brief discussion of key background

information in Chapter 2 is followed by related work in Chapter 3. Chapter 4 presents the simula-

tion and data collection approach. Methodology and experimentation are described in Chapter 5.

Chapter 6 describes the evaluation and experimental results for the system. Finally, we conclude

and discuss future directions in Chapter 7.
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CHAPTER 2

Background Information

This chapter explains key ideas discussed throughout this thesis. The concepts covered here

are the Internet of Things and Smart Cities in Section 2.1, Trust Management Systems in Section

2.2, Machine Learning in Section 2.3, and the threat model in Section 2.4.

2.1 IoT and Smart Cities

As technology progresses, it is becoming an integral part of every day life. Businesses,

communities, and governments all rely on the internet to transmit information. Any device con-

nected to the internet is a part of the Internet of Things. While they all have their individual

purposes, the ability to transmit data across the internet is what unites them [13, 14]. There are, at

present, an estimated 24 billion IoT devices [15]. IoT devices come in all shapes and sizes, such

as a smart watch, smart refrigerator, security systems, smartphones, and even devices whose sole

purpose is to collect and transmit data (such as thermometers, infrared detectors, motion detectors,

or accelerometers).

2.1.1 Smart City

In [16], the following definition is offered: “A smart city is a framework, predominantly

composed of Information and Communication Technologies (ICT), to develop, deploy and pro-

mote sustainable development practices to address growing urbanization challenges.” A smart city
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thus is a conglomeration of various devices that communicate to enable safer and more efficient

operations [17]. Smart cities are composed of a new class of devices such as smart traffic lights,

which have been shown to alleviate traffic [18]. Roadside Units (RSUs) are devices that are more

computationally powerful than standard IoT devices; RSUs can collect the data from other devices

and help coordinate the city such that it operates more efficiently [3, 4, 19]. Specific to this thesis,

smart cities’ initiatives include an intelligent transportation system (ITS), which is composed of

connected vehicles (see Figure 2.1).

Figure 2.1 Smart city demonstrating how various devices are able to communicate through,
vehicle-to-vehicle, vehicle-to-RSU, and vehicle-to-infrastructure to aid in efficient
operations of the city
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2.1.2 Connected Vehicles

Vehicle Ad Hoc Networks (VANETs) allow connected vehicles to communicate with other

devices to share information regarding driving patterns or road conditions [3, 4].

To create a safer driving environment connected vehicles will need vast amounts of data in

order to make efficient and safe decisions for it’s passengers as well as members of the city. To

accomplish this connected vehicles will need methods of communicating with the infrastructure

that is dedicated to the operations of VANET-ITS. These communication protocols include vehicle-

to-vehicle (V2V) enabling vehicles to communicate with one another and vehicle-to-everything

(V2X), which allow the vehicles to communicate with all device’s in the smart city such as RSUs

[20].

The National Highway Traffic Safety Administration (NHTSA) describes vehicle-to-vehicle

(V2V) communication as “Information between nearby vehicle to potentially warn drivers about

dangerous situations that could lead to a crash” [12]. While connected vehicles are not currently

popular with car manufacturers, it is estimated that to transform a standard vehicle into a connected

vehicle would cost approximately $350 [12] to equip the vehicle with the necessary communica-

tion devices and sensors. Some of these sensors include ultrasonic sensors, cameras, and radars,

which when used together should provide more information about the surrounding area than what

a driver is capable of seeing of their own.

2.2 Trust Management Systems

New technologies such as smart cities and connected vehicles often require novel methods

of cybersecurity to protect the users from malicious acts. One solution to address the cybersecurity

needs of connected vehicles is through the application of a trust management system [7–9]. Trust

management systems are a method which rewards or punishes devices based on how they operate

in the network. Each device has a trust value that corresponds to the observed trustworthiness based
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on historical interactions with other devices in the network. Devices interact and will evaluate the

accuracy of the data each receives. If the data is determined to be accurate, then the other device

will be rewarded with a higher trust value, if the data is inaccurate or malicious their trust value

will be decreased [7]. This method of a group evaluating messages for accuracy is known as a

majority consensus [21]. This majority consensus comes with an attendant problem: colluding

attacks. This is when a group of devices all act maliciously and will agree on the accuracy of the

data thus boosting their trust values [22].

As previously stated, smart cities require decisions to be made in real time (which means

in our context sufficiently fast that decision-making can improve the overall operation of the smart

city). But because of the untrusted nature of smart cities, devices cannot blindly accept data as

such data has the potential for negative side effects. Trust management offers the ability to only

accept data that comes from devices with a high trust factor so that data received is most likely

accurate (however a high trust factor is not guarantee that the data is 100% accurate even if the

other device has a perfect trust factor). This is a because history is unable to predict the future; any

device has the capability of turning malicious, making it even more vital to develop a modernized

solution.

2.3 Machine Learning

Machine learning has risen in popularity in recent years, especially with the growing in-

terest in data analysis. Merriam Webster defines machine learning as “the process by which a

computer is able to improve its own performance by continuously incorporating new data into an

existing statistical model” [23]. This means that, through a mathematical model, a computer is

able to be trained to critically analyze data such that it can make predictions of future outputs or

provide a more concise explanation of the outputs without having to look through mass amounts

of data. There are two types of machine learning: supervised and unsupervised [24]. Supervised
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machine learning is where the developer will create the training set and manually define the data

such that the machine learning algorithm will be able to identify patterns based upon these. On the

other hand, unsupervised machine learning involves algorithms where the computer will groups

the data together automatically [25].

There are many different applications for machine learning, some of the more popular

include: speech recognition, computer vision, pattern recognition [26].

Machine learning terminology used throughout this thesis is as follows:

• True Positive and False Positive: A true positive is where a model correctly identifies an out-

come, while false positives occur when a model predicts an outcome which does not actually

occur.

• Training/Fitting: In order for machine learning to be able to make prediction, it must learn

the data that it will be operating on. This learning process is referred to as training or fitting

the model.

• Inlier and Outlier: After the machine learning algorithm has been trained certain algorithms

are designed to determine if any new data that is input in the system matches the data that the

algorithm was trained on. Data which does not match is an outlier, and conversely data which

matches is an inlier.

2.3.1 Anomaly Detection

One specific class of machine learning is known as anomaly detection, which is common

utilized, for instance, in cybersecurity [27, 28]. Like other types of machine learning, anomaly

detection requires training on “standard” data. The algorithm will learn patterns and gain a baseline

understanding of the data [29]. With the algorithm understanding what the standard behavior is,

anything that differs sufficiently will be flagged as an anomaly (which can lead to a number of

different mitigation techniques such as having a human take a look to determine what would’ve
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caused such an event). Figure 2.2 demonstrates how different anomaly detection models group

data points and shows that any data point not inside that grouping is considered to be an outlier

(that is, an anomaly).

Figure 2.2 Visual representation of how anomaly detection algorithms (One-class SVM, Robust
Covariance, Isolation forest, and LOF) determine if data is an inlier or outlier (adopted
from [1])
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2.3.2 Classification

Another area of machine learning is called either classifiers or classification algorithms.

These are generally supervised models, where the algorithm will be trained on datasets that have a

flag that corresponds to the specific class of data that it represents. Upon training, any new data that

is input into the machine-learning algorithm will be labeled with the class to which it belongs [30].

Classification algorithms accomplish this through the grouping of data; this is necessary because

it provides a distinction between different subsets of data such that new data can be classified

according to its relation to the subset [30], a visual representation of this can be seen in Figure

2.4. An example of a classifier is image recognition software. If a machine learning algorithm

were to be trained on images, in which each image was labeled corresponding to the animal that

was pictured, then if you were to input another picture of an animal, then the machine learning

algorithm would recognize the image and output the type of animal.

Figure 2.3 Visual representation of how classification machine learning algorithms group data
together such that any point that is mapped to a specific location is classified based on
that grouping (adopted from [2])
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2.4 Threat Model

A number of malicious attacks affect the way IoT entities communicate with each other

and could have an impact of the trust building in a network. This can affect the decision-making,

which could lead to negatively effecting human lives. In this section, the threat model is presented,

which comprise of a number of attacks with different targeted effect on the system, including

breakout fraud, illusion-based attacks, and colluding. In the future, we will look into other threat

models that will affect IoT enabled systems. The purpose of a behavioral trust monitoring is to

aid in prevention of attacks that can occur in the system. Thus, by implementing this approach the

following attacks can have minimal effect.

2.4.1 Breakout Fraud

Breakout fraud attack occurs when a device attempt to first build trust in the network

through providing accurate information, but, at a given point in time, said device will begin acting

maliciously by transmitting false data to other devices. This attack aims to take advantage of the

fact that the device has earned a high trust value, implying that other devices in the network will

most likely accept its data. At such a juncture, the malicious device will be able to successfully

inject malicious data into the system, which can negatively impact the operations of the network.

2.4.2 Selective Behavior

Because of to the highly dynamic nature, connected vehicles can act maliciously with a high

possibility that they randomly switch from sending accurate messages to inaccurate messages, and

back again. Selective behavior attacks seek to maintain a high trust value such that, upon injecting

malicious data, it is more likely for the data to be accepted (such that other devices will apply this

data for a decision-making process). However, upon evaluating these messages, the vehicle’s trust
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will be lowered. Thus, the vehicle will opt to switch back to sending accurate messages for a short

period of time. This variety of attack could be launched through randomly sending true and false

messages (mixed behavior), or it can be done on a periodic schedule (flip-flopping).

2.4.3 Illusion-based Attacks

Illusion-based attacks represent a threat that occurs when vehicles have knowledge of the

data that relates to critical messages in order to force their data to model those critical messages.

This means that the malicious vehicle creates the illusion of a critical incident, even though the

incident did not occur. This attack is especially dangerous since it has the potential to deceive

protocols to prevent the injection of malicious data. By creating an illusion-based attack and

circumventing protection protocols, the smart city would accept the data and be inclined to make

decisions based on this new information. But, because this information is actually inaccurate, the

smart city or connected-vehicle network could potentially make decisions that would negatively

impact the overall condition of the network.

2.4.4 Colluding Attacks

In traditional trust management implementations using a majority-based consensus mech-

anism [11], there is the potential for a colluding attack or an overrule of the majority attack. This

occurs when the any number of malicious devices reach consensus and the summation of those

devices’ trust values outweigh the actual trustworthy devices (such that the malicious information

is accepted as accurate). One example is as follows: one device has a 100% trust value while an-

other four malicious devices each have 26% trust. If the four vehicle with lower trust agreem, then

the weighted trust values of those is higher than the trust value of the one telling the truth; thus,

the consensus has now been compromised. This is an serious problem with traditional trust man-
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agement approaches, smart cities and connected vehicles rely on the system being able to make

real-time decisions when necessary. By not detecting the presence of malicious devices in the net-

work, the malicious device or devices will have artificially inflated trust values, which can be used

to propagate their malicious data throughout the network. Thus, causing the system to be unable

to trust device(s) with high trust this attack has effectively shut down trust management system(s).

2.5 Concept of Operations

In a smart city with VANET-ITS [3, 4], such as connected vehicles, there must be a certain

infrastructure setup which aids in the communication of vehicles. This will be divided into two

parts: vehicles and stationary nodes (RSUs). Since these smart and connected vehicles are driving

in the city, they will be using their sensors to detect information regarding current road conditions,

this information will be transmitted to the RSUs (such that critical information can be extracted

and used by the smart city [19]).

First, these vehicles will need to be equipped with sensors such that the vehicles are able

to detect information pertaining to the road conditions. As stated above, these sensors can be

devices such as ultrasonic sensors, cameras, or radars, which, when used together, will collaborate

to provide information such that other vehicles on the road can make informed decisions [12].

Further, the vehicles must be equipped with an On-board Unit (OBU) that is used to enable for

communication between the vehicle, other vehicles, and the smart-city infrastructure. These OBUs

will be composed of Directed Short Range Distance (DSRC) technology that has been shown

to satisfy vehicle-to-vehicle communication requirements such as rate of transfer and distances

between devices [31].

There also need to be stationary nodes forming a collection of Road Side Units (RSUs),

which, as stated previously, are more computationally powerful. This means that most of the data

processing and analysis will be conducted on these devices [3,4]. RSUs will be located throughout
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Figure 2.4 In this figure the traffic light is the RSU, the vehicles will be reporting their
observations and data to this RSU as it is the closest in proximity. Each vehicle has its
own trust value available such that informed decisions can be made based upon the
trustworthiness of the data
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the city such that each RSU is able to monitor a small area and when able to inter-communicate to

complete coverage of the entire smart city [19]. Having multiple RSUs has been shown to reduce

delay of messages and to increase the delivery ratio, while simultaneously reducing the number of

retransmissions that vehicles must conduct to ensure that the messages is received when compared

to a system with none or just one RSU [19].
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CHAPTER 3

Related Work

3.1 Trust Management

In our context, trust is based on the history of interactions and the validity of the information

exchanged between network entities [7–9]. Managing trust in the network has received significant

attention since it can provide a dynamic layer of security where devices in the network will build a

bond based on their interactions, ensuring that data can be transmitted in the network and accepted

with confidence that it came from a trustworthy device [9, 10, 32]. Several trust management

schemes have been proposed, including entity-based where trust is based on the device itself, data-

based is when the trust is based upon the data that is being sent, and hybrid trust, which is a

combination of both the authenticity of the device and the information being sent [6, 33].

One area of interest in cyber-physical systems is connected vehicles [33–37]. Compared

to static networks, the dynamic nature of connected vehicles requires a distributed system that

enables vehicles to gather and share information toward building trust in the network as they move

from one place to another (this trust building can be achieved through collaboration between the

connected vehicles and fixed roadside units) [38].

The work presented in [32] discussed the idea of using a “lead” vehicle acts as the primary

source of truth for the network. In this work, the lead vehicles are only emergency response vehi-

cles that are given a 100% trust value. In trust-based solutions, the lead vehicle is as vulnerable to

outside attacks as any other vehicle in the system and thus should not be blindly trusted. Therefore,

a way to have a distributed consensus to verify the data collected, and corresponding trust values,

is required for the system to operate in a secure manner.
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Kerr et al. provided an analysis of unique trust models and demonstrate how each deal with

an adversarial model showing how the trust management system is capable of dealing with at-

tacks.The threats provided in this work include injected messages where malicious vehicles would

purposefully inject bad data into the network and Denial of Service (DoS) attacks that would flood

the vehicles with data such that the vehicles would be unable to process all the information.

Previous work has proposed solutions for trust management implementation in Vehicle

Ad Hoc Network-Intelligent Transportation Systems (VANET-ITS) (e.g., [33–37]). Yang et al.

proposed a decentralized system, claiming that a centralized system is impractical for the growth

that a VANET-ITS would require [33]. Another drawback of a centralized system is the massive

overhead that could be caused if several vehicles should be communicating with the central node at

once. By having several roadside units (RSUs) located throughout a city, each area within it can be

divided appropriately (e.g., load balanced and/or geographically). Therefore, the processing load

will be reasonably balanced. Further, the authors continued by proposing trust-factor calculations

where each vehicle begins with a neutral value, and, as messages are passed between vehicles the

trust value will be increased or decremented based on the accuracy of messages. The method for

evaluating the accuracy of a message is based on the experiences that other vehicles in the network

have had with a given message. The critical drawback of this approach is the scenario in which

there are several malicious vehicles in the network and these vehicles collude to evaluate their

messages as accurate. This scenario increases the malicious vehicles’ trust factor, decreasing the

overall integrity of the system.

3.1.1 Human-based Trust

Another study shows how humans evaluate a situational form of trust [39], where trust

is based on the current environment that the person is experiencing. The study examines how

an individual’s trust will change in what is called global virtual teams (where team members are
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not colocated) in the information systems field. It shows that a person’s initial trustworthiness or

perception of trustworthiness of the team members has a greater impact in the formation of trust.

With this, it was generally found that a higher trust between team members led to more frequent

communications (as it assures everyone is completing the necessary tasks) [39]. This study shows

that if a team member does not initially prove themselves, then the overall trust of the team member

is affected, and the team member struggles to gain trust later.

3.2 Behavior Analysis

Another study conducted in an IoT environment has demonstrated that a behavioral analysis

of IoT devices can be implemented even with limited resources [40]. To accomplish this, the

authors implemented a lead node that monitors the network traffic metadata that devices send.

Data such as the source IP address, the destination IP address, the MAC address, and the port

number, etc are extracted as features where the lead node then stores the data on a behavior monitor

blockchain. Using this data and associated features a machine learning model was built to analyze

the authenticity of the message. While the authenticity is important, this would only prevent attacks

which an outside actor attempts to harm the system and would not mitigate threats from actors

inside the network.

3.3 Machine Learning

Machine learning algorithms have been shown to aid in the cybersecurity requirements of

smart cities [41–43]. Alrashdi et al. describe the challenges of implementing machine learning

algorithms within smart cities such as limited resources of devices or the heterogeneous nature of

IoT (which will lead to a higher false positive ratio resulting from differences in devices). Notwith-

standing heterogeneity, their work shows that the implementation of machine learning can enhance
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smart cities intrusion detection systems (IDS) for certain threats such as DoS, Worms or malicious

programs installed to computers, Backdoors (which are vulnerabilities in specific systems that al-

low for unauthorized access), and so on. Garcia et al. state that, in traditional systems, authentica-

tion and confidentiality are satisfied by cryptographic solutions. However, because of the dynamic

nature of wireless networks and smart cities, cryptographic solutions are insufficient because an

attacker could capture a node, effectively bypassing such measures. This threat has led to the study

of implementing machine learning for prevents attacks on smart cities.

3.3.1 Anomaly Detection

One specific class of machine learning is used to achieve anomaly detection; a common

application for anomaly detection is in cybersecurity [27,28]. Anomaly detection requires training

on “standard” data, where the model will then learn patterns and have a baseline understanding of

the data [29].

Garcia et al. implemented different anomaly detection models, supervised and unsuper-

vised, such as local outlier factor and support vector machines to see which would lead to better

detection of threats [42]. Specifically, the authors implemented Mahalanobis Distance (MD), Lo-

cal Outlier Factor (LOF), Hierarchical Clustering, and Support Vector Machines (SVM), which

are all anomaly detection algorithms that will group the expected data together such that any data

point which does map to the expected data is determined to be an anomaly. In particular, MD is

a measurement of the distance between two points such that it is able to measure a new points

distance from the mean of the original data set [44]. LOF is another measured distance-based

algorithm however the numerical scale for determining outlierness is adjustable [45]. Hierarchi-

cal Clustering and SVMs both work by means of plotting data points and then clustering those

data points [46, 47]. For anomaly detection purposes, if any new point is mapped outside of the

cluster then the data is considered an anomaly. Through the implementations of different machine
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learning algorithms, the team concluded that the SVM implementation was best suited for the data

and accuracy which they were pursuing. However, the authors were limited in their results since

they worried about the overhead inherent with a high number of false positives; to combat this

possibility, they accepted a lower accuracy in their detection algorithm.

Another study presents a two-tier anomaly detection approach [43]. The first tier of ma-

chine learning in this aspect was dimensional reduction, which would then feed into the classifica-

tion algorithm (Naive Bayes). The output of this first tier would be the initial stages of anomaly

detection, which has the second tier further classifying data determined not to be an anomaly. This

second tier’s purpose is to enable the system to make more intelligent decisions based upon the

data through the use of a K Nearest Neighbors algorithm. While this two-tiered approach is able

to process data more efficiently than a single-tiered approach, its primary purpose is to offload the

classification of standard or normal data to another classifier, which imposes less computational

demand on the first machine learning algorithm.

3.3.2 Classification

Another area of machine learning is called classifiers or classification algorithms. These

are generally supervised models, where the algorithm will be trained on datasets that have a flag

that corresponds to the specific class of data that it represents. Upon training, any new data that is

input into the machine learning algorithm will be labeled with the class of which it belongs to [30].

Other studies have been conducted that implement machine learning classification of smart

city data, Chin et al. compiled weather sensor data from a smart city and attempted to classify the

data such that weather predictions could be made [48]. Through testing of Naive Bayesian, J48

Tree, and Nearest Neighbor Classifiers, the authors were able to predict 100% of the cases tested:

rainfall and temperature comparisons, thus showing that classifiers have a positive effect when it

comes to analyze data to make better predictions in a smart city.

22



Brisimi et al. implemented machine learning algorithms such as SVMs, logistic regression,

adaboost, and random forests to detect objects in the road [49]. Using an anomaly detection algo-

rithm first to determine if there was a bump in the road, it would then feed into the classification

algorithm to determine if the bump was from a pot hole, a road patch, or a sunk casting. With

an accuracy of 86% through 88% the classification of bumps successfully enabled city officials to

prioritize which roads need fixing.

3.4 Observations

Based upon the literature review, traditional trust management systems are only concerned

with the trust values. This is often not enough because of how heavily these approaches rely on a

consensus of the data giving way to threats that directly target trust management implementations

such as breakout fraud and colluding attacks. Trust management implementations also do not meet

the real-time needs that smart cities require. It often takes several instances of malicious behavior

before the system can safely and effectively punish or remove devices that suddenly begin acting

maliciously. Thus, it is vital to find a new implementation that can better prevent threats to smart

cities and connected vehicles, while also maintaining the ability to process and punish malicious

actors in real-time.

Machine learning has been shown to accurately detect and predict outcomes based on sen-

sor data from devices within the smart city. Garcia et al. showed that anomaly detection was able

to aid in the detection of threats in the system, but because of to the overhead associated with

false positives, the authors accepted a lower accuracy rating. Pajouh et al. implemented a two-tier

machine learning approach, which was able to detect anomalies while also using a classification

algorithm to aid with the overhead of false positives.

Thus, it is both critical and urgent to design, develop, and implement a trust management

approach that is capable of monitoring connected vehicles driving statistics to detect threats in
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real-time. While simultaneously being able to mitigate these threats based upon the classification

that is detected.
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CHAPTER 4

Simulation

In this chapter, the sources of the data collection and generation process from this thesis

will be discussed. 4.1 discusses vehicle-to-vehicle communications. Section 4.2 covers SUMO, the

program used to simulate vehicle driving statistics. Messages generated are described in Section

4.3. The chapter concludes with a summary in Section 4.4.

4.1 V2V communications

The National Highway Traffic Safety Administration (NHTSA) describes vehicle-to-vehicle

(V2V) communication messages as basic safety messages (BSMs) that correspond to messages

passed between vehicles regarding dynamic information such as headings, speed, and location [12].

Further, there are other safety applications that depend on the sensors with which connected vehi-

cles are equipped. Potential messages or warnings include the following (as defined in [12]):

• Intersection Movement Assist (IMA): IMA alerts drivers when it is unsafe to merge into an

intersection.

• Left Turn Assist (LTA): LTA warns the driver that it is unsafe to make a left turn as there is

oncoming traffic and thus a potential for collision.

• Emergency Electronic Brake Light: A device that alerts other vehicles when a driver is

applying the brakes. This is useful when the front vehicle might not be visible to the follower

vehicle because of a blind curve or severe weather conditions.
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• Forward Collision Warning: Warns the driver of potential collision with the leading vehicle.

Such a warning would also be beneficial to other drivers and infrastructure because it is a

measurement of how close vehicles are following.

• Do-not-pass warning: Communication warning following vehicle that it is not safe to pass.

This is attributed to a number of reasons (such as oncoming traffic is approaching and so it is

not safe to pass at present).

If every vehicle had the necessary sensors and the ability to produce warnings messages, the

NHTSA predicts that IMA and LTA will prevent between 400,000 and 600,000 crashes; 190,000 to

270,000 injuries; and save close to 1,000 lives each year. These technologies could prevent nearly

80% of all non-alcohol related incidents [12], making it imperative to protect the data that is being

transmitted between these vehicles.

With the potential benefits that come from V2V communication, it is crucial to ensure the

security of the V2V messages (since without it any malicious actor can impersonate or eavesdrop

on the communications between vehicles) [50]. Using asymmetric encryption through a public key

infrastructure has been shown to be an effective means for the security of V2V communications

[50,51]. However, the time requirements did not allow for real-time processing of messages when

the number of vehicles increased. This thesis seeks to add a dynamic layer of security that better

meets the real-time needs of connected vehicle so the study of the encryption, authenticity, and

integrity of V2V messages are out of scope.

4.2 Simulation of Urban Mobility

Because connected vehicles being a relatively new research area, and few exist in produc-

tion environments, real-world data is not readily available enough for the demands of this thesis.

Thus through the usage of the Simulation of Urban MObility (SUMO) it is possible to accurately

simulate large scale road networks with an abundance of cars where at each time step data is logged
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and output [52,53]. This output can be parsed to extract features that is described in more detail in

subsection 4.3.

SUMO is an open source program developed by a German Aerospace Center in 2001 as

a basic traffic simulation package [53]. Since then SUMO has become feature packed with many

different packages that aid in traffic simulation.

SUMO allows for the ability to design your own custom maps with the neteditor tool and

accept many different sources as input such as a map obtained from OpenStreetMap (OSM) [53].

OSM is a user generated street map that is capable of being exported in a way that maintains the

data such as street names and other geographical features. SUMO includes tools that are able to

convert this OSM exported map into a format that SUMO is able to process [54]. This allows users

to be able to load custom maps of cities from all around the world.

SUMO is also capable of handling different routing protocols and generating vehicles on

demand, for the desired map, that allows for the possibility of creating numerous unique simula-

tions that can accurately represent real-world traffic patterns. SUMO also comes with a suite of

tools which includes one capable of generating a random number of vehicles with completely ran-

dom routes allowing for dynamic navigation patterns [52, 53]. This provides the ability to obtain

unique information for each simulation, providing a wider range of data.

The simulation aspect of SUMO is microscopic meaning that the simulation tracks each

individual vehicle by a unique identifier and each vehicle’s route is described in a configuration

file [53]. This allows for the potential to completely fine tune the simulation such that vehicles will

travel the path that the developer creates. SUMO is also described as a time-discrete simulation

that means that it is capable of manually defining the time step at intervals ranging from 1 second

to 1 millisecond [52]. This time setting will determine the step length of outputs such that one

simulation can be as coarse or granular as desired.

SUMO is comprised of a command line tool as well as a Graphical User Interface (GUI),

while the command line tool is able to run and output the exact same as the GUI, the GUI offers
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Figure 4.1 Example showing Chattanooga, TN Market street visualized in a SUMO’s GUI
simulation. Vehicles are represented by the yellow triangles, as well as traffic lights
being visible at each intersection
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a better user experience through customized visuals and the ability to interact with scenarios like

traffic lights and re-routing of vehicles [52]. When a new simulation begins vehicles will be stag-

gered into the system, one entering at each new time step. Each vehicle will have it’s route defined

in the configuration file and the vehicle will continue on this route until it exits the map. When all

vehicles leave the system the program will end and the data will be saved into its corresponding

XML files, where XML is an extensible markup language that is organized in a tree structure such that

information is related hierarchically [55].

Based upon different arguments that can be applied to the simulation, SUMO is capable

of producing numerous outputs [56]. Such outputs include information such as the position and

speed of all the vehicles, as well as emission values, trajectory data of the vehicles, and surrogate

safety measures which is information directly related to safety measurements such as braking rates.

There also exist lane values that correspond to the edges or lanes in the simulation, it is capable

of outputting emission measurements for that lane, the noise level of the road, even how many

vehicles were on the road at a particular instance.

4.3 Message Generation

According to the NHTSA recommendations, SUMO is capable of generating reports in-

cluding the numerous features such as speed, position, acceleration, braking, etc. These features

can also as seen in Figure 4.2.

Between NHTSA’s information regarding V2V communication and SUMOs simulation

and data capabilities, these features will be used to monitor the driving statistics of each vehicle

in the simulation. In addition to these features, the data will also contain a rank or message that

correlates the driving statistics to warning (or basic safety messages) and incident messages. Table

4.1 shows the correlation of message ranks to a particular V2V communication message.

For the purposes of this thesis, these V2V communications will be manually defined. A
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Figure 4.2 SUMO simulation data snapshot showing the simulation time (sec), the vehicle ID, the
vehicle’s position, speed, location (x,y), acceleration, speed, brake rate and the
message being reported by that vehicle

message rank 0 does not correspond to any message in particular. This form of message does not

have any impact into the system but is implemented such that the vehicle is able to transmit its

current driving statistics to the infrastructure so that the smart city is aware of the current statistics

Rank V2V Message
0 No Message - No information related data available.
1 General Alert - Corresponding to specific sensor data such as rain detection.
2 Object on shoulder - Alerts others of an object detected on the shoulder of the road.
3 Change in driving patterns - A vehicle alerting others of an upcoming change in driving patterns.
4 Object in road - Incident message informing others of an object detected on the road.
5 Emergency vehicle - Message regarding the detection of an approaching emergency vehicle.
6 Car Collision - Incident message alerting others of a car collision.

Table 4.1 Communication messages are categorized into ranks based upon the severity of the
information present in the message. 7 ranks are presented, starting from rank 0 being a
no information to be shared, all the way to rank 6 providing critical information alerting
others of the detection of a car crash
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of drivers on the road.

Warning messages (ranks 1-3) will represent NHTSA’s basic safety messages. These will

be messages that should not warrant any drastic changes in driving patterns, but more so for the

other drivers and infrastructure to be made aware of the current environment. In real-world appli-

cations, these messages could also be derived from another sensor. Specifically, rain detectors, a

light detection for headlights, detection of ice, etc could be used as Message 1 or general alerts.

A message with rank 2 might originate from an ultrasonic sensor or camera that is able to detect

and identify objects on the shoulder of the road such as a traffic sign or a pedestrian [57]. The last

warning message would be a message of rank 3. This is an alert to inform other drivers that there

is a change in driving patterns. This message could, for instance, come from a sensor monitoring

the acceleration of a vehicle or other information such as the blinker indicating a lane change.

There also exist incident messages (ranks 4-6), where it is expected to see a substantial

change in the current driving pattern to accommodate the reason for the message. These incident

messages correspond to ranks 4-6. An example of a message rank 4 is an object detected in the

road, his could be a pot hole or an animal in the road. While a message rank 5 would correspond to

an emergency vehicle being detected, in some ITS initiatives there is prioritization of emergency

vehicles [58] thus it is critical to have the connected vehicles be able to acknowledge and prepare

for this type of event. The last message of rank 6 would be for car collisions. Car accidents have

the potential to seriously impact smart city ITS’s, thus it is necessary to report accidents to the

smart city infrastructure such that intelligent routing systems have the capability to reroute traffic

when necessary [38]. The distinction between messages and the associated driving statistics or

data will be later defined in 6.1.7.
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4.4 Summary

Because the lack of vast production implementations of connected vehicles it is necessary

to virtually simulate traffic flow through SUMO. The data that SUMO is capable of producing

closely models that which the National Highway Traffic Safety Administration expect to become

prevalent in the coming years [12, 56]. Through a SUMO simulation data will be
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CHAPTER 5

Methodology and Experimentation

This chapter presents the methodology applied throughout this thesis. Section 5.1 examines

the construction of the behavioral model, followed by Section 5.2, then behavioral pattern identi-

fication process. Section 5.3 presents the behavioral value and trust modification. Lastly Section

5.4 discusses the updating of the behavioral model. Figure 5.1 demonstrates the significant steps

of the proposed behavioral model based trust management design implements.

5.1 Construction of a behavioral model

The steps that led to the creation of the behavioral model was divided into two distinct

phases: data collection and the compile a behavioral model.

5.1.1 Data Collection

This phase will require the collection of data regarding the specific driving statistics of each

vehicle within the localized geographical region. The focus is to collect data that is informative and

will lead to a safer environment. More details about the data is provided in Section 6.1.6. The con-

nected vehicle’s will be the ones producing the necessary information, by using their own sensors

they will be collecting their own driving statistics while simultaneously collecting information on

their surroundings such as road conditions. This information will then be propagated to a nearby

RSU for further processing. This is done to alleviate the connected vehicle from processing data
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3. Message does 
not match the 

expected pattern.

2. The Behavioral 
Pattern Identification 

process will 
determine if the 
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the trained behavioral 

model.
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determine if 

message is true 
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behavioral value 
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trust is calculated.
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7. The message 
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vehicle’s trust value 

updated 
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upon this traffic 
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0. Data Collection 
and behavioral 
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Figure 5.1 Graphical representation of each critical step describing how messages are evaluated
and propagated through the Behavioral model based trust management approach. Pink
represents the starting location, green represents a good behavior and red is the
detection of a malfunctioning vehicle or malicious message
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while allowing for the RSU to be able to conduct a deeper analysis of the collected data. Further-

more, this data collection process will be continually collecting new data, and this information can

then be propagated through the system for evaluation at the later steps.

The driving statistics collected are listed below, with example data found in Figure 4.2

• Vehicle position: A value that corresponds to SUMO’s representation of the road that the

vehicle is driving on. While SUMO is limited to specific values associated with the map

assigned to the simulation, real world data could potentially correspond to the address of the

current road. Example: Main Street, Chattanooga, TN.

• Speed: In SUMO this corresponds to the instantaneous speed of the vehicle in meters per

second, however, this could be adjusted based upon the units of measurements used.

• Longitude and Latitude: This corresponds to the GPS X and Y coordinates on the map that

was used in the SUMO simulation. This is used in conjunction with the position such that a

more accurate location on the road can be obtained.

• Acceleration: The instantaneous acceleration of the vehicle at the time of sending the mes-

sage (m/s2)

• Motion State Speed: A value to supplement speed as this corresponds to the vehicle’s speed

during the time unit measured instead of the instantaneous speed when the message was sent.

This feature gives a more holistic view into the vehicle’s speed without

• Braking Rate: This feature is the value associated with the deceleration of the vehicle at a

particular instance during the simulation (m/s2).

The collection of these features and the additional information provided by the message

rank, described in Table 4.1, provide the necessary information to build a behavioral model.
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5.1.2 Behavioral Model Design

Each message that vehicles send containing the driving statistics is processed and grouped

based on message rank. These categories of driving statistics will serve as the foundation for the

behavioral model. By designing a behavioral model for each message rank, it allows for develop-

ment of a more precise model that is necessary for evaluating messages to identify driving statistics

that do not reasonably match the behavioral model. This processing of messages to form the be-

havioral model will be conducted by the RSUs that enable for the behavioral model to be specific

to the area that the RSU is located.

5.2 Behavioral Pattern Identification

After the construction of the behavioral model, the implementation of the behavioral pattern

identification process can be discussed. This again will be conducted by the RSUs as they will 1.

be collecting the driving statistics of vehicles 2. house the behavioral model. This means that as

vehicle’s are transmitting data the RSU will be collecting this data and using the behavioral pattern

identification process to compare against the behavioral model.

It has been shown that implementing two tiers of machine learning for detection can drasti-

cally increase the efficiency and accuracy of the models [43], thus for the behavioral pattern iden-

tification process, there are two distinct levels: anomaly detection and classification. The anomaly

detection aspect is designed to flag any message that is a clear malfunction or malicious injection

of data. Further, a classification algorithm is implemented such that any message that is detected

as an anomaly is additionally verified to determine if it is a true anomaly or a false positive. It is

critical that entire behavioral pattern identification process still maintains the real-time detection

and mitigation of threats, thus a performance evaluation will be necessary to determine the final

algorithms implemented.
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5.2.1 Anomaly Detection

To detect threats in the system it is critical to monitor the data that vehicles are transmitting.

To accomplish this, vehicles are required to send their driving statistics as well as a rank that is

associated with what the vehicle is currently experiencing. Malicious vehicles will often inject data

into the network with the purpose of causing havoc; while malfunctioning vehicles will not realize

they are submitting inaccurate information and thus the detection of these intended or unintended

threats in real-time is critical such that these devices can be punished and effectively removed

prior to being able to cause any harm. To monitor this data, a machine learning approach will be

implemented using the behavioral model as a baseline; any data that does not reasonably match the

known behavior of the road will be flagged as inaccurate, resulting in the vehicle obtaining a lower

trust. There are a number of reason that a message would be flagged as an anomaly, examples

include the following:

• A malfunctioning sensor would produce incorrect readings such that vehicle would send data

that does not match its driving pattern.

• A malicious vehicle could be attempting to inject data to have subsequent vehicles rerouted

so it would have the road to itself.

• The vehicle could also be driving faster than the road allows for which would be a negative

behavior and thus punishable.

Because the highly dynamic nature of connected vehicles and the messages they are capable

of sending, it was decided that there will be multiple instances of the machine learning models

where each would be uniquely trained on data corresponding to a specific message rank that the

vehicle sends. This is to say that for the list of possible message ranks found during the simulations

each have their own instance of a machine learning model that will flag any message that does not

resemble the behavioral model that it was specifically trained on. By having these multiple machine

learning models, each is able to be fine tuned for the data that it is operating on. The behavioral
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model trained on car collisions will easily be able to detect driving statistics that do not match the

criteria that is expected during a car accident.

This portion of the behavioral model trust management design is represented by step 2 in

Figure 5.1 where if the new data matches the expected behavior then the system progresses to step

6, or if the new data was not a match it will progress to step 3.

5.2.2 Classification

To further aid in the detection of true anomalies a classification algorithm will be used to

backup the results of the anomaly detection portion of the behavioral pattern identification process.

As was previously discussed in Table 4.1 and will be further discussed in Table 6.1, each rank of

message will be associated with a specific driving pattern such that if the behavioral pattern identi-

fication process detects an anomaly it will then send those driving statistics to the classifier where

it will be able to accurately predict which rank the driving statistic matches. Using this classi-

fier as a backup will increase accuracy of the overall detection of threats, and will help safeguard

against false positives that anomaly detection algorithms are prone to generating. The classifier

has the capability to relate the driving statistics with the rank and if this predicted rank matches

the vehicle’s reported rank then the message is deemed accurate and trustworthy so the vehicle’s

behavioral value can be increased. If the classifier predicts another rank that better matches the

vehicle’s driving statistics, then it is decided to be a true anomaly and the vehicle is punished.

The classification methodology is represented by step 4 in Figure 5.1. If the message is

determined to be a false positive (where the anomaly detection algorithm made a mistake) then

the system progresses to step 6, or if the message is deemed to be a true anomaly, the message

progresses toward step 5.
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5.3 Behavioral Value

When a vehicle first enters the system and the RSU receives that vehicle’s first message and

the vehicle will be assigned a neutral trust value of 0.5, this has been referenced in the literature and

is the standard for trust management approaches [6,7]. As the vehicle traverses the network it will

be sending communications to the RSUs at predetermined time units. The RSUs will then evaluate

these messages using the behavioral pattern identification process, which will indicate whether or

not the message subscribes to the standard or expected behavior for the given location or incident.

Based on the results of the behavioral pattern identification process the RSU will calculate that

vehicle’s behavioral value. The mathematical formula that will be used to calculate the behavioral

value (Bv) is based on three critical values: the number of anomalies (Ac), the total number of mes-

sages (Mc), and the rank of the message (Rm) that the vehicle has sent. The number of anomalies

and total messages will be used as a trustworthiness ratio, while the message rank (corresponding

to Table 4.1) will be used as a coefficient to dynamically change the rate that the trust is increased or

decreased. Further, the message rank (Rm) used in the formulas below is dependent on the pattern

identification and classification algorithms described above in Section 5.2.2. To sufficiently punish

vehicles the rank used to calculate the behavioral value is the maximum value between the actual

rank the vehicle sent or what the classification algorithm determined based on the driving statistics

reported. By using the maximum value, malicious vehicles that under-report or over-report (send

low ranking messages even if their driving statistics correspond to a higher ranking message and

vice versa for over-reporting), will both be punished equally as severely.

The behavioral-based formula for increasing trust is in Eq. 5.1:

Bv =
(Mc −Ac)

Mc
× Rm

100
(5.1)

This equation is used upon successful matching of behavioral patterns, seen in step 6 of Figure 5.1.
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The behavioral-based formula for decreasing trust is in eq. 5.2

Bv =
Ac

Mc
× Rm

10
(5.2)

This equation is used when the behavior is determined to be an anomaly, as shown in step

5 in Figure 5.1.

As discussed in Section 3.1.1, it is often harder to gain trust and easy to lose trust [39],

implementation of this is presented in equations 5.1 and 5.2. By implementing the trust generation

and modification with this strategy it offers real-time mitigation of threats because the idea that

trust is easily lost.

The behavioral value must be able to appropriately remove vehicles that pose serious threats

to the system. To further combat continuously malfunctioning or malicious vehicles, there is a

mechanism that can administer a more severe punishment when necessary. To accomplish this,

the RSU initializes an anomaly counter for each vehicle such that on every third inaccuracy the

vehicle will be punished with a three times multiplier for that specific message. The associated

behavioral-based formula is modeled below:

Bv =
Ac

Mc
×3

Rm

10
(5.3)

5.3.1 Consensus Mechanism

As discussed in 3.1, trust management systems require a majority consensus as the evalu-

ation of the data vehicles are sending. However, this is a problem as there are threats that target

consensus such as a colluding attack. While this implementation can alleviate potential collusions

through the detection of anomalies, instances where vehicles create the illusion of incidents (de-

scribed in our threat model in section 2.4), will require a new consensus mechanism However, to

combat traditional majority consensus approaches, an implementation of a δ (delta) time unit will
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be used such that any message can be disproved through a majority consensus, however, this must

occur within delta time units. Upon receiving the first record of an incident, the local RSU will

initialize the delta, at that time any vehicles that approach the same position (the road location)

that the incident was first reported has the potential to disprove the initial message. After the end

of delta time, the RSU determines which report has the majority is decided to be accurate and so

those that sent inaccurate data will have their trust values retroactively punished.

Retroactively punishing vehicles must be taken more seriously than the typical form of

punishment. Injecting illusions has more potential to cause harm in the system because vehicles

have the ability to bypass the anomaly detection aspect, thus have its message accepted as real and

accurate data until otherwise proven. To accomplish this the punishment formula described in 5.3

is given a 3× multiplier such that:

Bv =
Ac

Mc
×3

Rm

10
(5.4)

5.3.2 Trust Modification

As previously mentioned the behavioral value will be the instantaneous representation of

the vehicle’s behavior, however, this behavioral value must be integrated with trust to achieve a

more accurate representation of the vehicle’s trustworthiness. After the determination of whether

or not the vehicle has matched the expected behavior or is a true anomaly (such that it is either mal-

functioning or malicious), the RSU will increase or decrease the vehicle’s trust value accordingly,

as represented in step 7 in Figure 5.1

The increase or decrease in the trust value of a vehicle is based on the behavioral value, as

described in equation 5.5.

Tnew = Tcur ±Bv (5.5)
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Lastly, after a 24 hour period the RSU will reset each vehicle’s trust value such that ve-

hicles that were malfunctioning will not be forever punished, and conversely vehicles that were

trustworthy for a substantial period of time will not be held in too high of a regard to dismiss if at

any point it begins behaving maliciously.

5.4 Retraining process

Retraining of the behavioral model is necessary to prevent it from becoming stale or out-

dated. When each new message is received by the RSU, the messages from the vehicles are propa-

gated through the system as described in Figure 5.1, such that the behavioral pattern identification

process, behavioral value calculation, and trust modification can occur. After, the messages are

compiled together again and appended to the appropriate training set such that the behavioral

model is continuously learning the behavior of vehicles. Only messages that were determined to

resemble the current pattern are appended to these training sets (as seen in step 8 of the same

figure), as anomalies have the potential to contaminate the behavioral model and thus negatively

influence the accuracy of the behavioral pattern identification process. Further, if patterns in the

geographical area change, it should not be a drastic change but instead a slow progression that

enables the behavioral patterns to be adjusted over time without the need for complete retraining

of the behavioral models.

At the start of each new day, the RSU will undergo re-training of the behavioral model such

that the new data captured from the previous day can be implemented into the current behavioral

model to prevent the model from becoming old.
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5.5 Illustrated Example

The purpose of this section will be to provide an illustrated example such that a cohesive

description of the workflow can be demonstrated. Figure 5.2 shows the example simulation where

vehicle 75 is the trustworthy vehicle and vehicle 30 is malicious sending false messages.

Figure 5.2 Example simulation data that demonstrates two vehicles, one trustworthy and the other
malicious, interactions in the system and how their associated trust values will be
modified based upon the messages sent

5.5.1 Trustworthy Vehicle

First we will start with the trustworthy vehicle, vehicle 75. At time 0 the vehicle enters

the network and sends a message, when the message is sent the RSU will see that it has not seen

vehicle 75 before and will first initialize this vehicle in the network and assign it a neutral trust

value of 0.5. Then the RSU will begin processing the message that was sent. The RSU will extract

the ’Message’ field from the vehicle’s message and will see that the rank is 1. This prompts the

RSU to verify the driving statistics of the vehicle by sending the communication message through

the anomaly detection algorithms that are trained on driving statistics with rank 1. Since this is
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the first message this could be because the vehicle’ being turned on and providing a trivial alert

stating that it is raining. Since this is the trustworthy vehicle the behavioral pattern identification

process verifies the message as accurate and thus the RSU begins the process of calculating the

behavioral value using the equation for increasing behavior (Eq. 5.1). This is the first message

that the vehicle sends and thus the current message count for that vehicle is 1, the message was

evaluated as trustworthy thus the anomaly count is 0, the message rank for this specific message is

0. Thus using the increasing behavior equation the calculation is described as:

Bv =
(1−0)

1
× 1

100
(5.6)

This gives us a behavioral value of 0.01. After this calculation occurs the RSU will then

increase the vehicle’s trust according to this behavioral value as described in equation 5.5. This

provides us with the the following calculation:

Tnew = 0.5+0.01 (5.7)

Thus the RSU will now recognize that the vehicle has a trust value of 0.51 or 51%.

This process is continued when vehicle 75 send the next message at time 1. This time

the message rank is 3. The RSU extracts this value and will send the communication through the

pattern identification process that is trained on driving statistics associated with rank 3 messages

and because this is the trustworthy vehicle it is determined to be accurate. This brings vehicle 75’s

total message count to 2, anomaly count to 0, and the current rank of 3 allowing for the behavioral

value calculation shown below.

Bv =
(2−0)

2
× 3

100
(5.8)

Providing a behavioral value of 0.03 that is then applied to increase trust such that vehicle 75’s

trust value now is 0.54. This process will continue and all the messages will be evaluated to true

such that at the end of the simulation, vehicle 75’s trust value will be 73%.
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5.5.2 Malicious Vehicle

Similar to the trustworthy vehicle, vehicle 30 in this case will be sending primarily mali-

cious messages such that its behavior and trust values will be decreasing. Vehicle 30 enters the

network and sends its first message of rank 1, but to demonstrate the usefulness of the trustworthy

ratio we will allow this message to be accepted as an anomaly. So similar to the first steps in the

trustworthy vehicle the behavioral value is calculated and the trust value of vehicle 30 is now 0.51

or 51%. Vehicle 30 at time 1 will send a new message that is of rank 6, the RSU will receive

this message and will propagate the message through the behavioral pattern identification process

trained on messages with rank 6 and the pattern will be deemed an anomaly and thus malicious and

now the RSU will begin the process of calculate how to punish the vehicle. Thus the total message

count for this vehicle is 2, anomaly count is 1, and the current message rank is 6. According to the

behavioral value equation used to decrease behavior presented in equation 5.2, the behavior of the

vehicle is calculated as follows.

Bv =
(1)
2

× 6
10

(5.9)

This provides the behavioral value of 0.3. then is then applied to decrease trust by the equation

below.

Tnew = 0.51−0.3 (5.10)

This means at after one malicious message, the RSU will store vehicle 30’s trust value as 21%.

This process will continue and the next message the vehicle sends will also be determined to be an

anomaly and the behavioral equation will now be:

Bv =
(2)
3

× 6
10

(5.11)

This provides the behavioral value of 0.4, used to decrease trust by the equation below.

Tnew = 0.21−0.4 (5.12)
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This new trust value would be a negative number, however, the system will only decrease trust

such that it is between 0% and 100% thus after two malicious messages vehicle 30’s trust value is

now 0%.
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CHAPTER 6

System Evaluation

This chapter presents the necessary steps used for experimentation as well as the results

from simulations that address the threat models described in Section 2.4. An analysis of the results

follows each specific use case.

6.1 Experimentation setup – Simulation Setup and Design

The experimentation setup consists of loading a map layout, generation of a network file,

spawning vehicles and mobility, and configuration of the SUMO file.

6.1.1 Loading a map layout

As discussed in Section 4.2, SUMO is capable of implementing a simulation on a Open-

StreetMap (OSM) that allows for custom map to be selected. A map of downtown Chattanooga

was selected for the simulation as shown in Figure 6.1. OSM is able to export manually a selected

portion of the map, and will output this map to an XML file that contains information such as the ID

of the road, the speed limits, and the latitude and longitude of the road.
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Figure 6.1 The map that SUMO used as the basis for simulating traffic mobility

6.1.2 Generating network file

Through the use of the SUMO suite of tools, it is possible to convert the OSM XML file into

a network file that SUMO is able to use. This is done through the netconvert tool that reorganizes

the OSM data into lanes with the associated length of the road, speed limits, latitude and longitude,

as well as the edges of the lanes such that the intersection of lanes is preserved from the OSM data.

6.1.3 Generating vehicles and mobility

As described in Section 4.2, SUMO represents each vehicle in the network through a unique

routing protocol that defines every step of the vehicles life in the simulation. This information is

stored in two critical files, the trips and routes file. The trips file defines the vehicle’s depart time

(the time it enters the simulation), and the lane that it will enter and exit from while the routes

correspond to each vehicles route that it will traverse through the simulation from the starting and
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ending point as was defined in the trips file. Necessary to the creation of these two files is another

tool supplied by the SUMO suite, RandomTrips.py, a python script that accepts the network file

that was converted from the OSM file and an argument to represent the length of the simulation in

seconds. The RandomTrips python script is able to randomly generate a number of vehicles, the

starting and ending location, the departure time, as well as the route each vehicle will take. While

the number of vehicles can be tuned, generally the random trips script will stagger the spawn of

vehicles such that a new vehicle enters the system at each new time interval. While it is possible

to manually generate the necessary files, this random trips script is able to automatically generate

unique scripts without manually defining each and every vehicle’s route.

6.1.4 Configuring the SUMO file

The last step necessary prior to the running of the simulation is the creation of the SUMO

configuration file. This is how SUMO will recognize files such as the network, route, and trips

files. In the configuration there is also the option to modify the length of time that the simulation

will run, this time needs to correspond to the time that was used in the trips and routes generation

so that all vehicles will successfully be able to exit the network upon simulation completion. If

the random trips script was not used it is possible to define which routing algorithm SUMO would

implement, the available algorithms include numerous graph traversal algorithms [59]. However,

with the ease of the random trips script, this configuration variable was not set.

SUMO allows for two forms of simulation: a back-ended process that is done via the

command line, as well as a GUI that can be used to visualize the simulation and see each vehicle

and the routes taken. An example of a GUI simulation is shown in Figure 4.1. The GUI has

the ability to slow down the simulation as well as step through each time step of the simulation.

SUMO begins by processing the routes and trips file such that the vehicles will enter the system

at the specified road and time. SUMO then linearly progresses by incrementing the time, and thus
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spawning a new vehicle, as well as progressing each vehicle in the system at the OSM and SUMO

defined appropriate speed along the route defined in the routes file.

6.1.5 Simulation of Car Collisions

SUMO does not currently have the capabilities of implementing collisions, thus a method to

imitate a collision in SUMO was essential to the success of this work. It was decided that through

placing stop lights throughout the map that was used in the simulations would be a sufficient

representation of how vehicles approach a car collision. Vehicles will approach a stop light and if

the light were red, the vehicles would recognize this and would hit the brakes to come to a stop.

After a specified amount of time the stop light would change green and the vehicles would continue

on their way.

A smaller and more trivial simulation was designed and implemented to collect initial data

that enables an analysis such that the main simulation would successfully implement stop light to

imitate a car collision. This initial simulation was conducted on a simple intersection with only 1

to 10 vehicles where the light would be red for 5 time units. This allowed for vehicles to approach

the light, apply the brakes to come to a complete stop, then continue on their way.

6.1.6 Data Collection and Processing

The data collection process is vital to the evaluation of this approach as without the nec-

essary data to accurately describe the vehicles behavior the machine learning models used will be

limited in their ability to develop a precise representation of the behavioral model.

As stated in Section 4.2, SUMO is capable of producing several different output files each

corresponding to a specific type of data such as vehicle emissions or raw position. Specific to this

thesis the following SUMO command was executed to obtain outputs for a single simulation:
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sumo -c map.sumocfg --fcd-output FCD-Trace.xml --lanechange-output\

LaneChange.xml --device.ssm.probability 1 --amitran-output Trajectories.xml

The Floating Car Data (FCD) output contains the location (latitude and longitude) and

speed for every vehicle in the network at every time step, this output is similar to that of how a

GPS would report data [56]. The lane change output contained information specific to the lane

that the vehicle was currently on, the ID of the road at each timestamp [56]. The amitran output

is in regard to the trajectory of the current vehicle. This include the motionState speed of the

vehicle as described in Section 4.3. The trajectory also included the acceleration of the vehicles at

each timestep. Lastly is the inclusion of a surrogate safety measures (SSM) device, discussed in

Section 4.2. The SSM device is attached to 100% of the vehicles and is implemented to report the

braking rate of each vehicle at every instance. The SSM device that each vehicle has produces its

own output that is unique to every vehicle.

SUMO outputs these files into an XML format, that are then converted into a CSV file using

a companion python script (XML2CSV.py) that comes with SUMO. To compile these results into a

single file, we used the Pandas library [60], that facilitates processing and joining these different

output files into a single standardized and uniform output that represents the entire simulation.

6.1.7 Creating the distinction between messages

To simulate these messages there needed to be a distinction between the rank and what the

vehicle driving data would show. Table 6.1 shows this distinction. Some of these values are specific

to the SUMO simulation and there may be overlap between these messages. This is attributed to

the lack of: 1. real world information such as rain detection data 2. SUMO’s capabilities are limited

such that it is not possible to implement sensor data that connected vehicles require.
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Table 6.1 Relation of rank to the expected driving pattern

Rank Driving Pattern
0 Vehicle must be in motion: The acceleration must be less than 1450, and the vehicle should not be expe-

riencing braking.
1 No major braking (0-1): The acceleration must be less than 1450.
2 No major braking (0-1): Vehicle must be in motion. Acceleration must be less than 1450.
3 No major braking (0-1): Vehicle must be in motion. Acceleration must be greater than 1450.
4 Braking occurs (1-2): Vehicle speed must be less than 1200.
5 Heavy braking (2-3): Vehicle speed must be less than 800.
6 Major Braking (3-4.5): Vehicle speed must be less than 400.

Upon running over 500 simulations the overall average values of the the features were

obtained as well as the average maximum value. The maximum values were divided in half and

averaged again with the actual average values. This combination of half of the maximum and

average values provided a psuedomedian value that is used as the foundation for division between

messages and the associated ranks. This lead to the psuedomedian of acceleration to be calculated

to 1450, speed to be 1200, and braking rate to be less than 1. This psuedomedian value is necessary

to represent the messages and ranks that vehicles would be sending and be able to create a clear

distinction that will be used later for our comparison to detect misbehaving vehicles.

An example would be any rank/message that corresponds to vehicle’s not having much of

an impact while driving must have an acceleration of less than 1450. Rank and message 3 on the

other hand corresponds to a change in driving pattern such as speeding up or changing lanes, to

create a distinction with this message between the others, this message must have an acceleration

higher than the average of 1450.

Using the car crash simulation, incident were able to be simulated such that a collection

of driving statistics were collected. These driving statistics were then divided into three separate

categories as was described in Table 6.1. This division was necessary such that there would be

a clear distinction in the type of incident and the model that would represent said incident. By

clearly defining the differences in critical messages it will better aid in the latter behavioral pattern

identification process.
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After each SUMO simulation was conducted each line of the standardized output was pro-

cessed, and if the data matched the message distinction defined above in Table 6.1, the corre-

sponding message was appended to the message. With this, the simulation has now successfully

simulated live V2V communications complete with sensor data such as GPS, safety devices, and a

message to alert of vehicles or infrastructure of the current road or environmental conditions.

6.1.8 Injection of Anomalies

SUMO simulations are a method that enable study of traffic mobility, because of this the

ability to simulate a vehicle that behaves abnormally is outside the scope of the SUMO implemen-

tation. Thus in order for the simulation to have malicious vehicle, the data collection process is

slightly altered such that anomalies are injected into the data. This is primarily done through the

modification of the message rank. Because the distinction of messages from Table 6.1, any mes-

sage rank that does not meet those characteristics should be considered an anomaly and the vehicle

either malfunctioning or behaving maliciously. The method for injecting anomalies is unique such

that each use cases that addresses the specific threats described from Section 2.4.

6.2 Machine Learning Model Performance Evaluation

Evaluation of the machine learning models is necessary such that the implementation de-

signed meets the real-time needs for detection and mitigation in threats that connected vehicles

require. To accomplish this evaluation different machine learning algorithms were implemented

for both the anomaly detection and the classification portion of the behavioral pattern identifica-

tion. For these evaluations the same training and testing data was used to obtain results that can

be compared for accuracy and time to process. The distribution of messages in the training and

testing data for the machine learning algorithms is shown in Tables 6.2 and 6.3 respectively.
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6.2.1 Anomaly detection

For implementation of the anomaly detection model, three algorithms were tested to deter-

mine which offered the best accuracy and performance such that threats could be detected while

also maintaining the real-time demands of such a system. Robust Covariance Elliptic Envelope,

Local Outlier Factor (LOF), and Isolation Forest were chosen as these were models previously

shown in the literature [42, 61]. But further, Coleman et al. showed how these different models

compare in terms of accuracy in anomaly detection showing that the Isolation Forest was best able

to detect threats for a very smaller feature set. While Garcia et al. showed that using differently

sized features sets provided different accuracy’s for each model and thus re-testing of these mod-

els will be necessary to determine which model will provide the highest accuracy for the selected

feature set. Using the default parameters, each of the models were trained on the same data and

tested on the same simulation. Accuracy and time to process results can be found in Table 6.4.

With these results described in Table 6.4, it is clear that elliptic envelope machine learning

algorithm was the most accurate but also able to process messages in 67% of the time of LOF, and

8.9% of the time it took Isolation Forest to process the message. Since elliptic envelope has the

highest accuracy and the fastest processing time, it is the best choice for this implementation as it

meets both the accuracy and real-time requirements that connected vehicles necessitate.

Table 6.2 Distribution of message ranks in the machine learning training data set. These messages
were obtained from over 500 simulations with each simulation containing 300-700
vehicle. The simulation was conducted for a period of 86,400 seconds (one day)

Message Rank Number of Data Items
0 84,956
1 44,329
2 43,491
3 12,735
4 41,599
5 11,250
6 45,611
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Table 6.3 Distribution of message ranks in the machine learning testing data set. This data was
obtained from a single simulation that contained 100 vehicles, and also simulated 1 day
of driving for each of the vehicles

Message Rank Number of Data Items
0 1,035
1 2,456
2 2,015
3 1,790
4 52
5 17
6 75

Table 6.4 Performance evaluation of each of the anomaly detection algorithms

Machine learning Model Accuracy Time to Process Message (seconds)
Elliptic Envelope 89.3% 0.00258
Local Outlier Factor 80.9% 0.00385
Isolation Forest 73.6% 0.02912

6.2.2 Classification

For this implementation three models were tested to determine which offered the best ac-

curacy to processing speed such that threats could be detected while also maintaining the real-time

demands of such a system. Decision trees, K nearest neighbors (KNN), Linear Support Vector Ma-

chine (LSVM), Multilayer perceptron (MLP), Random Forests were chosen as these were models

as it has been shown in the literature to have provide higher accuracy of results, reduced false pos-

itive ratings, and require the least amount of time to process the data in an IoT environment that

is absolutely critical for the needs of this thesis [48, 49]. Further, these algorithms are also readily

accessible through python libraries that enable testing such that the machine learning models could

be dynamically applied [2]. Using the default parameters, each of the models were trained on the

same data tested on the same simulation. Training time, accuracy, and time to process results can

be found below in Table 6.5.

The time to process these messages will be used in conjunction with the Elliptic Envelope

55



anomaly detection, so to account for this the time to process each message was calculated through

the subtraction of the time to process the message with only anomaly detection, 0.00258s according

to Table 6.4.

According to Table 6.5, decision tree and random forest offer the significantly better ac-

curacy (96% and 97% respectively) than the other models tested, while LSVM offered the fastest

time to process the message at 0.00170 seconds, however, in a close second decision tree’s time

to process the message was 0.00172 seconds. Decision trees offer a high accuracy that will aid in

the detection process, while also supporting the real-time demands of smart cities and connected

vehicles by having the second fastest time to process messages of 0.00172 seconds.

Table 6.5 Performance evaluation of each of the classification algorithms

Machine learning Model Time to Train Accuracy Time to Process Message (seconds)
Decision Tree 1.39871 96% 0.00172
KNN 0.31830 74% 0.00236
LSVM 197.15077 52% 0.00170
MLP 153.94936 79% 0.00180
Random Forest 33.49497 97% 0.00835

6.2.3 Summary

The true implementation of the behavioral pattern identification system uses both the anomaly

detection algorithm as well as the classification algorithm together to enable better detection and

mitigation of threats. Upon analysis of each individual machine learning model it was found that

elliptic envelope offered the best accuracy (89.3%) and time to process each message (0.00258

second) for the anomaly detection portion. While decision trees offered the best performance for

the classification algorithms with an accuracy of 96% and a time to process an individual message

of 0.00172 seconds. Thus to evaluate the performance both algorithms were used together to de-

termine the accuracy of the overall model. The same training and testing data was used as previous

evaluation methods and the accuracy metrics are described in Table 6.6
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Table 6.6 Performance evaluation of the behavioral pattern identification system using both
Elliptic Envelope and Decision Trees machine learning models

Message Rank Number of Anomalies Accuracy
0 89 91.4%
1 114 95.4%
2 172 91.5%
3 0 100%
4 0 100%
5 0 100%
6 0 100%

The results show that the implementation of the behavioral pattern identification system

offers increased accuracy that the anomaly detection algorithm alone was not able to achieve.

Further, it is shown that identification of all incident messages had a 100% accuracy rating showing

that the ability of the behavioral model to accurately represent these messages further allows the

pattern identification process to detect and mitigate these threats. In a simulation with 289 vehicles,

a total number of messages sent from all the vehicles was 7,440, this provided the results described

above that led to an average of 0.00430 seconds for processing a single message1. This was

based on the average results of running a day’s simulation with 289 vehicle and a total message

count of 7,440 across the entire day, which will allow for 233 messages per second. This level of

performance means that if a vehicle sends one message every minute, this implementation would

be able to sustainable process of nearly 14,000 vehicles’ data and driving statistics

6.3 System evaluation under the threat model

To evaluate the system, use cases were designed in such a way to demonstrate the capa-

bilities of this approach as well as imitate the threat models that were described above in section

2.4. The use cases are divided into two sections, the first being the detection and mitigation of

malfunctions or obvious anomalies such as a vehicle driving on the interstate at 70mph but report-
1This performance resulted from a late model AMD Ryzen 1700X x86-64 processor at 4.2Ghz.
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ing a wreck without any drastic changes in driving patterns. Each of these simulations contains 5

vehicles where each vehicle remained in the system for 50 time units (minutes) transmitting their

driving statistics and messages at the top of the minute. The second area of uses cases involves the

malicious actor creating the illusion that the reported event actually occurred. This is to say that

the vehicle’s driving statistics show that the event occurred and it was not detected as an anomaly,

but upon consensus from the near by vehicles it is apparent that the event did not occur. These

simulations also were ran with 5 vehicles where each of the vehicles remained in the system for

either 20 or 25 minutes, also transmitting their driving statistics and messages at the top of the

minute.

6.3.1 Use case: Good vehicle

This use case was designed to simulate all vehicles operating in a trustworthy fashion. All

vehicles will enter the simulation at the same time and will transmit the message associated with

their driving pattern (as described in Table 6.1) without any modification. This is the foundational

simulation that demonstrates how the standard vehicle will gain trust in the system, when there are

no other malicious vehicles present.

6.3.1.1 Analysis

We can see that all vehicles trust steadily rise in the system. Because the vehicle’s are

primarily sending warning messages, that have lower ranks their trust increases slow but steadily.

Vehicle 5 is the first to reach a 100% trust value after 28 messages, while at time 31, vehicle 3

had only reached 95% trust. We can see that vehicle 3 had some messages that were detected to

be an anomaly (such as time 17, 27, 30) but because of the lower ranking messages it was not a

significant impact to the overall trust value.
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Figure 6.2 Trust value results from simulation with 5 vehicles accurately reporting driving
statistics

6.3.2 Use case: Bad Vehicles

This bad vehicle use case illustrates how trust decreases in the system when the vehicles

behave maliciously. All five vehicles in this simulation enter the system at time 0 with a trust value

of 0.5 and begin driving through the system exactly as use case 1 (implying a standard driving

pattern), however, instead of the correct messages that were described in Table 6.1, each vehicle

will send malicious messages were each vehicle will correspond to a specific message. This is to

say that vehicle 1 will be sending false messages that correspond to a 1, while vehicle 2 will be

sending false messages with a rank of 2, etc.
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Figure 6.3 Trust value results from simulation with 5 vehicles maliciously reporting driving
statistics

6.3.2.1 Analysis

It can be seen that the first message that the system receives is determined to be an anomaly

and the vehicles are all punished. Because of the high-ranking messages that the vehicles send,

their trust values are negatively effected as was discussed in 5.2. This shows that the system is

able to effectively mitigate new malicious actors instantaneously such that they are not able to

negatively affect the system. These results show that the detection and mitigation properties of this

system are able to operate in real-time.
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6.3.3 Use case: Breakout Fraud Threat Simulation

This use case will be used to show how the system reacts during attempted breakout fraud

as described in Section 2.4. Vehicles will send accurate and trustworthy messages up until a certain

point at which the same vehicles will begin acting malicious sending false messages through the

remainder of the simulation. This use case is important because it will demonstrate how quickly

the system is able to punish those vehicles that have been accurate leading up unto that point. This

is necessary because vehicles that have high trust will have more influence and thus be relied upon

more and if they are to begin acting maliciously it could cause serious harm.

Figure 6.4 Trust value results from simulation of vehicles committing breakout fraud as described
in section 2.4.1. Where vehicle send messages to gain trust, then begin sending
malicious messages
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6.3.3.1 Analysis

The results clearly show that each of the five vehicles are sending accurate and trustworthy

messages the first half of the simulation as the results mimic that of the use case 1: the good

simulation. But it can be seen that at time 26, the vehicle’s trust begins dropping, by timestamp 30,

only 4 messages later the vehicles went from a 100% trust to 40% effectively removing themselves

from the system. Just another 3 messages later at timestamp 33 the vehicles are at below 10%

trust values. In just 8 minutes the vehicles went from having achieved the highest possible trust

to having earned the lowest trust of 0%. It can be seen that through the trust formula equations

5.1 and 5.2, there exists some headroom for vehicles that have a high trust factor. But this is to be

expected as those vehicles have proven that they were trustworthy should not be hastily punished

for sending messages that could be because of a simple misreading of the sensor.

6.3.4 Use case: Comeback Simulation

A comeback use case is to simulate when vehicles experience malfunctions in sensors that

would cause them to send inaccurate data thus impacting their trust negatively. But at any point

the sensors becomes fixed and the vehicle begins sending accurate data. To simulate this, vehicles

will send inaccurate messages the first half of the simulation, then the second half the vehicles will

begin sending accurate messages. This use case again shows how quickly trust can be decreased

such that vehicles sending inaccurate data will be a threat to the system similar to that of use case

with bad behavior, but it will also show how trust is regained after the problem is resolved. While

aimed at malfunctioning vehicles, this use case also demonstrates how a malicious vehicle would

regain trust in the system and how difficult it is to regain trust after it has been lost.
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6.3.4.1 Analysis of the primary comeback simulation

This simulation begins with the all vehicles sending malicious messages for the first 25

messages. We expect this to mimic the results from use case 2, however, it can see that vehicle 5

experiences a gain in trust at time 1. This is an acceptable gain for these simulations because it’s

most likely because the vehicle reporting that it is stationary and holding the brakes that matches

the criteria of a car crash. But upon all five vehicles reaching 0% trust value, they continue sending

inaccurate messages that do not match their driving statistics thus decreasing their trustworthiness

ratio even further. At timestamp 25 the vehicles begin sending accurate messages that does not

impact their trust until a few messages later which is attributed to the low trustworthiness ratio.

These results (Figure 6.5) also demonstrate that because vehicle 5’s initial messages were accepted

for the first few instances, it was able to increase its trust a full four messages sooner than the

next vehicles were able to. But it can be seen that when the vehicles were gaining trust and

sending accurate messages it took vehicle 5 to 10 messages before it was able to obtain 10% trust

demonstrating that if a vehicle has been persistently untrustworthy it takes numerous messages to

be evaluated in order to have a small effect on the trust values. Vehicle 1 also demonstrates that

even if you are beginning to gain trust again then send an inaccurate message that the trust which

took over 10 messages to gain 10%, can be lost in just one minor inaccuracy. As was discussed in

3.1.1 it is hard to gain trust but easy to lose trust, and whenever you lose trust it’s even harder to

gain it back.

In addition to the initial comeback simulation, there is also an additional version of this

that is used to simulate malicious vehicles that realize that all other vehicles are disregarding its

messages, it will begin to send accurate data in hopes to gain enough trust such that other vehicles

would be impacted by its messages. But to gain trust quickly the malicious vehicle will only

reporting incident messages that have a higher rank. The reporting of critical incident messages is

done so as an attempt to gain trust as quickly as possible and while not sending other messages.

This is important because again it will show how trust is regained in the system but through sparse
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Figure 6.5 Trust value results from simulation of vehicles attempt to re-gain trust after losing it
from sending several malicious messages

incident message evaluation instead of the warning messages that are not high ranking.

6.3.4.2 Analysis of the secondary comeback simulation

Here we can see that this simulation and results correspond closely to the initial comeback

results. The first few messages passing as success is not great but can be attributed to the lack of

additional sensor data that could’ve provided more insight into whether it was a wreck or just the

vehicle being stationary after ignition. After that the results quickly show that the vehicle’s trust

value drastically diminishes down to 0% again. Then we can see that about half way through the

simulation vehicles begin sending messages that were being evaluated to accurate and trustworthy.

What we see now is that the vehicles go through comparatively steeper increases when compared

to the previous comeback use case. However, with the sparsity of the incident messages these
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steeper increases in trust only occur once every four of five messages. By using this tactic as an

attempt to increase the trust of the vehicles is shown to be ineffective as each of these high ranking

messages only increase the trust by at most 5 to 6% at a time. These results are presented in Figure

6.6.

Figure 6.6 Trust value results from a simulation of vehicles attempting to quickly re-gain trust
after losing it from sending several malicious messages

6.3.5 Use case: Selective Behavior (Flip-Flopping)

The Flip-Flop use case will be used to describe the trust of vehicles that will switch from

sending good message to sending bad messages on a set schedule as an attempt to disrupt the

system while simultaneously attempting to maintain a high enough trust to be listened to. This

simulation also demonstrates how a vehicle’s trust would be impacted if a specific sensor on the
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vehicle were to begin malfunctioning. Since every message would not require every single sensor’s

data, one specific sensor could be malfunctioning that would go undiscovered for a few instances

upon which it is required to send data. This data would cause the message to be flagged as an

anomaly and thus the vehicle would be punished. To simulate this all vehicles will begin the simu-

lation and then all simultaneously start sending good messages then flip to sending bad messages.

This flip-flop of behavior could occur after any set amount of time, specifically three messages,

but in a very predictable manner. In this case, the flip flop decision of three messages was selected

as it would provide enough occurrences where it is easily displays that as time progresses trust

dynamically becomes easier to lose while harder to gain.

6.3.5.1 Analysis

As stated above, this simulation involves the first three messages being sent to be accurate

and trustworthy, in the results it can be seen that the trust increases during these three messages

before the vehicle begins sending false data. Because of the nature of the data being sent the

trust value is drastically decreased to 0% after just another three messages. The increase in trust

values between the vehicles ranges between 2% and 6%. But those vehicles that do not send higher

ranking messages such as vehicle 3 and vehicle 4 require three messages to obtain a 2 or 3% trust

value and just a single message to drop the trust value back to zero. Because of the drastic decrease

capabilities that the implement behavioral-based formula if these results are detected they can most

likely be attributed to a malfunctioning sensor. These results are demonstrated in Figure 6.7.

6.3.6 Use case: Selective Behavior (Mixed)

Mixed behavior is an extension of Flip-Flop but instead of being in a set schedule, a vehicle

will spontaneously send a false message at any point in the simulation. The flip flop use case
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Figure 6.7 Trust value results from a simulation of vehicles the frequently switch from sending
accurate messages to malicious messages

can be used to derive another involving mixing of behaviors. This form of mixed behavior can

be attributed to any number of scenarios such as a malicious vehicle attempting to build trust

to where it can send a malicious incident message and then return to sending good messages

such that it retains a high trust value. This use case can be attributed to that similar to the flip

flop a specific sensors on a vehicle being broken that whenever it has to report data causes the

trust implementation to punish said vehicle because the data is inaccurate. This use case will be

simulated by a vehicle sending false messages but at first sending inaccurate message sparsely but

as time progresses the vehicle will be sending primarily false messages.

Another use case will be the completely mixed behavior. The vehicles will randomly decide

when to send malicious messages or the vehicle would experience a degradation of a critical sensor

such as a speedometer. This use case will demonstrate how the system is managed when the
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malicious devices begin acting in a random fashion.

Both of these use cases are critical as they show how trust is impacted by a malfunctioning

sensors or malicious vehicles sending inaccurate messages as the time in the simulation proceeds.

6.3.6.1 Analysis of the primary mixed behavior simulation

Here it can be seen that the vehicles begin the simulation with an increasing trust value.

Then at time 5, all vehicles will send an inaccurate message that are evaluated to be an anomaly.

This one anomaly takes their trust from 62% to 53% (because of the trustworthiness ratio we do

not expect to see their trust value be completely diminished). After this one anomaly, the vehicles

will continue again with sending five accurate messages. Increasing their trust 15%, followed by

now two anomalous messages thus decreasing their trust to a range of 9-16%. These two additional

anomalies have changed their associated trustworthiness ratio from 1:10 to 3:13 that demonstrate

a decrease in trust by approximately 50% effectively removing them from consideration as their

trust does not meet the criteria to contribute to the decision making process. With the now higher

trustworthiness ratio the trust values of the vehicles are not capable of rising above 10% in the

five messages sent. It can be see that after the trustworthiness ratio increases to nearly a quarter,

anomalies are drastically impacted such that only one anomaly is able to diminish any trust the

vehicles were able to build during that time. These results are demonstrated in Figure 6.8.

6.3.6.2 Analysis of secondary mixed behavior simulation

Because of the randomness of this simulation results displayed have a significant difference

in other use cases shown in this work. Each of these vehicles can be explained through a number of

reasons. Vehicle 1 has initial decreases in trust and by time 3 is already down to almost 30%. But

after another thirty messages with only a few minor complications vehicle 1 is able to achieve a
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Figure 6.8 Trust value results from a simulation of vehicles that demonstrate progression toward
becoming increasingly more malicious

trust of 90%. Vehicle 1 then sends a couple of malicious messages and by the end of the simulation

has an overall trust value of 70%. Vehicle 2 and 3 follow a similar pattern where there is an

initial increase in trust followed by an anomalous message that decreases both trust values by

approximately the same 15%. Vehicle 3 continues to send messages with a few anomalies such that

its trust value hovers around 60-70%. Vehicle 2, however, proceeds to primarily send trustworthy

messages thus is able to increase it’s trust to 97%, nearly a perfect trust value. Vehicle 5 on the

other hand primarily sends accurate messages with a small number of complications that leads it to

earning a 100% trust value after only 33 messages. Vehicle 4, however, starts off quite negatively,

almost entirely maintaining a trust value below 40% up until message 26. At which point vehicle 4

changes paths to sending primarily positive messages and is able to increase its trust value almost

to that of the others at a 62%. These results are demonstrated in Figure 6.9.
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Figure 6.9 Trust value results from a simulation of vehicle that will randomly injecting malicious
data

These results are absolutely sporadic, however, because of the nature of connected vehicle

data and how highly dynamic the environment is it is reasonable to assume that there will be

instances when the data and sensors report data that does not match the expected behavior that was

collected for the training models. It is, however, expected to quite random but generally follow a

path upwards, which these results display as all trust values of the vehicles increase to above 60%

with two reaching nearly perfect trust.

6.3.7 Use case: Illusion-based Simulation

This use case will be used to show how the system reacts during illusion based messages as

described in Section 2.4.3, where a malicious vehicle creates the illusion of an incident by imitating
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the driving statistics of said incident (described in Table 6.1). These use cases are critical to the

evaluation of the consensus mechanism implemented described in 5.3.1. Each of these cases will

involve one illusionist with the other four vehicles following behind said illusionist.

The first use case will be used as a baseline for a working consensus mechanism. The

illusionist will report illusion based messages simulating a wreck even if one is not present. Then

the four vehicles following the illusionist will also report a car collision such that the illusionist’s

trust is not negatively impacted.

The second use case will again contain the illusionist sending illusion based messages but

following directly behind it are four vehicles that will not report an accident. This will show how

the consensus mechanism is able to retroactively punish the vehicle in the same time unit the

messages were received. This is to say that the illusionists trust value increases as it’s message was

processed first. Then the follower vehicles come in and report that the message was incorrect and

the system will then retroactively punish the illusionist, while the four following vehicles all gain

trust.

The third use case for illusion based messages involves the demonstration of the delta

described in 5.3.1. Again there is one illusionist creating the illusion of incidents when they do not

exist, with four other vehicles following behind. However, in this case, the four vehicles following

behind are approximately five time units back. This means the illusionist will not be disproved

for a few time units. When the follower vehicles arrive to the location of the reported incident the

consensus mechanism will be activated, and the trust of the vehicle should decrease.

6.3.7.1 Analysis of a majority agreement consensus simulation

With the nature of this simulation being the base case for the further Illusion based threats,

trusts here model use good vehicle’s use case presented in section 6.3.1, where there is a constant

increase to the point all vehicles are able to reach 100%. The simulation in this case demonstrates
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that the consensus mechanism was successfully able to agree with the illusionist such that all trust

values increase without any retroactive punishments.

Figure 6.10 Trust value results from a simulation of vehicles that demonstrate a majority
consensus

6.3.7.2 Analysis of majority disagreement simulation

As discussed this use case is used to demonstrate the ability to punish illusionists based

upon a consensus that the incident reported did not occur. It can be seen that vehicle 1 at time

1 has a trust value of 25%. This does not match the results from use case 2, because consensus

mechanism relies on retroactively punishing vehicles. Meaning that at time 1, all data from time

0 has been processes such that vehicle 1’s trust was initially increased, but then was quickly dis-

proved by the follower vehicles such that vehicle 1 was then retroactively punished. Further, the
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high trustworthiness ratio that vehicle 1 has (as its first message was not an anomaly) the trust value

does not instantly drop to 0%. Following this initial decrease, the illusionist proceeds to send more

illusion based messages that are disproved by the follower vehicles. The following vehicles are

able to steadily increase their trust while the illusionist is effectively removed from the system.

Figure 6.11 Trust value results from a simulation where a leading vehicle is against the majority
consensus

6.3.7.3 Analysis of delayed majority disagreement simulation

This use case is an extension where there is still one illusionist and four follower vehicles.

Except this time the following vehicles are 5 time units behind. Thus giving way to further testing

of the consensus mechanism and ability to retroactively punish vehicles. Figure 6.12 clearly dis-

plays that vehicle 1, the illusionist, is driving along the road sending illusions that fools the system

into increasing the trust value of the vehicle. However, when the follower vehicles arrive to the

location that the illusionist reported an incident, they do not detect that incident that was reported
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and is flagged by the consensus mechanism. This enables retroactively punishment the illusionist

for the vehicle that was sent at time 0 because it was proven that there was no incident. The results

clearly show this occurs at time 5 where vehicle 1’s trust drops nearly 70% in just 2 retroactive

punishments. These results clearly show that the implementation of the delta in the consensus

mechanism works as expected. These results are demonstrated in Figure 6.12.

Figure 6.12 Trust value results from a simulation where there is a delay in the disagreement on
the majority consensus
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CHAPTER 7

Conclusion

We offer conclusions and mention future work here.

7.1 Closing Thoughts

This work has shown that: the collection of a vehicle’s driving statistics allows for the

creation of a behavioral model that describes how vehicles in a given geographical location behave;

using a two-tier machine learning model it is possible to detect malicious behavior in real-time and

with over 90% accuracy; and through this detection process, a behavioral value can be calculated

using the vehicle’s trustworthiness ratio such that this behavioral value can be used as an update to

the vehicle’ trust value to further aid traditional trust management approaches.

This design sought to build onto the weaknesses that current trust management systems

suffer from, these weaknesses include the punishment of malicious actors in real time as well as

mitigating colluding attacks which seek to exploit traditional consensus mechanisms. In current

trust management approaches, when a majority of vehicles in the network are malicious and in-

jecting inaccurate data into the system, then there is no method that validates the data that these

vehicles are sending but instead solely rely on the consensus of data to update the trust values.

Furthermore, the behavioral based trust management approach was designed which imple-

mented three distinct contributions to trust management: the construction of a behavioral model,

a behavioral pattern identification process, and a behavioral value. Through detailed data col-

lection a behavioral model can be designed for a localized area which accurately represents the
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standard behavior of vehicles within the area. Then a behavioral pattern identification system was

constructed which utilized two forms of machine learning, anomaly detection and classification

algorithms which when new messages from vehicles were input, the data would be extracted and

compared to the behavioral model that was previously created. Through this analysis of data any

vehicle whose driving statistics do not match the standard or expected behavior will be classified

as an anomaly, as an additional layer of protection these anomalies would then be processed by the

classification algorithm which would determine if the driving statistics correspond to the vehicle’s

message (i.e., a false positive), or if the message is a true anomaly. Lastly after the behavioral pat-

tern identification system, a behavioral value would be calculated. This behavioral value is based

upon the trustworthiness ratio, which is defined as the number of anomalies per the total messages

the vehicle has transmitted, as well as the current messages rank. These two components allows for

vehicle’s who have a low trustworthiness ratio quickly be able to lose trust while simultaneously

making it harder to gain trust. While also making vehicle’s who have a high trustworthiness ratio

to not be critically punished on the first inaccurate message it has sent.

This behavioral based trust management trust approach has been shown to detect and miti-

gate threats which other trust management approach suffer from such as: breakout fraud, selective

behavior, illusion-based attacks, and colluding attacks. Results show that these threats were miti-

gated in real-time while not overly punishing trustworthy vehicles who make mistakes.

7.2 Future Work

Future work for this project can be found below, Section 7.2.1 discusses how real world

connected vehicle data would have benefited this work, Section 7.2.2 described how a blockchain

implementation would protect data, followed by Section 7.2.3 where a potential accuracy rating

would also be applied to trust modification.
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7.2.1 Real World Implementation

One of the shortcomings of this work is the simulation of traffic. SUMO was satisfactory

and allowed for successful modeling of traffic and connected vehicles, but using a software based

application that simulated traffic and imitate collisions can certainly be improved if it were to use

real world connected vehicle data. NHTSA stated that the stated the sensors and communication

devices could be added to vehicles for as little as $350, so with potential funding it would be pos-

sible to convert a vehicle into a connected vehicle and obtain production grade connected vehicle

data. Furthermore testing this implementation on true edge devices instead of a desktop would

provide more insightful results for the performance evaluations of the different machine learning

models and how this approach would behave under those circumstances.

7.2.2 Secure Decentralized Trust Database

Trust management approaches are able to mitigate threats a vehicle is behaving maliciously

for a period of time. However if a malicious actor were to hack the device storing the trust values

of all vehicles and modify them to all having a 100% then the mitigation of threats is completely ir-

relevant. In our previous works we have demonstrated that connected vehicles and smart cities are

capable of generating and maintaining a lightweight blockchain [22]. A blockchain implementa-

tion would aid in the decentralized approach, while providing key features such as tamper-proofing

and consistency of the data. I believe there would also be potential for storage of the behavioral

model on a blockchain which could have potential for data analysis upon the behavior of the vehi-

cle across its lifetime instead of just a 24 hour period.
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7.2.3 Behavioral Value and Trust Modification Evaluation

In current trust management approach as well as this work, a message is evaluated as either

trustworthy or not. With this work, an additional security layer has been added that is able to

evaluate the data that is being transmitted. By evaluating this data the behavioral value formula for

modifying doesn’t have to be a pure true or false. The classification machine learning algorithm

is able to classify messages which were anomalies that would enable for an accuracy rating of

anomalies to be applied. That is, vehicles that are reporting a car collision but are potentially

driving too fast will be evaluated as an anomaly and thus punished for lying about a car crash,

instead the classification algorithm would see that the vehicle’s message’s rank was off by a rank

of one or two, and thus not be severely punished but instead have their trust decreased at a lesser

amount. Doubts remain regarding this strategy, however, because it could potentially not mitigates

threats to the system fast enough to where those malicious vehicles would be able to send several

messages (which could negatively impact the system).
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