Intelligent loT
Projects in 7 Days

Build exciting projects using smart devices

Intelligent IoT Projects in
7 Days

Build exciting projects using smart devices

Agus Kurniawan

Packt

BIRMINGHAM - MUMBAI

Intelligent IoT Projects in 7 Days

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable tor any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use of
capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: September 2017

Production reference: 1070917

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-642-9

www.packtpub.com

Credits

Author Copy Editor
Agus Kurniawan Stuti Srivastava
Reviewers

Ruben Oliva Ramos

Pradeeka Seneviratne Project Coordinator Virginia Dias

Vasilis Tzivaras

Commissioning Editor Kartikey

Pandey Proofreader Safis Editing

Acquisition Editor Prateek

Bharadwaj Indexer Aishwarya Gangawane

Content Development Editor

Sharon Raj Graphics Kirk D'Penha

Production Coordinator Apama

Technical Editor Mohit Hassija
Bhagat

About the Author

Agus Kurniawan is a lecturer, IT consultant, and an author. He has experience
in various software and hardware development projects, delivering materials in
training and workshops, and delivering technical writing for 17 years. He has
been awarded the Microsoft Most Valuable Professional (MVP) award for 13
years in a row.

He is currently doing some research and teaching activities related to networking
and security systems at the Faculty of Computer Science, University of
Indonesia, and the Samsung R&D Institute, Indonesia. Currently, he's pursuing a
PhD in Computer Science in Germany.

I am thankful to the entire team at Packt, especially Prateek Bharadwaj, Sharon
Raj, Mohit Hassija, and the reviewers, for being so cooperative and patient with
me. They have been a great help and their feedback and tips have improved the
manuscript considerably.

This book is dedicated to all open source makers, developers, contributors, and
enthusiasts of Arduino, Raspberry Pi, and Machine Learning communities.
Thanks to Makers.ID and the SeeedStudio community for the hardware support.

I would like to thank my wife, Ela Juitasari; my son, Thariq; and my daughter,
Zahra; for their support and encouragement.

About the Reviewers

Ruben Oliva Ramos is a Computer Systems Engineer from Tecnologico of
Leon Institute, with a master's degree in Computer and Electronic Systems
Engineering, Teleinformatics and Networking Specialization from the University
of Salle Bajio in Leon, Guanajuato Mexico. He has more than five years of
experience in developing WEB applications to control and monitor devices
connected to Arduino, and Raspberry Pi using WEB Frameworks and Cloud
Services to build the Internet of Things applications.

He is a mechatronics teacher the University of Salle Bajio and teaches students
in the master's degree in Design and Engineering of Mechatronics Systems, he
also works at Centro de Bachillerato Tecnologico Industrial 225 in Leon,
Guanajuato Mexico, teaching subjects like: Electronics, Robotics and Control,
Automation and Microcontrollers at the Mechatronics Technician Career,
Consultant, and developer projects in areas like: Monitoring systems and data
logger data using technologies: Android, i0OS, Windows Phone, HTML5, PHP,
CSS, Ajax, JavaScript, Angular, ASP .NET databases: SQLite, MongoDB,
MySQL, WEB Servers: Node.js, I1S, hardware programming: Arduino,
Raspberry Pi, Ethernet Shield, GPS and GSM/GPRS, ESP8266, control and
monitor Systems for data Acquisition and Programming.

He has written the book Internet of Things Programming with JavaScript, by
Packt. Also Monitoring, Controlling and Acquisition of Data with Arduino and
Visual Basic .NET for Alfaomega.

I would like to thank my Savior and Lord, Jesus Christ for giving me strength
and courage to pursue this project; to my dearest wife, Mayte, our two lovely
sons, Ruben and Dario, To my father (Ruben), my dearest mom (Rosalia), my
brother (Juan Tomas), and my sister (Rosalia) whom I love, for all their support
while reviewing this book, for allowing me to pursue my dream and tolerating
my not being with them after my busy day job.

I’m very grateful to Packt Publishing for giving the opportunity to collaborate as
an author and reviewer, and to be a part of this honest and professional team.

Pradeeka Seneviratne is a software engineer with over 10 years of experience
in computer programming and systems designing. He is an expert in the
development of Arduino and Raspberry Pi-based embedded systems. Pradeeka is
currently a full-time embedded software engineer who works with embedded
systems and highly scalable technologies. Previously, he worked as a software
engineer for several IT infrastructures and technology servicing companies. He
collaborated with the Outernet (Free data from space, forever) project as a
hardware volunteer and a software tester for Lighthouse, and Raspberry Pi-based
DIY Outernet receivers based on Ku band satellite frequencies. He is also the
author of four books:

Internet of Things with Arduino Blueprints, by Packt
IoT: Building Arduino-based Projects, by Packt

Building Arduino PLCs, by Apress

Raspberry Pi 3 Projects for Java Programmers, by Packt

Vasilis Tzivaras is a Computer Engineer holding a BSc degree in Computer
Science and Engineering, University of loannina in Greece. His thesis is about
the autonomous landing of a quadcopter using IBVS. During his studies, he was
the chair of the IEEE Student Branch of the University of Ioannina. With his
colleagues, he has organized workshops and lead projects relevant to robotics
and other technologies. Using Arduino, Raspberry Pi, and other low cost and
energy solutions he has taken part in many hackathons and contests and has also
taken a good place. He is the writer of Building a Quadcopter with Arduino that
was published in 2015 and Raspberry Pi Zero W Wireless Projects that will be
published by the end of 2017.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.co
m. Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.Packt
Pub.com, and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at servicegpacktpub.con for more details. At www.PacktPub.c
om, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

hitps:/f'www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to
all Packt books and video courses, as well as industry-leading tools to help you
plan your personal development and advance your career.

Get the most in-dem and software skills with Mapt. Mapt gives you full access to
all Packt books and video courses, as well as industry-leading tools to help you
plan your personal development and advance your career.

Why subscribe?

» Fully searchable across every book published by Packt
= Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1787286428.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

Table of Contents

Preface
What this book covers

What vou need for this book
Who this book is for
Conventions

Reader feedback

Customer support
Downloading the example code

Downloading the color images of this book
Errata

Piracy

Questions

1. A Simple Smart Gardening System
Introducing smart gardening system

Exploring gardening system platforms
Open Garden shield for Arduino

Grove Smart Plant Care kit for Arduino
EcoDuing

Sensor devices for a smart gardening system
Soil moisture sensor

Temperature and humidity sensor
Watering your garden and farm

Building a smart gardening system
Introducing the PID controller

Implementing a PID controller in Python

How it works

Sending data from the Arduino to the server
Conmrolling spil moisture nsing a PID controller
How it works

Summary

2. A Smart Parking System
Introducing smart parking systems

Sensor devices for a smart parking system
Ultrasonic sensor - HC-5R04

FIE. motion sensor
Hall Effect sensor
Camera

Wehicle entry/exit detection

Wehicle plate number detection
Installing Open ALPR

Testing vehicle plate number detection
Wacant parking space detection
A parking management system
Building a smart parking system

Summary

3. Making Your Own Vending Machine
Introducing vending machines

Designing a vending machine
Central control machine

Detecting coins for payments

Detecting coin weight
Detecting coins using optical sensing

Building Ul and UX for user interaction
Display interfacing

Input interfacing
Designing a database model
Building the vending machine

Summary

4. A Smart Digital Advertising Dashboard
Introducing smart digital advertising dashboards

Exploring digital signage platforms
1Play

Screenly
Xibo
Concerto
Designing a smart digital advertising system

Detecting human presence
PIE. moticn sensor

Ultrasonic sensor - HC-5R04
Thermal sensor
Oprical sensor

Displaying and delivering ad content
Flask

Pyramid
Django

Building a smart digital advertising dashboard

Summary

D. A Smart Speaker Machine
Introducing smart speaker machines

Exploring existing smart speaker machines
Amazon Echo

Google Home
Tvee
Triby

Introducing ReSpeaker
How it works

Integrating vour IoT boards with ReSpeaker
GPIO programming on ReSpeaker
Connecting to the Microsoft Bing Speech API
Building your own smart speaker machine

Summary

6. Autonomous Firefighter Robot
Introducing autonomous firefighter robots

Exploring robot platforms
Zumo robot for Arduing

Mini(}) Discovery Arduino robot kit

Turtle kit - a 2WD DI'Y Arduino robotics kit for beginners

GoPiGo robot

Detecting a fire source
Grove - flame sensor

SainSmart flame detection sensor module
Demo - fire detection

Basic remote robot navigation

Detecting obstacles
How it works

Designing an autonomous robot
Building an autonomous firefighter robot

Summary

7. Multi-Robot Coopetation Using Swarm Intellipence
Introducing mult-robot cooperation

Learning about swarm intelligence

Implementing mesh network for multi-robot cooperation
X Bee modules

Configoring X Bee modules
Demop - data communication using X Bee
How it works

X Bee development for Arduino
Configuring the X Bee module

Writing the sketch program
Testing
Working with the XBee library for Arduine

Designing a multi-robot cooperation model using swarm intellisence
Defining objectives

Selecting a robot platform
Selecting the algorithm for swarm intelligence

Summary

8. Essential Hardware Components

Preface

Internet of Things (1oT) is a ground-breaking technology that involves
connecting numerous physical devices to the Internet and controlling them.
Analyzing data from Internet of Things devices and converting it into something
meaningful is currently driving the next level of 10T learning. Discover how to
build your own Intelligent Internet of Things projects and bring a new degree of
interconnectivity to your world.

What this book covers

Chapter 1, A Simple Smart Gardening System, begins with explaining how to build
a simple smart gardening system with involved plant sensor devices and
Arduino.

Chapter 2, A Smart Parking System, will teach you to build a smart parking system.
Learn how to detect a car plate and to count the car parking duration. Various
pattern recognition algorithms will be introduced to detect a car plate.

Chapter 3, Making Your Own Vending Machine, will help you build a simple
vending machine, detecting a coin is an important part of the vending machine
and building UI (User Interface) for the vending machine is explored.

Chapter 4, A Smart Digital Advertising Dashboard, teaches you to build a simple
smart digital advertising which could detect people’s presence so the advertiser
can obtain an effective report of how many people watch the ads display.

Chapter 5, A Smart Speaker Machine, will help you build a simple smart speaker
machine. You will start to learn Amazon Echo and then build your own simple
smart speaker machine.

Chapter 6, Autonomous Firefighter Robot, teaches you to build an autonomous
robot which finds a fire source location and extinguish fires. You will also learn
to find the fire source location and navigate to the source location.

Chapter 7, Multi-Robot Cooperation Using Swarm Intelligence, focuses on how to
make transport cooperation among robots using swarm intelligence. You will
also learn the concept of swarm intelligence so that you can implement it in
among robots.

Appendix, Essential Hardware Components, covers mandatory hardware required
for this book.

What you need for this book

In order to work with Drupal 8 and to run the code examples found in this book,
the following software will be required.

Web server software stack:

» Web server: Apache (recommended), Nginx, or Microsoft I1S
#» Database: MySQL 5.5 or MariaDB 5.5.20 or higher
= PHP: PHP 5.5.9 or higher

Chapter 1, A Simple Smart Gardening System, details all of these requirements and
includes a recipe highlighting an out of the box development server setup.

You will also need a text editor, following is a suggestion of popular editors and
IDEs:

» Atom.io editor, hitps://atom.io/
» PHPStorm (specific Drupal integration), htips://www.jethrains,com/phpstorm/
» Vim with Drupal configuration, https://www.drupal.arg/projectvimre

Your operating system’s default text editor or command line file editors For
more information on hardware retirements, you may refer Appendix section of
this book

Who this book is for

If you're a developer, IoT enthusiast, or just someone curious about Internet of
Things, then this book is for you. A basic understanding of electronic hardware,
networking, and basic programming skills would do wonders.

Conventions

In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning. Code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles are shown as follows: "In the 10op() function, we read the value
of the distance from the sensor and then display it on the serial port."

A block of code is set as follows:

void loop{) {
int val;
val = analogRead(ad);

Serial.print{"Soil moisture: ");
Serial.print{val};

delay(3e98);
1

Any command-line input or output is written as follows:

% sudo apt-get update
% sudo raspi-config

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Go to
Sketch | Include Library | Manage Libraries and you will get a dialog."”

0 Warnings or important notes appear like this.

9 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for us
as it helps us develop titles that you will really get the most out of. To send us
general feedback, simply email teedback@packtpub.com, and mention the book's title
in the subject of your message. If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, see our author
guide at www.packipub.com/authars.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at hitp:/
fwww.packtpub.com. If you purchased this book elsewhere, you can visit hitp://www.pack
tpub.com/suppert and register to have the files emailed directly to you. You can
download the code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.

Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

S, R

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

» WinRAR / 7-Zip for Windows
» Zipeg /iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at hups:/github.com/PacktPubtis
hing/Intelligent-IoT-Projects-in-7-Days. We also have other code bundles from our rich
catalog of books and videos available at hitps:/github.com/PacktPublishing/. Check them
out!

Downloading the color images of this
book

We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from nups:/fwww.

packipub.com/sites/default/files/downloads/Intelligentlo T Projectsin7Days_Colarlmages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a mistake
in the text or the code-we would be grateful if you could report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting hrtp:/fwww.packtpub,com/submit-errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be
uploaded to our website or added to any list of existing errata under the Errata
section of that title. To view the previously submitted errata, go to https:/www.packtp
ub.com/books/content/support and enter the name of the book in the search field. The
required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on the
internet, please provide us with the location address or website name
immediately so that we can pursue a remedy. Please contact us at
copyrightgpacktpub.com With a link to the suspected pirated material. We appreciate
yvour help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

A Simple Smart Gardening System

Gardening is a nice activity. It needs care to keep a crop growing well. It is not
possible to monitor and tend to a garden 24 hours a day, so we need a smart
gardening system that can monitor and tend to the garden as we want it. This
chapter will help you explore existing gardening systems and build your own
simple smart gardening system.

In this chapter, we will cover the following topics:

Introducing smart gardening systems
Exploring gardening system platforms
Watering your garden and farm

Sensor devices for a smart gardening system
Watering your garden and farm

Building a smart gardening system

Let's get started!

Introducing smart gardening system

A gardening system is a system used to practice growing and cultivating plants
as a part of horticulture. A gardening system is usually developed and
implemented as a manual operation. An automated gardening system is designed
to enable us to manage gardening, including monitoring moisture, temperature,
and humidity.

In general, we can build a smart gardening system based on the high-level
architecture that is shown in the following figure:

T —

Gateway

e
Emar:l

X\

The following is a list of components to build a smart gardening system:

» Sensors: Corresponding to your case, you need sensor devices to measure
the garden's environment and condition. Capturing physical objects to
digital form enables us to perform computing and processing.

» MCU board with network module: The goal of MCU is to process all
data that is acquired from sensors. Most MCU boards have limited
computation, so we need to send sensor data to a server for further
computation. To enable us to send data, the MCU board should be attached
to a network module, either Ethernet or wireless.

» Gateway: This is optional since some MCU boards can communicate with
a server directly without modifying the protocol format. If a network
module has the capability to deliver data over a primitive protocol, the

functioning of gateway is necessary because a gateway can translate one
protocol format to another protocol format.

® Server: This is a center computation. Most servers have high-end hardware
so heavy computation can be addressed.

This architecture is an ideal condition. In a real project, you may integrate an
MCU board and server in one box. For instance, you can use a Raspberry Pi or
BeagleBoard. These are a mini computers that you can deploy libraries to with
respect to your case.

Exploring gardening system
platforms

In this section, we will explore some gardening systems that could be used with
our board, such as Arduino and Raspberry Pi. Some manufacturers provide kits
that you can use directly in your project.

We will review three gardening system platforms that you may fit with your
case.

Open Garden shield for Arduino

Open Garden shield for Arduino is manufactured by Cooking Hacks. This shield
provides I/0 connectors for gardening and farming sensors. It also includes an
RF module with 433 MHz frequency. For further information about this shield,
you can visit the official website at https://www.cooking-hacks.com/open-garden-shield-for-ard
uino. You can see this shield here:

Cooking Hacks provides a complete kit that you can use with Arduino directly.
Currently, there are three kits. Each kit has unique features, including sensors
and tools. The following is a list of Open Garden kits:

» Indoor kit: hitp://'www.cooking-hacks.com/open-garden-indoor-Inode-1gw
» Outdoor kit: hittp:/fwww.cooking-hacks.com/open-garden-outdoor-1node-1gw
» Hydrnp onics kit: hitp://'www.cooking-hacks.com/open-garden-hydroponics

You can see a sample Open Garden kit for indoor use here:

Grove Smart Plant Care kit for
Arduino

SeeedStudio has popular products called Grove. It makes it easier for you to
connect your board to various sensor and actuator devices. Currently,
SeeedStudio provides the Grove Smart Plant kit for Arduino. This kit consists of
temperature, humidity, soil moisture, and illumination intensity sensors. To
connect these sensors, the kit provides a Grove Base shield that you can attach to
Arduino.

You can blly this kit on the official website, hitps://www.seerdstudio.com/Grove-Smart-Plant
-Care-Kit-for-Arduino-p-2528.heml. One type of Grove smart plant care kit for Arduino is
shown here:

o
s

EcoDuino

EcoDuino is a gardening kit from DFRobot. This kit consists of an MCU board
and sensors. The board also provides an RF module breakout in an XBee
breakout model. It enables the board to communicate with other platforms. The
kit comes with soil moisture, temperature, and humidity (DHT11) sensors. If
you're interested in this kit, you can buy it from this website: hips:/iwww.dfrobat,com/
product-641.himl.

The EcoDuino kit is shown in the following image:

Sensor devices for a smart gardening
system

To build a smart gardening system, we need some sensors related to gardening
and farming. In this section, we will review the main sensors that are used in
gardening and farming. Soil moisture, temperature, and humidity are three
parameters that we can use to build our smart gardening system.

Let's explore!

Soil moisture sensor

One of the parameters of gardening is soil moisture. We should measure soil
moisture to ensure our plant grows well. There are many options when it comes
to soil moisture sensors. You can use the SparkFun Soil Moisture Sensor, for
example. You can find this module at https://www.spark fun.com/products/13322 .

You can see the SparkFun Soil Moisture Sensor in the following image:

You can use other soil moisture sensors from cheap manufacturers in China. You
can order them from Alibaba or Aliexpress.

To read soil moisture values, we can use analog 1/0. To use analog 1/0, you
should be familiar with the following Sketch APIs:

® analogread() is for reading analog data from an analog pin on Arduino
® analogwrite() is for writing analog data to an analog pin on Arduino

For demonstration, we'll connect an Arduino board to the SparkFun Soil
Moisture sensor. The following is the wiring used:

» VCC is connected to 5V on the Arduino

» GND is connected to GND on the Arduino
» SIG is connected to AQ on the Arduino

A complete wiring can be seen in the following figure:

:!

el L1

(-1

A
/

UNO,

DISTT
wimra T,

/
\

pemm Arduinag’

TH .

ECEV2

fr'itz.in.g

Now you can open the Arduino software. If you haven't installed it yet, you can
download and install the tool from nrtps://www.arduino.cc. Once done, you can write a
Sketch program. Create this script:

void setup() {
Serial.begin{9caa);

b

void loop() {
int wval;
val = analogRead(as);

Serial.print("Soil moisture: “);
Serial.print(val};

delay(3098);
1

The program starts by initializing a seria1 object with a baud rate of 9600. In a
looping program, we read soil moisture levels using the anaiogread() method.
Then the measurement is printed to the serial port.

Save this Sketch file and upload the program to the Arduino board. To see the
output data, you can use the serial monitor in the Arduino software. You can find

it by going to Tools | Serial Monitor. You should see a soil moisture reading in
the Serial Monitor tool.

Temperature and humidity sensor

Temperature and humidity have significant impact on the growth of the crop.
Keeping temperature and humidity within certain values also keeps crops
healthy. To monitor temperature and humidity, we can use the DHT22 or DHT11
for Arduino and Raspberry Pi. These sensors, DHT22 and DHT11, are famous
sensors and have a lot of resources available for development.

The RHTO03 (also known as DHT22) is a low-cost humidity and temperature
sensor with a single-wire digital interface. You can obtain this module from
Spark Fun [https:.«'.-'ww.sparkfun,cumf'pmductsf H]lﬁ?} and Adafruit {hLrp5:.-'x'wwzadafmit.currﬂp|'u
ducts/393). You may also find it in your local online or electronics store.

You can see the DHT22 module in the following figure:

=]
=
=
=
=)
{5
£y
I.h

fritzing

Source: https://www.adafruit.com/products/385

For further information about the DHT22 module, you can read the DHT22
datasheet at hup://cdn.sparkfun.com/datasheets/Sensors/Weather/RHT03.pdf.

Now we connect the DHT22 module to the Arduino. The following is the
wiring:

* VDD (pin 1) is connected to the 3.3V pin on the Arduino
#» SIG (pin 2) is connected to digital pin 8 on the Arduino
» GND (pin 4) is connected to GND on the Arduino

You can see the complete wiring in the following figure:

T ——— |
ANKL O ‘.H.
|

il
@ o o =

To access the DHT-22 on the Arduino, we can use the DHT sensor library from
Adafruit: hitps://github.com/adafruiv DHT-sensor-library. We can install this library from the
Arduino software. Go to Sketch | Include Library | Manage Libraries and you

will get a dialog.

Search for ant in Library Manager. You should see the DHT sensor library by
Adafruit. Install this library:

skatch _aprila
o @ Library Manager
Type Al B Topic Al dht
e S D S
Mo inio

DHT sensor library by Adafrult
Ardulng library for DHT11, DHT22, etc Temp & Humidity Sensors Arduing lbmny for DHT1, DHT2E, &0 Temp & Humidly Sensars
Moce inta

Version 1.2.3 E Install

Simple DHT sensor library L, Winlin

Arduine Temp & Humidity Sensors for DHT11 etc. Simge pue © code with lots of comments, sticely folkae the standant DHT grotocol,
supports 0.5HE or tHZ sampiing rats

e inig

ﬁmpﬁmﬂ' b Witk

Arduine Temp & Humidity Sensors for DHT11 ete. Simple C4++ ode with lots of comments, stictly follew the standass DHT protocol,
Eupports 0,5HZ or THI sampling rata

Marg infg

Clase

Now let's start to write our Sketch program. You can develop a Sketch program
to read temperature and humidity using o#rzz2. You can write this Sketch program
in the Arduino software:

#include "DHT.h"

ff define DHT2Z2
#define DHTTYPE DHTZ22
A/ define pin on DHTZ22
#define DHTPIN B

DHT dht{DHTPIN, DHTTYFPE);

void setup() {
Serial.begin(960a);

dht.begin();
1

void loop() {
delay(2e0a);

// Reading temperature or humidity takes about 256 milliseconds!

£ sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
flopat h = dht.readdumidity();

// Read temperature as Celsius (the default)

flpat t = dht.readTemperature();

/¢ check if any reads Talled and exit early (to try again).

ifT (isnanm(h) || isnan{t)}) {
Serial.println{"Failed to read Trom DHT sensor!®);
return;

L

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

Serial,.print("Humidity: ");
serial.print(h);
serial.print(" %m\t");
serial.print{“Temperature; "};
Serial.print{t);
serial.primt(" *C\t");
serial.print({"Heat index: "};
serial.print{hic);
Serial,printin{" *c “);

Save the program. Now you can compile and upload it to the Arduino board.
Furthermore, you can open Serial Monitor to see sensor data from the serial port.
You can see a sample program output in the following screenshot:

@ & [deviou usbmodem 1471 (Ardiine Leonarda)
Seqd
Humidity: 39.58 % Temperature: 24 58 *C Heat index: 24, 04 *C
Humidity: 39.50 % Temperature: 24 .58 *C Heot index: 28,04 v
Humidity: 3%.60 % Temperature: 24 58 *C Heat index: 72 84 *(
Humidity: 32.60 % Temperature: 24 .58 *C Heat index: 24,04 *(
Humidity: 39.50 % Temperature: 24,48 *C Heat index: 23,93 *C
Humidity: 39.40 % Temperature: 28,48 *C Heat index: 23,92 *C
Humidity: 39.30 % Temperature: 24 .48 *C Heat index: 23,92 *C
Humidity: 39.30 % Temperature: 24 .48 *C Heat index: 23.92 *C
Humlidity: 39.70 % Temperature: 24,48 *C Heat index: 23.93 *C
Humidity, 32.70 % Temperature: 24,48 *C Heat index: 23.93 *C
Autascrall BothNL&CR [9600 baud |

How it works

In the setup() function, we initialize the DHT module by calling dnt .beqin(). To
read temperature and humidity, you can use dnt.readTemperature() and
dht.readiumidity(). You also can get a heat index using the dnt.computexeatindex()
function.

Watering your garden and farm

One of the problems in gardening systems is how to water our garden or farm.
There are pumps that fit boards such as the Arduino and Raspberry Pi. The
350GPH]it]llid pump (https:/iwww.sparkfun.com/products/10455) could be used on your

Arduino or Raspberry Pi:

You can also use a higher-voltage pump. To control it from the Arduino, you can
use a relay that is connected between the Arduino and the pump. A relay can be
connected to digital pins from Arduino. Using digitalread() and digitalwrite() we
can communicate with Relay from Arduino.

Building a smart gardening system

In this section, we will develop a smart gardening system. We will use a PID
controller to manage all inputs from our sensors, which will be used in decision
system. We'll measure soil moisture, temperature, and humidity as parameters
for our system. To keep it simple for now, we'll only use one parameter, soil
moisture level.

A high-level architecture can be seen in the following figure:

|"- i
3 MCU Board with 4:‘1 A computer
E T Wireless module ‘ "'_"';-J’l}x ""’“'I" decision
support
system

Walering System

You can replace the MCU board and computer with a mini computer such as a
Raspberry Pi. If you use a Raspberry Pi, you should remember that it does not
have an analog input pin so you need an additional chip ADC, for instance the
MCP3008, to work with analog input.

Assuming the watering system is connected via a relay, if we want to water the
garden or farm, we just send digital value 1 to a relay. Some designs use a motor.

Let's build!

Introducing the PID controller

Proportional-integral-derivative (PID) control is the most common control
algorithm used in the industry and has been universally accepted in industrial
control. The basic idea behind a PID controller is to read a sensor and then
compute the desired actuator output by calculating proportional, integral, and
derivative responses and summing those three components to compute the
output. The design of a general PID controller is as follows:

- P Kre(t)
. \ ik

+ \ 1]
setpoint : z @ | h’aJ:‘(er -l Z | + Plant/Process
(1)

| ()
D x

Furthermore, a PID controller formula can be defined as follows:

u(t) = K,e(t) +K, j e(Ddi + K, d;“:}
(]

KKz represents the coefficients for the proportional, integral, and derivative.
These parameters are non-negative values. The variable e represents the tracking
error, the difference between the desired input value i and the actual output y.
This error signal will be sent to the PID controller.

Implementing a PID controller in
Python

In this section, we'll build a Python application to implement a PID controller. In
general, our program flowchart can be described as follows:

=

' 1
| Simulston for total sampking <

[Porfoem vpdmied PID wurs
‘Bet FID ootput

|' mem vilow

|| Ak Pity samsar ant P ottt it]

DOraw the data from FIC sotter and |
([e |
| vt pait

We should not build a PID library from scratch. You can translate the PID
controller formula into Python code easily. For implementation, I'm using the
PID class from https:/github.com/ivmech/ivPID. The following the r1p.py file:

import time

class PID:
"MUPID Controller

LIRLIN

def _ init_ (self, P=0.2, I=0.0, D=0.89):

self.Kp = P
selT.Ki = 1
self.Kd = D

self.sample time = 0.00
self.current_time = time.time()
gelf.last _time = self.current _time

self.clear()}

def clear(self):
"trriears PID computations and coefficients™™"
self.SetPoint = 9.0

self.PTerm 0.0
self , ITeTm 8.0

selT.0Term = @,8
self.last_error = 8.8

Windup Guard
selT.int_error = 8.0
self.windup_guard = 28.0

self.output = 0.0

gef update{self, feedback value):
""Uoalculates PID walue Tor given reference fTeedback

. math:;
uit) = E_p e{t) + K_i Nint_{e}~{t} e(t)dt + K_d {de}/{dt}

. Tigure:: images/pid_1.png
ralian: center

Test PID with Kp=1,2, Ki=1, Kd=0.081 (test_pid.py)

nn

error = self.SetPoint - Teedback value

self.current_time = time.time()
dgelta time = self.current_time - self.last _time
delta_error = error - self.last_error

if (delta_time == self.sample_time):
selT . PTerm = self.kp * error
self, ITerm += error * delta time

if (self.ITerm = -self.windup_guard):
s5elT.ITerm = -selT.windup_guard

elif (self.ITerm = self.windup_guard):
selT.ITerm = self,windup_guard

selT.0OTerm = 8.8
if delta _time = 0;
self.0Term = delta_error / delta_time

Remember last time and last error for next calculation
self,last time = self.current_time
self,last_error = error

selfT.output = self.PTerm + (self.Ki * self.ITerm) + (self.kd " self.DTerm)

def setkp(self, proportional_gain);
""petermines how aggressively the PID reacts to the current error with setting
selT.Kp = proportional_gain

def setki{self, integral gain):
""petermines how aggressively the PID reacts to the current error with setting
selT.K1 = integral_gain

def setkd{self, derivative gain}:
""petermines how aggressively the PID reacts to the current error with setting
selT.Kd = derivative _gain

def setWindup(self, windup):
"""Integral windup, also known as integrator windup or reset windup,
refers to the situation in a PID Teedback controller where
a large change in setpoint cccurs (say a positive change)
and the integral terms accumulates a significant error during the rise (windup
to increase as this accumulated error is unwound

{ofTset by errors in the other direction).
The specific problem is the excess overshooting.

mpn

self.windup_guard = windup

gef setSampleTime(sell, sample time):
"UUpID that should be updated at a regular interwal,
gased on a pre-determined sample time, the PID decides if it should compute or

nw

selT.sample_time = sample_time

For testing, we'll create a simple program for simulation. We need libraries such
d5 numpy, scipy, pandas, patsy, EIIld matplotlib. FiFSthF, you shuuld install python-dey fDl‘
Python development. Type these commands on a Raspberry Pi terminal:

% sudo apt-get update
% sudo apt-get install python-dew

Now you can install the numpy, scipy, pandas, and patsy libraries. Open a Raspberry
Pi terminal and type these commands:

% sudo apt-get install python-scipy
% pip install numpy scipy pandas patsy

The last step is to install the natpiotiis library from the source code. Type these
commands into the Raspberry Pi terminal:

% git clone https://github.com/matplotlib/matplotlib
% cd matplotlib
% python setup.py build
% sudo python setup.py install

After the required libraries are installed, we can test our e1o.py code. Create a
script with the following contents:

import matplotlib
matplotlib.use('Agg’)

import PID

import time

import matplotlib.pyplot as plt
import numpy as np

from scipy.interpolate impori spline

P=1.4
=1

D = 8.881

pid = PID.PID(P, I, D)

pid.setPoint = 0.0
pid.setSampleTime(d.01)

total_sampling = 108

feedback = 0

feedback_list = []
time list = []
setpoint_list = []

print{"simulating....")
for 1 in range{l, total_ sampling):
pid.update{Teedback)
output. = pid.output
if pid.SetPoint = 0;
feedback += (output - {1 7 1))

if 28 = 1 = B6O:

pid.SetPoint = 1
if 68 == 1 = go:

pid.SetPoint = B.5
it 1 == 86:

pid.SetPoint = 1.3

time.sleep(0.02)

Teedback _list.append{Teedback)
setpoint_list.append{pid.setPoint)
time list.append(i)

time_sm = np.array{time_list}
time_smooth = np.linspace(time_sm.min{), time_sm.max(), 388)
feedback_smooth = spline{time_list, feedback_list, time_smooth)

figl = plt.gcf()
figl.subplots_adjust(bottom=8.15)

plt.plot{time smooth, feedback_smooth, color='red')
plt.plot{time_list, setpoint_list, color="hlue')

plt.x1lim{{8, total sampling))

plt.ylim{{min{Teedback_list) - .5, max{feedback_list) + @.5))
plt.xlabel({'time (s5)")

plt.ylabel('PID (PV}")

plt.title{'TEST PID")

plt.grid{True)
print("saving...")
figl.savefig{'result.png’', dpi=1i88)

Save this program into a file called test_pid.py. Then run it:

| % python test pid.py

This program will generate result.png as a result of the PID process. A sample
output is shown in the following screenshot. You can see that the blue line has
the desired values and the red line is the output of the PID:

2.4

={.5
1]

TEST PID

I
1| |
|
| |.|
T
| .| j
20 A a0 &0

time {5}

100

P=1.4
I =1
D = 0.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.01)

total_sampling = 100
feedback = 0

feedback_list = []
time_list = []
setpoint_list = []

for i in range(1, total_sampling):
 pid.update(feedback)

output = pid.output
 if pid.SetPoint > 0:
 feedback +=
(output - (1 /1))

 if 20 < i < 60:
 pid.SetPoint = 1

 if 60 <=1 < 80:
 pid.SetPoint = 0.5

 if i
>= 80:
 pid.SetPoint = 1.3
 <bi/> time.sleep(0.02)

 feedback_list.append(feedback)

setpoint_list.append(pid.SetPoint)
 time_list.append(i)

time_sm = np.array(time_list)
time_smooth =
np.linspace(time_sm.min(), time_sm.max(), 300)

feedback_smooth = spline(time_list, feedback_list,
time_smooth)

figl = plt.gcf()

fig1.subplots_adjust(bottom=0.15)

plt.plot(time_smooth, feedback_smooth, color="red")

plt.plot(time_list, setpoint_list, color="blue")
plt.xlim((0,
total_sampling))
plt.ylim((min(feedback_list) - 0.5,
max(feedback_list) + 0.5))
plt.xlabel(’'time (s)')

plt.ylabel("PID (PV)")
plt.title("TEST PID")

plt.grid(True)
print("saving...")

figl.savefig('result.png’, dpi=100)

Sending data from the Arduino to the
server

Not all Arduino boards have the capability to communicate with a server. Some
Arduino models have built-in Wi-Fi that can connect and send data to a server,
for instance, the Arduino Yun, Arduino MKR 1000, and Arduino UNO Wi-Fi.

You can use the HTTP or MQTT protocols to communicate with the server.
After the server receives the data, it will perform a computation to determine its

decision.

Controlling soil moisture using a PID
controller

Now we can change our PID controller simulation using a real application. We
use soil moisture to decide whether to pump water. The output of the
measurement is used as feedback input for the PID controller.

If the PID output is a positive value, then we turn on the watering system.
Otherwise, we stop it. This may not be a good approach but is a good way to
show how PID controllers work. Soil moisture data is obtained from the Arduino
through a wireless network.

Let's write this program: import matplotlib
matplotlib.use('Agg")

import PID

import time

import matplotlib.pyplot as plt
import numpy as np

from scipy.interpolate import spline

P=14
I=1
D =0.001

pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime(0.25) # a second

total_sampling = 100
sampling i=0
measurement = 0
feedback =0

feedback list =[]
time list =[]
setpoint_list = []

def get _soil moisture():
reading from Arduino
value 0 - 1023

return 200

print('PID controller is running..")
try:

while 1:

pid.update(feedback)

output = pid.output

soil _moisture = get_soil moisture()
if soil moisture is not None:

testing
#if 23 < sampling_i < 50:
soil moisture = 300

if 65 <= sampling_i < 75:
soil moisture = 350

if sampling i >= 85:
soil moisture = 250
HHHHHAHHEHHHHHHE

if pid.SetPoint > 0:
feedback += soil moisture + output

print('i={0} desired.soil moisture={1:0.1f} soil moisture={2:0.1f} pid.out=
{3:0.1f} feedback={4:0.1f}'

Jformat(sampling_i, pid.SetPoint, soil _moisture, output, feedback))
if output > 0:

print('turn on watering system')

elif output < 0:

print("turn off watering system')

if 20 < sampling_i < 60:
pid.SetPoint = 300 # soil moisture

if 60 <= sampling i < 80:
pid.SetPoint = 200 # soil moisture

if sampling i >= 80:
pid.SetPoint = 260 # soil moisture

time.sleep(0.5)
sampling i+=1

feedback list.append(feedback)
setpoint_list.append(pid.SetPoint)
time_list.append(sampling_1i)

if sampling i >= total sampling:
break

except KeyboardInterrupt:
print("exit")

print("pid controller done.")

print("generating a report...")

time_sm = np.array(time_list)

time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
feedback smooth = spline(time_list, feedback_list, time smooth)

figl = plt.gct()
fig1.subplots_adjust(bottom=0.15, left=0.1)

plt.plot(time_smooth, feedback smooth, color="red')
plt.plot(time_list, setpoint_list, color="blue")

plt.xlim((0, total sampling))

plt.ylim((min(feedback_list) - 0.5, max(feedback list) + 0.5))
plt.xlabel('time (s)')

plt.ylabel('PID (PV)")

plt.title('Soil Moisture PID Controller’)

plt.grid(True)
fig1.savetig('pid_soil moisture.png', dpi=100)
print("finish")

Save this program to a file called che1 _pid.py and run it like this: $ sudo python
ch01_pid.py

After executing the program, you should obtain a file called pid_soi1 moisture.png.
A sample output can be seen in the following figure:

Soll Moisture PID Controller

600
|
a0+ | i"\ —_—
! ' I
4 e IR .
A00 J v | | | |'|I,.J
_ |
i ||.I',||| | |'|I_-_U|
o 300 | A SN | |
5 1 i]
l |
200 L
100
u 1
o e a0) B0 100

time {5}

How it works

Generally speaking, this program combines two things: reading the current soil
moisture value through a soil moisture sensor and implementing a PID
controller. After measuring the soil moisture level, we send the value to the PID
controller program. The output of the PID controller will cause a certain action.
In this case, it will turn on the watering machine.

Summary

We reviewed several gardening system platforms. Then we explored two sensor
devices commonly used in real projects. Lastly, we built a decision system to
automate for watering garden using PID.

In the next chapter, we will explore a smart parking system and try to build a
prototype.

A Smart Parking System

Parking is one of the biggest problems in modern cities. A smart parking system
is a solution to address vehicle parking in cities using the internet. This chapter
will explore what a smart parking system is and how to build one using Arduino
and Raspberry Pi boards.

In this chapter, we learn the following topics:

Introducing smart parking systems
Sensor devices for a smart parking system
Vehicle entry/exit detection

Vehicle plate number detection

Vacant parking space detection

Building a smart parking system

Let's get started!

Introducing smart parking systems

Parking has become one of the biggest problems in modern cities. When the
vehicle growth rate is faster than street development rate, there will be issues
with how these vehicles will be parked. A smart parking system becomes an
alternative solution to addressing parking problems.

In general, a smart parking system will address problems shown in the following
figure:

parking
sSYstem

» Vehicle In/Out stands for detecting when a vehicle comes in and goes out.
It will affect the number of vacant parking spaces and parking duration.

» Vehicle plate number detection aims at minimizing human errors in
entering vehicle plate numbers into a system.

» Vacant parking space aims at optimizing parking space by knowing the
number of vacant parking spaces.

» Parking management system is the main system to manage all activities
in a parking system. It also provides information about vacant parking
spaces to users through a website and mobile application.

In this chapter, we will explore several problems in parking systems and address
them using automation.

Sensor devices for a smart parking
system

To build a smart parking system, we should know about some sensors related to
a smart parking system. In this section, we will review the main sensors that are
used in one.

Let's explore!

Ultrasonic sensor - HC-SR04

The HC-SR04 is a cheap ultrasonic sensor. It is used to measure the range
between itself and an object. Each HC-SR04 module includes an ultrasonic
transmitter, a receiver, and a control circuit. You can see that the HC-SR04 has
four pins: GND, VCC, Triger, and Echo. You can buy HC-SR04 from SparkFun,
at hitps:/fwww.sparkfun.com/products/13959, as shown in the next image. You can also
find this sensor at SeeedStudio: hitps://www.seeedstudio.com/Ultra-Sonic-range-measurement-m
ndule-p-626.html. To save money, you can buy the HC-SR04 sensor from
Aliexpress.

The HR-SRO04 has four pins. There are VCC, GND, Echo, and Trigger. We can
use it with Arduino, Raspberry Pi, or other [oT boards.

For demonstration, we can develop a simple application to access the HC-SR04
on an Arduino board. You can do the following wiring:

» HC-SR04 VCC is connected to Arduino 5V
» HC-SR04 GND is connected to Arduino GND
» HC-SR04 Echo is connected to Arduino Digital 2

» HC-SRO4 Trigger is connected to Arduino Digital 4

You can see the hardware wiring in the following figure:

RO
(R

& & B & 8
L B B A

Al
A
A A B A s EEE R

& & & & @8

- Fe
'R
- % w.
PR
- .
PR
- .
LR
- .
- w .
'
- .
LR
- .
R
- .

-
-
-
-
-
-
-
-
-
-
-
-
-

RS e R AR A

To work with the HC-SR04 module, we can use the NewPing library on our
Sketch program. You can download it from http:/playground.arduine.co/Code/NewPing
and then deploy it into the Arduino libraries folder. After it is deployed, you can
start writing your Sketch program.

Now you can open your Arduino software. Then write the following complete
code for our Sketch program:

#include =NewPing.h=

#define TRIGGER_PIN 2
#define ECHO _PIN 4
#define MAX DISTANCE &00

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX DISTAMCE);
long duration, distance;

vold setup() {
pinMode(13, OUTPUT);
pinMode{ TRIGGER_PIN, OUTFPUT);
pinMode{ ECHO PIN, INPUT);
serial.begin{ocaa);

1

void loop{) {
digitalWrite{ TRIGGER PIN, LOW);

delayMicroseconds{Z);

digitalWrite{ TRIGGER_PIN, HIGH);
delayMicroseconds(1a);

gigitalwWrite{ TRIGGER_PIN, LOW);
duration = pulseIn(ECHD_PIN, HIGH);

ffCcalculate the distance (in cm) based on the speed of sound.
distance = duration/58.2;

serial.print({"Distance=");
serial.printin(distance);
delay(2aa);

Save this sketch as arduinohcsras.

This program will initialize a serial port at baudrate ssee and activate digital pins
for the HC-SRO04 in the setup() function. In the 10op() function, we read the value
of the distance from the sensor and then display it on the serial port.

You can compile and upload this sketch to your Arduino board. Then you can
open the Serial Monitor tool from the Arduino IDE menu. Make sure you set
your baudrate to ssee.

PIR motion sensor

A Passive Infrared Detection (PIR) motion sensor is used to object movement.
We can use this sensor for detecting vehicle presence. PIR sensors can be found
on SeeedStudio at hitps:/fwww.seeedsiudio.com/PIR-Motion-Sensor-Large-Lens-version-p-
1976.htmi, Adafruit at hitps://www.adafruit.com/product/189, and SparkFun at https:/Awww.spark
fun.com/products/13285. PIR motion sensors usually have three pins: VCC, GND, and
OUT.

The OUT pin is digital output on which if we get value 1, it means motion is
detected. You can see the PIR sensor from SeeedStudio here:

There's another PIR motion sensor from SparkFun, the SparkFun OpenPIR: htps:/
Iwww.sparkfun.com/products/13968. This sensor provides analog output so we can adjust
the motion detection value. You can see the SparkFun OpenPIR here:

For testing, we develop an Arduino application to access the PIR motion sensor.
We will detect object motion using the PIR motion sensor. You can perform the
following hardware wiring:

» PIR Sensor VCC is connected to Arduino 5V
» PIR Sensor GND is connecied to Arduino GND
®» PIR Sensor OUT is connected to Arduino Digital 8

You can see the complete wiring here:

- oW
e owow

& & & 8 &
TN
LI L
& 4 % & &
LR Y

-
-
-

e ew
% ww
" aw
W
W

L B

1 .
L

"W e ow
L
L
F A
& d & @ &

Arduing”

fritzing

Now we can write a sketch program using Arduino software. To read object
motion detection in digital form, we can use digitalgead(). If the program detects
object motion, we turn on the LED. Otherwise, we turn it off.

Here is the complete sketch:

#define PIR_LED 13 // LED
#define PIR DOUT & // PIR digital output on D&

int val = &;
int state = LOW;
void setup()

pinMode(PIR _LED, INPUT};
pinMode{PIR_DOUT, INPUT}:

serial.begin{9G06);
¥

void loop()
{

val = digitalRead(PIR DOUT);

if(val==HIGH}

digitalwrite(PIR_LED, HIGH);
if(state=LOwW) {
serial.printin{"Motion detected!");
state = HIGH;
B,
}else{
digitalwrite(PIR_LED, LOW);
if (state == HIGH){
serial.printin{"Motion ended!");
state = LOW,;
]
3
1

Save this sketch as arduinor1r.

You can compile and upload the program to your Arduino board. To see the
program output, you can open the Serial Monitor tool from Arduino. Now you
test motion detection using your hand and see the program output in the Serial
Monitor tool.

Next, we will use the SparkFun OpenPIR or other PIR motion sensor. Based on
its datasheet, the SparkFun OpenPIR has similar pins similar to PIR motion
sensors. However, the SparkFun OpenPIR sensor has an additional pin, the
AOUT analog output.

This pin provides analog output as a voltage value from the object's motion
level. From this case, we set the object motion-detection level based on the
analog output.

For testing, we'll develop a sketch program using the SparkFun OpenPIR and
Arduino. You can build the following hardware wiring:

OpenPIR Sensor VCC is connected to Arduino 5V
OpenPIR Sensor GND is connected to Arduino GND
OpenPIR Sensor AOUT is connected to Arduino Analog AO
OpenPIR Sensor OUT is connected to Arduino Digital 2

Now we'll modify the code sample from SparkFun. To read analog input, we can
USe analogread() in our sketch program. Write this skeich for our demo:
#deTine PIR_&OUT AG // PIR analog output on A9

#deTine PIR_DOUT 2 /f PIR digital output on D2
#define LED_PIN 13 // LED to illuminate on motion

vold setup()

serial.begin{960@);

£ aAnalog and digital pins should both be set as inputs:
pinMode{PIR_AOUT, INPUT};

pinMode(PIR_DOUT, INPUT}:

£ configure the motion indicator LED pin as an output
pinMode{LED_PIN, OUTPUT};
digitalWwrite{LED_PIN, LOW);

}

void loop{)
I

int motionStatus = digitalRead(PIR_DOUT);
if (motionstatus == HIGH)

digitglwrite(LED_PIN, HIGH}; // motion is detected
else

digitalwrite(LED _PIN, LOW);

/4 Convert 18-bit analog value to a voltane
unsigned int analogPIR = analogRead(PIR_AOUT);
flopat voltage = (float) analecgPIR 7 1624.0 * 5.0;
serial.print("val: ");

serial.printin(voltage};

Save it as ArduinoopenpPIR.

You can compile and upload the sketch to your Arduino board. Open the Serial
Monitor tool to see the program output. Now you can move your hand and see
the program output in the Serial Monitor tool.

Hall Effect sensor

The Hall Etfect sensor works on the principle of the Hall Effect of magnetic
fields. The sensor will generate a voltage that indicates whether the sensor is in
the proximity of a magnet or not. This sensor is useful to detect vehicular
presence, especially vehicles coming in and going out of the parking area.

There are ICs and modules that implement the Hall Effect. For instance, you can
use a transistor, US1881. You can read about and buy this sensor from SparkFun

(https://www.sparkfun.com/products/9312). This transistor may also be available in your
local electronic store:

Now we can try to develop sketch program to read a magnetic value from a Hall
Effect sensor. We will use the US1881. You can also use any Hall Effect chip
according to your use case. Firstly, we'll make our hardware wiring as follows:

US1881 VCC is connected to Arduino 5V
US1881 GND is connected to Arduino GND
US1881 OUT is connected to Arduino Digital 7

A resistor of 10K ohms is connected between US1881 VCC and US1881
OouT

You can see the complete hardware wiring here:

We can now start writing our sketch program. We'll use digitalread() to indicate a

magnet's presence. If the digital value is Low, we'll detect the magnet's presence.
Write this program:

int Led = 13 ;

int SENSOR = 7 ;
int wval,

void setup ()

Serial.begin{9caa);

pinModefLed, OUTPUT)

pinMode{SENSOR, INPUT)
}

r

void loop ()
{

val = digitalRead(SENSOR);
if (val == LOW)

digitalwrite (Led, HIGH);
serial.println{"Dpetected");

H
glse

{
digitalwrite (Led, LOW);

H
delay({1lgaa);

Save this sketch as arduinoHalieffect.

You can compile and upload the program to your Arduino board. To see the
program output, you can open the Serial Monitor tool from Arduino. For testing,

you can use a magnet and put it next to the sensor. You should see "Detected” on
the Serial Monitor tool.

Camera

A camera is a new approach for parking sensors. Using image processing and
machine learning, we can detect vehicles coming in to/going out of a parking
area. A camera is also useful for a vehicle's plate number detection.

If we implement a camera with a Raspberry Pi, we have many options. The
Raspberry Pi Foundation makes the otficial camera for Raspberry Pi. Currently,
the recommended camera is the camera module version 2. You can read about
and bl]},n’ it from hitps://www.raspberrypi.org/products/camera-module-v2/. YOU can see the the
Pi Camera module V2 here:

If you are working in low light conditions, the Pi Camera module V2 is not good
at taking photos and recording. The Raspberry Pi Foundation provides the Pi
Camera Noire V2. This camera can work in low light. You can find this product
at https://www.raspberrypi.org/products/pi-noir-camera-v2/. YOu can see the Pi Camera Noire
V2 here:

This camera module is connected to the Raspberry Pi through the CSI interface.

To use this camera, you should activate it in your OS. For instance, if we use the
Raspbian OS, we can activate the camera from the command line. You can type

this command:

% sudo apt-get update
% sudo raspi-config

After it is executed, you should get the following menu:

- & agusk — pi@raspbertypi: ~ — ssh pi@192.168.0.11 — 80x24

Raspberry Pi Software Configuration Tool (raspi-config)

1 Expand Filesystem Ensures that all of the SD card &
2 Change User Password Change password for the default u
3 Boot Options Choose whether to boot into a des
4 Wait for Network at Boot Chopse whether to wait for networ
3 Internaticnalisation Options Sel up language and regional sett
6 Enable Camera Enable this Pi to work with the R
7 Add to Rastrack Aadd this Pi to the online Raspber
8 Overclock Configure overclocking for your P
9 Advanced Options Configure advanced settings

‘® About raspi-config Information about this configurat

<Sglect> <Finish=

Select & enable camera to activate the camera on the Raspberry Pi. You'll get a
confirmation to enable the camera module, as shown here:

L] o agusk — pi@raspberrypi: ~—ssh pl@182.168.0.11 — B0=24

Enable support for Raspberry Pi camera?

<Disables

After this, Raspbian will reboot.

Now you can attach the Pi camera on the CSI interface. You can see my Pi
camera here:

After it's attached, it's recommended youn reboot your Raspberry Pi. If rebooting
is done, you can verify whether the camera on the CSI interface is detected or
not. You can use vcgencmd to check it. Type this command:

|$ vcgencmd get camera

You should see your camera detected in the terminal. For instance, you can see
my response from the Pi camera here:

» b agusk — pi@raspberrypi: ~ — ssh pi@192.168.0.11 — BOx21

pigraspberrypi:~ § vecgencmd get_camera
supported=1 detected=1
pigraspberrypi:~ $ [

For testing, we'll develop a Python application to take a photo and save it to local
storage. We'll use the ricamera object to access the camera.

Use this seript:

from picamera import PiCamera
from time import sleep

camera = PiCameral)

camera,.start_preview()

sleep(s)
camera.capture(' /home/pil/Documents/image. jpo')
camera.stop _preview()

print({"capture is done™)

Save it into a file called picamera_sti11.py. Now you can run this file on your
Terminal by typing this command:

|$ python picamera_still.py

If you succeed, you should see an image file, inage.jpo:

Vehicle entry/exit detection

A parking lot usually has an in-gate and out-gate. When a vehicle comes in, a
driver presses a button to a get parking ticket. Then, the gate opens. Some
parking places use a card as driver identity. After it is tapped, the gate will open.

Here's a real parking gate:

Source: http://queenland.co.id/secure-parking/

To build a parking in-gate, we can design one as shown in the following figure.
We put sensor devices on the left, right, and a front of a vehicle. You can use
sensor devices that we have learned about.

Parking ticket/card box

\ehicle comes Iﬁr Parking area

@ Sensor

For instance, we can use an ultrasonic sensor. We'll put some sensor devices on
the right, left, and front of the vehicle. The sensor device position in the gate is
shown in the following figure. All sensors acquire and obtain distance values,
dx. Then, we set a threshold value from a collection of distance values to
indicate whether a vehicle is present.

Gate

e e

dl d2 ds

:

. d6
d3 d4
e @

The out-gate has a similar design like the parking in-gate. You should modify the
gate and sensor position based on the gate's position and size. Each gate will be
identified as an in-gate or out-gate.

Payment box
— |
[BN]
— > ﬂuts_qﬁa
— Gata parking area
® @
Vehicle goes out 2 @ Sensar
- L]
Parking area

A gate will open if the driver has taken a parking ticket or taps a parking card.
This scenario can be made automatic. For instance, we put a camera in front of
the vehicle. This camera will detect the vehicle plate number. After detecting the
plate number of the vehicle, the parking gate will open.

We will learn how to detect and identify plate numbers on vehicles using a
camera in the next section.

Vehicle plate number detection

A smart parking system ensures all activities take place automatically. Rather
than reading a vehicle plate number manually, we can make it read a vehicle

plate number using a program through a camera. We can use the OpenALPR

library for reading vehicle plate numbers.

OpenALPR is an open source automatic license plate recognition library written
in C++ with bindings in C#, Java, Node.js, Go, and Python. You can visit the
official website at https://github.com/openalpr/openal pr.

We will install Open ALPR and test it with vehicle plate numbers in the next
section.

Installing OpenALPR

In this section, we will deploy Open ALPR on the Raspberry Pi. Since
OpenALPR needs more space on disk, make sure your Raspberry has space. You
may need to expand your storage size.

Before we install Open ALPR, we need to install some prerequisite libraries to
ensure correct installation. Make sure your Raspberry Pi is connected to the
internet. You can type these commands to install all prerequisite libraries:

% sudo apt-get update

sudo apt-get upgrade

sudo apt-get install autocont automake libtool

sudo apt-get install libleptonica-dev

sudo apt-get install libicu-dev libpangol.@-dev libcairoz-dev

sudo apt-get install cmake git libgtk2.e-dev pkg-config libavcodec-dev libavforma
sudo apt-get install python-dev python-numpy libjpeg-dev libpng-dev libtiff-dev 1
sudo apt-get install libgphotoZ-dev

sudo apt-get install virtualenvwrapper

sudo apt-get install liblogdcplus-dev

sudo apt-get install libcurl4-openssl-dew

sudo apt-get install autoconf-archive

W s e

Once this is done, we should install the required libraries, such as Leptonica,
Tesseract, and OpenCV. We will install them in the next few steps.

In this step, we'll install the Leptonica library. It's a library to perform image
processing and analysis. You can get more information about the Leptonica
library from the official website at http://www.leptanica.org. To install the library on
the Raspberry Pi, we'll download the source code trom Leptonica and then
compile it. Right now, we'll install the latest version of the Leptonica library,
version 1.74.1. You can use these commands:
% wget http://www.leptonica.org/source/leptonica-1.74.1.tar.gz

% gunzip leptonica-1.74.1.tar.gz

§ tar -xvf leptonica-1.74.1.ftar

% cd leptonica-1.74.1/

% ./configure

% make
& sudo make install

This installation takes more time, so ensure all prerequisite libraries have been
installed properly.

After installing the Leptonica library, we should install the Tesseract library. This
library is useful for processing OCR images. We'll install the Tesseract library
from its source code on https://github.com/tesseract-ocr/tesseract. The fGllDW‘iﬂg is a list of
commands to install the Tesseract library from source:
% git clone https://github.com/tesseract-ocr/tesseract

% cd tesseract/

% ./autogen.sh

§ ./configure

5 make -j2
% sudo make install

This installation process takes time. After it is done, you also can install data
training files for the Tesseract library using these commands:

% make training
% sudo make training-install

The last required library to install Open ALPR is OpenCV. It's a famous library
for computer vision. In this scenario, we will install OpenCV from source. It
takes up more space on disk, so your Raspberry Pi disk should have enough free
space. For demonstration, we'll install the latest OpenCV library. Version 3.2.0 is
available on hitps://github.com/opencv/opencv. You can find the contribution modules on
https://github.com/opencv/opency_contrib. We also need to install modules with the same
version as our OpenCV version.

First, we'll download and extract the OpenCV library and its modules. Type
these commands:

$ wget https://github.com/opencv/opencv/archive/3.2.6.zip
S mv 3.2.06.Zip opencv.zip
S unzip opencv.zip
% wget https://github.com/opencv/opency contrib/archive/s3.2.8.zip
Smv 3.2.8.zip opencv _contrib.zip
% unzip opencv_contrib.zip

Now we'll build and install OpenCV from source. Navigate your Terminal to the
folder where the OpenCV library was extracted. Let's suppose our OpenCV
contribution module has been installed at ~/oownisads/opency_contrib-3.2.8/modules.
You can change this based on where your OpenCV contribution module folder
was extracted.
% cd opencv-3.2.8/
$ mkdir build

5 cd build/
% cmake -D CMAKE BUILD TYPE=RELEASE *

-D CMAKE_ INSTALL PREFIX=/usr/local %
-D INSTALL PVTHON EXAMPLES=0N %
-D OPENCY EXTRA MODULES PATH=-~/Downloads/opencv contrib-3.2,0/modules
=D BUILD EXAMPLES=0N ..
% make
% sudo make install
% sudo ldconTig

This installation takes a while. It may take over two hours. Make sure there is no
error in the installation process.

Finally, we'll install Open ALPR from source:

% git clone https://qithub.com/openalpr/openalpr.git
cd openalpr/src/

cmake ./

make

sude make install

sudo ldconfig

W oW N

After all this is installed, you are ready for testing. If it's not, resolve your errors
before moving to the testing section.

Testing vehicle plate number
detection

Now that we've installed OpenALPR on our Raspberry Pi, we can test it using
several vehicle plate numbers.

For instance, we have a plate number image here. The number is sruxzs1. We can
call aipr:

% alpr 1p.jpo
plated: 10 results

- BRUX251 confidence: 95.1969
- BRUXZS1 confidence: 87.8443
- GRUXZ51 confidence: B85.4606
- BRUXZ5I confidence; 85,4857
- BROX251 confidence: 85.3351
- BRDX251 confidence: 84.7451
- GREX251 confidence: B84.7644
- BROX251 confidence; 82.9%933
- BRUXZIS1 confidence: 78.1079
- BRUXZSI confidence: 78.053

You can see the that the result is 6RUX 251 with a confidence of 95.1969%.

.-

Wl
6RUX251

Source image + hetpiiimgur.com/pjuk RD0.jpg

The second demo for testing is a plate number from Germany, in the file
Germany_gsMd.ipg. YOU can see it in the next image. The number is excses. Let's test it
using aplr:

|5 alpr Germany BMW.Jjpg

plated: 18 results
- 3X65C confidence: 960.076
- XGSC confidence:; B82.3237
- SXG5C confidence: BD.8762
- BXGEC confidence: 79.8428
- 3XG5E confTidence: T78.3885
- 3XG5C confidence: 77.9784
- 3X65C confidence: 76.9785
- 365G confidence: 72.5481
- 3XG5 confidence; 71.3987
- XGSE confidence:; 79.6362

You can see that the result is not good. Now we'll specify that it is a plate
number from Europe by passing the eu parameter.

% alpr -c eu Germany BMW.Jjpg
plated: 18 results

- BOXGSOE confidence: 91.6681

- BXG565 confidence: 90.5201
- BOXG505 confidence: 89.6625

- BEXG505 confidence: 84.26605

- BOXGSDE confidence: B83.6188

- BAXG50Q5 confidence: 83.1674

- BXGS505 confidence: 83.1125
- BEXGSGE confidence: 82.485

- BXGEDS confidence: 82.4708
- BOXG505 confidence; 82,2548

Now you can see that the plate number is detected correctly with a confidence
90.5201%.

Source image: hup://vehicleplatex6.blogspot.co.id/2012/06/

Vacant parking space detection

In a smart parking system, information about vacant parking spaces is important.
A simple method to identify how many vacant spaces are available is to count
the difference between the parking lot capacity and the number of vehicles
currently in the lot. This approach has a disadvantage because we don't know
which parking areas are vacant. Suppose a parking lot has four levels. We should
know whether a parking area level is full or not.

Suppose we have a parking area as shown in the next image. We can identify
how many vacant parking spaces there are using image processing and pattern
recognition.

Source iIl'lElgE' + https://www.hotels.com/ho557827 jakarta-madrix-jakarta-indonesia/

A simple way to detect vacant parking spaces is to apply the background
subtraction method. If you use the OpenCV library, you can learn this method
with this tutorial: http://docs.opencv.org/3.2.0/d1/dc5/utorial_background_subtraction.html.

The idea is that we capture all of the parking area without any vehicles. This will

be used as a baseline background. Next, we can check whether a vehicle is
present or not.

THRESHOLD
T

l foreground mask

—>

.

Source iITngE‘: http://docs.opencv.org/3.2.0/d1 /dcS/tutorial_background _subtraction.himl

For another test, you can run a sample demo from htps:/github.com/eladj/detect Parking.
This application requires the OpenCV library. The application uses a template
file to detect vehicle presence. For testing, you should run it on desktop mode.
Open a terminal and run these commands:
% git clone https://github.com/eladj/detectParkin
% cd detectParking/cpp/

% g++ -Wall -g -std=c++11 "pkg-config --cflags --libs opencv’™ ./".cpp -o ./detect-p
§ ./detect-parking ../datasets/parkinglot _1_480p.mp4 ../ /datasets/parkinglot 1.txt

You should see parking space detection as shown here:

'hlmn. "..;ﬁt Bl = | 7 -ﬂ'T.__.'fﬁxﬁ'.-‘-‘.?rﬁ"_'-' = [:“_'“ n_h_l = 'A.":‘ I__%LHULIH

‘Wagtetashst

It you want to learn more about parking space detection and test your algorithm,
you can use a dataset for testing from hup://web.inf.ufpe.br/vri/news/parking-lot-database.

A parking management system

We have built sensors for detecting vehicle entry/exit and plate numbers. All
those systems should be connected to a central system. This could be called a
core system. To build a core system for parking, we could design and develop a
parking management system. It's software which can use any platform, such as
Java, .NET, Node.js, Python.

In general, a parking management system can be described as follows:

Wish
Application

RESTTul/MOTT

Core Parking System Application

From this figure, we can explain each component as follows:

» Core parking system application is the main application for the parking
system. This application is responsible for processing and querying data for
all vehicles and sensors.

» Web application is a public application that serves parking information,
such as capacity and current vacant parking space.

» RESTful/MQTT is an application interface to serve JSON or MQTT for
mobile and sensor applications.

» Database is a database server that is used to store all data related to the
parking application.

A database server is used to store all transactions in the parking system. We need
to design a database schema based on our use case. Your database design should
have plate number as transaction key. We'll record data for vehicle entry/exit.
Lastly, you should design a parking pricing model. A simple pricing model is
hourly--the vehicle will be charged at hourly intervals.

Now you can design your database. For demonstration, you can see my database
design here:

1 Venicle v | Parking v
id INT A & INT : = : Sac : -. ; : =
s platd et Y ARCHAR (43 -i vohiald INT i INT
L : ki DATETIME park section_ama VARGHAR!5)
P
I park ot DATETIME | eapasity INT
L— 4 : i — N
path piace d INT # Parking i INT
jmm v pate_in VARCHARL15) L 4
d INT gaie_oul VARCHARIME)
patk_cude VASCHAR|4D) | @ VB T
»

poce_per hour FLOAT
»

Here's an explanation of each table:

= ParkingSystem is general information about the current parking lot. You
can set an identity for your parking lot. This is useful if you want to deploy
many parking spaces at different locations.

» Vehicle is vehicle information. We should at least have plate numbers of
vehicles.

» ParkingSectionArea is information about the parking section areas. It's
used if you have many parking sub-areas in one parking location.

» Parking is a transaction table. This consists of vehicle information such as
vehicle in/out time.

Again, this is a simple database design that may fit with your use case. You can
extend it based on your problem.

Building a smart parking system

Building a smart parking system needs several components to make it work.
These components can be software and hardware. In general, a smart parking
system can be described as follows:

WeD
s RESTHl T
/ g \N'N-__‘
Core. Parking St Applieanion
SEnsor
=
Mobile App Dt Iﬁs'u:

Publis petwark Internal netwark

A parking application system consists of application modules that manage each
task. For instance, the web application is designed as an interface for user
interaction. All data will be saved into a storage server, such as MySQL,
MariaDB, PostgreSQL, Oracle, or SQL Server.

All sensors are connected to a board system. You can use Arduino or Raspberry
Pi. The sensor will detect vehicle entry/exit and plate numbers.

Firstly, we design a smart parking system in a building. We put a camera and
sensors on each floor in the building. You also build gates for vehicle entry/exit
with sensors. Lastly, we deploy a core parking system in the building. Building
infrastructure is built to connect all sensors to the core system. You can see the
infrastructure deployment here:

[m...,]

3™ Floor

2% Figor

17 Floor

1k

l-‘lrtl[.]l

Syubeai

=

Summary

We learned what a smart parking system is and explored sensor devices that are
used in a smart parking system. We also implemented core components of such a
smart parking system.

In the next chapter, we'll review a vending machine and try to build a prototype.

Making Your Own Vending Machine

A vending machine is an automated machine that sells products such as snacks,
beverages, cigarettes, and so on. Some vending machines sell tickets, puppets,
and shirts. In this chapter, we will explore various vending machine technologies
so you can build your own vending machine.

We will cover the following topics:

Introducing vending machines
Designing a vending machine

Central control machine

Detecting coins for payments

Building UI and UX for user interaction
Designing a database model

Building the vending machine

Let's get started!

Introducing vending machines

In cities, you can find many vending machines at airports, bus terminals, offices,
and campuses. Imagine you are at a bus terminal and you are thirsty. You can
buy a beverage bottle directly from a vending machine. This is one of the
scenarios of vending machines' operating environment.

A vending machine consists of various products. Users can select the product
that they want to buy. After selecting the product, users pay by inserting coins or
payment cards such as debit/credit cards. If payment is confirmed, the vending
machine will deliver the selected product to the users.

You can see a vending machine in the following figure. You can check it out at
tpsi//www.samsclub.com/sams/seaga- 1 b-snack-and-14-beverage-full-size-combo-machine/117240.ip:

In this chapter, we'll learn and explore how vending machines work and how to
build one for your own targets and purposes.

Designing a vending machine

Building a vending machine requires more attention to designing that usual. In
general, we can design a vending machine system with the following parts:

Machine cabinet

Product storage

Central processor machine
Payment system

User interface and experience

In this book, we won't explore machine cabinet and product storage for vending
machines. You can review vending machine spare parts on this site: https://www.ven

dingworld.com/vending-machine-paris.

In general, a vending machine model can be described as follows:

Vending Machine System

Information
Display

User Product

: 0 selaction Input !
I U Fa :
1 T — Managamem SBTr '||'I'I'IEI'I'! Iser |
i R ding. Input Interface i
| = and }
i Payment System Experlence !
. - Product Delivery ;

Refund Delivery

Baclk-End System Front-End System

A central processing machine can control all the processes in a vending machine.
It can control a user's input and deliver the product. We can use Raspberry Pi and
Arduino as a central processing machine since these boards provide GPIO for
sensor and actuator devices.

Product management addresses product tracking and ensures that the product
delivery is correct. In one scenario, if your vending machine is connected to the

internet, the machine can inform the administrator about the current product
stock.

Payvment method is one of the problems in vending machines. We should be able
to identify coin types and their value. This has potential problems of fraud. Some
vending machines allow payment using debit/credit cards.

Central control machine

Most vending machine use FPGA to control all processes and transactions. One
of the core controls of a vending machine is the AMS Sensit 2 PC board that you

can see here:

For further information about this machine, you can go to hups:/www.vendingwarld.co

m/ams-sensit-2-pc-board.php.

For a simple vending machine, you can use an Arduino bhoard as the control unit
in your vending machine. Arduino provides more digital and analog /O pins that
you can attach to the machine. You can extend these [/O pins using additional
ICs.

Maoreover, we can use your Raspberry Pi as a control unit for your vending
machine. The Raspberry Pi has capabilities of a computer with low-end features.
You can use desktop libraries such as OpenCV with Raspberry Pi to perform
image processing and detection.

Detecting coins for payments

Most vending machines use coins as a payment method. Detecting coins is
tricky. A potential problem is fraud. A coin may be actual money or a custom
coin. Using custom coins, users can defraud the system.

A sample of coins used in European countries can be seen here:

In this section, we'll explore two methods to detect coins. The first method is to
detect by weight. The second method is to detect coins using optical sensors
such as cameras. We'll explore these methods in the next section.

Detecting coin weight

In some cases, each coin has a unique weight. From this scenario, we can detect
the kind of coin that the user enters into a vending machine. There are many
weight sensors with various specific precision features.

The digital weight sensor Gravity, from DFRobot, is one weight sensor that you
can use for your vending machine. You can buy this product from heps://www.dfrobo
t.com/product-1031.html. This sensor is a complete kit so you can use it directly with
your Arduino board. You can see this sensor here:

It uses an HX711 IC to measure object weight. You can buy the HX711 module
and load cells of different models. For instance, you can use the HX711 module
from SparkFun (https://www.sparkfun.com/products/13879) and a load cell from SparkFun

(https://www.spark fun.com/products/13329 and hitps://www.sparkfun.com/products/13332). You can
see an HX711 module, called a Load Cell Amp, here:

For demonstration, we'll try to measure coin weight using DFRobot's Gravity
sensor on an Arduino board. Based on its documentation, we can connect
Gravity to Arduino through analog inputs with the following wiring:

= Sensor DOUT pin to Arduino A2 pin
#= Sensor SCK pin to Arduino A3 pin

You can see the complete wiring here below:

Source; image from DFRobot (hitp://'www.dfrobot.com)

The wiring needs an I/0 expansion shield for the Arduino (htps://www.dfrobot.com/pro
duct-1009.htm1) in order for the digital weight sensor to be attached, but you can
connect this weight sensor to the Arduino directly. Connect the sensor DOUT
and SCK pins to Arduino Analog A2 and A3 pins.

After completing the hardware wiring, we need some coins for testing. In this
case, I'll use three coins: 1 euro, 50 euro cents, and 20 euro cents. You can see
my wiring and euro coin samples here:

Now we can write a sketch program to measure the coin weight. You can open
your Arduino IDE to write the sketch program. To access the HX711 IC on
Arduino, we need an additional library that you can download and extract from
ttps://github.com/aguegu/ardulibs/tree/master/hx711. Put this library as the Hx711 folder
inside the Arduino libraries folder. You can see the HX711 library on my
computer here:

Aduke . R . ArduneCloud v o= He?1%.c0p
i Arduinndson # b HKF11.h
! BzursloT "
1 Bridge !
: CurieEEPROM ’
. CuirigihiLl ¥
! OHT _sensof library »
¢ EasyWH ¥
X EasyVRA-Arduino -
1 EMICZ-mastar ¥
1 Flrrmats »
1 FreeRTOS "
i Hx711 "
A LlguidCrystal *
: LowPower »
§ MOTT .
” NewPing .
2 BlE32 SR .
: PubSubClignt *
. Pushbuiton -
’ CTRSensors "

RadioHead ®

soodocg tut

We develop a sketch program to measure object weight. We'll call it geteram()
since it gets object weight in grams. Write the following program:

A4 HET11.D0UT - pin #A2
£f HET11.SCK - pin #A3

#include =Hx711.h=
Hx711 scale(a2, A3);

vold setup() {
serial.beogin{9cea);
1

vold loop{) {
serial.print{"Coin; ");
Serial.print{scale.getGram(), 1);
serial.printin(™ ao");
delay(508);

1

Save and upload the program to your Ardnino board. Then you can open the
Serial Monitor tool from Arduino to see the program ountput.

Make sure you put the load cell in the correct position. You can see my load cell
here:

You can see the current object's weight in the Serial Monitor tool. At first, you'll
see approximately 0 grams. Then, try putting a coin onto the load cell. You can
note the total weight before and after measurement. You can also can perform a
calibration on the sensor.

ful o fdevieu isbmodem 1421 (Arduing Lecnardn)

| Sand

L =T |
Coin: 9.5 g
Coin; -G.4
Coiny 25:
Coin; 15,
Coin; 16.
Coin: 15.
Coin: 15,
Coimy 15.
Coim: 15,
Coin: 15,
Cain: 15.
Coin: 15.
Coin; 15,

mAD oD

Bl Pud Pod Pul =t = e et D e

mD.gE

M Autoscioll Both NL & CR E FR00 baud h Clear output

Based on my experiments with the digital weight sensor from DFRobot and Euro
coins, I have the following results:

Coin model Weight Original weight

1 euro (€1) 6.7 grams | 7.5 grams

o0 euro cents (€0.50) | 7.1 grams | 7.8 grams

20 euro cents (€0.20) | 4.5 grams | 5.74 grams

To improve accuracy, we can make calibrations or change the measurement box.
Since the sensor has a weight range of 1 kg, we may change a load cell with a
low weight range to enhance our measurement.

Detecting coins using optical sensing

One of the common methods to detect a coin is using optical sensors such as
cameras. We can identify various coin models. You can connect your camera to
embedded systems such as Raspberry Pi. Then, you can perform image
processing using OpenCV. We will try this on next. Please install OpenCV for
yvour platform. Please read hup://opencv.org for installation process.

For testing, we'll develop a Python application to detect coins. I'll use Euro coins
for demonstration. The application will detect 1 euro. The easier method to
detect coins is to implement template matching. We extract an image as a source
for a template.

Then, we try to match that image:

To write a program, your platform should have OpenCV with Python bindings
installed. Consider that we have a file, 1eura. jpg, for template matching source
and coins. jpg file for testing.

Now we'll write our Python program. You can write this script:

import cw2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('coins.JPG', 8}

img2 = img.copy()

template = cvz.imread('leuro.JPG',0)
img3 = template.copy()

W, h = template.shapef[::-1]

Apply template Matching
res = cv2.matchTemplate{img, template, cv2.TM_CCOEFF)
min_wval, max_wval, min_loc, max_loc = cvZ.minMaxLoc{res)

top_lefi = max_loc
hottem_right = (top_left[8] + w, top_left[1] + h)
cv2.rectangle{img, top_left, bottom_right, (©,255,255), 58)

plt.subplot(221),plt.imshow(img2)

plt.title('Ooriginal Picture')

plt.subplot(222), plt.imshow(imo3)

plt.title('Template")

plt.subplot(223), plt.imshow(img)

plt.title('Detect 1 euro coin')

plt.suptitle{ ' Template matching using TM_CCOEFF method')

plt.show()

Save this script to a file called coindetect.py. After that, you can run this program
by typing this command:

| % python coindetect.py

After executing the program, you should see a dialog that shows that a 1-euro
coin is detected. You can see a sample program output here:

Template matching using TM_CCOEFF method

Template

1000

1. Firstly, we load the template and tested files.

img = cv2.imread('coins.JPG', @)
img2 = img.copy()

template = cv2.imread({'leuroc.JPG', @}
img3 = template.copy()

w, h = template.shapel[::-1]

2. Then, we apply our template matching method by calling matenrempiate()
with the _ccoerr parameter. For further information about this function,
read the OpenCV documentation at http://docs.opency.org/3.0-beta/doc/tutorials/imgproc
/histegrams/template_matching/template_matching html:

res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF)
min_wval, max_wal, min_loc, max loc = cwv2.minMaxLoc{res)

3. If amatch is found to the template file on the target image, we draw a
rectangle on the image:
top left = max loc

hottom_right = (top_left[e] + w, top left[1] + h)
cv2.rectangle{img, top_left, bottom_right, (@,255,255), 58)

4. Lastly, we plot all results of our computation:

plt.subplot(221),plt.imshow(ing2)
plt.title('original Picture')
plt.subplot(222), plt.imshoW(img3)
plt.title{'Template")
plt.subplot(223),plt.imshow(img)

plt.title('Detect 1 euro coin')
plt.suptitle('Template matching using TM_CCOEFF method')
plt.show()

For your experiments, you can modify parameters of matchrempiate) to get more
accuracy.

The template-matching method has a disadvantage. If a coin is rotated, this method
cannot detect it. You should rotate the coin image to fit your template source.

Building UI and UX for user
interaction

UT (user interface) and UX (user experience) are two parameters that are used for
user interaction. A user can select products, pay, and take selected products. This
is the normal flow in a vending machine.

In this section, we'll explore some UI and UX for vending machine.

Display interfacing

A simple display that can be used with Arduino or Raspberry Pi is an LCD of
16x2 characters. It consists of 16 characters in 2 lines. This LCD module is a
low-cost display and easy to use. You can see the form of the LCD 16x2 display
here:

If you use LCD 16x2 characters with an Arduino, we can use the LiquidCrystal
]ibrar},r. You can read about it at https://www.arduino.cc/en/Reference/LiquidCrystal. 1
recommend you test with the Heilo worid tutorial from Arduino on this site: hitps://w

ww.drduino.cc/en/Totorial/ HelloWarld:

#include =Liguidcrystal.h=

Af Anitialize the library with the numbers of the interface pins
LiguidCrystal lcd(i2, 11, 5, 4, 3, 2);

vold setup() {
£/ seC up the LCD's number of columns and rows:
lcd.begin{is, 2);
S Print a message to the LCD.
lcd.print{"vending machine!"};

b

vold loop() {
/¢ set the cursor to column &, line 1
£ (note:; linme 1 is the second row, since counting begins with 8):
lcd.setCursor({a, 1);
S print the number of seconds since reset:
lcd.print({millis{) / 1888);

Compile and upload this sketch to Arduino. You should see vending machine! on
the LCD 16x2 characters module.

Currently, display technology is grow in fast. Touchscreen displays can be used

for your vending machine design. For instance, if your core system in the
vending machine uses Raspberry Pi, you can use the official Raspberry Pi 7"
touchscreen diEp]El}?. You can buy It on https://www.raspberrypi.org/products/raspberry-pi-touc
h-display/. You can see this display model here:

Follow the assembly instructions for the display from the datasheet document,
which included in the box. You can use this assembly file from Adafruit: hitps:/cdn
-shop.adafruit.com/product-files/27 18/2718build.jpa.

After constructing the display, you should upgrade and install some libraries on
Raspberry Pi's Raspbian OS. You can type these commands:
% sudo apt-get update
% sudo apt-get upgrade
% sudo apt-get dist-upagrade

% sudo apt-get install raspberrypi-ui-mods
% sudo apt-get install raspberrypi-net-mods

Now you can work with the Raspberry Pi 7" touchscreen display like on a tablet.

You can use a UI on Raspberry Pi using a browser. You can create a web
application and then that browser inside Raspberry Pi will call it.

Make sure your Raspberry Pi is started in GUI mode. You can configure this via
the raspi-config tool. You can call it by typing this command:

| $ sudo raspi-config

After it has executed, you should see this menu:

Raspberry PL-Software Configuratlon Fool (raspl-config)

1 Change User Password Change password for the default o
1 Hastrams Set the vicible name for thiz Pi
} Boot Options Conflgure options for start-up

4 Localisation Cptlons Set up language and regional sett
5 Interfacing Ooptions Cenfligure: connectlions to peripher
& Overclochk Cenfigure ocwerclocking for your P
7 Advancad Options Configure advanced settings

B Update Update this tool to the latest ve
9 About raspl-config Informaticn about this configurat

<Selects <Finish=

Select 3 soot options 50 you have options to select Desktop/CLI for starting on
Raspbian boot:

Raspherry Pi Software Configuratinn Toal |raspi-configl
Bl besktop / CLI Chogse whether to Boot into a des
B2 wWait for Network at Boot Choose whethar to wait for networ
A3 Splash Screen Chonse graphical splash screen or
<Select> <Hack>

Let's assume we use the Chromium browser on Raspbian Jessie to run our web
application. You can install it on Raspberry Pi:

% sudo apt-get update
% sudo apt-get upgrade
% sudo apt-get install unclutter

Then, we configure autostart on Raspberry Pi. Type this command:

|5 nano -/.config/lxsession/LXDE-pifautostart

You can modity this script:

@lxpanel --profTile LXDE-pil

@pcmanftm --desktop --profile LXDE-pi

@xset s off

xset -dpms

@xset s noblank

@sed -1 's/"exited cleanly"; fTalse/"exited cleanly": trues/' ~/.conflg/chromium-browser
mchromium-browser --noerrdialogs --kiosk [URL] --incognito --disable-translate

Change furi] to the urL of your web application. It can be a local web or remote
web application.

Now vou can reboot your Raspberry Pi. Once rebooting is complete, you should
see the browser open your web application.

Input interfacing

An input interface is a module that is used to get input from users. Input
interfacing is applied to vending machines in order to have user interaction.
Users can select a product that they want to buy. Each product has labels so users
only select a product from the input interface by pressing the product label.

A simple input module is the Membrane 3x4 Matrix Keypad from Adafruit: heps:/
/www.adafruit.com/product/419. This module provides 3x4 inputs that Arduino or
Raspberry Pi can read. You can see the Membrane 3x4 Matrix Keypad here:

[also found another input from Banggood. It's a 4x4 Matrix Keypad that is made
with buttons. You can see it here:.

To use this keypad, we should know how many keys are there on the keypad. If
we implement it in Arduino, we can use Keypad Library for Arduino: htp:/playgro
und.arduino.cc/Code/Kevpad. You can download this library and put it in the Arduino
libraries folder.

Consider we use a 3x4 matrix keypad module to attach to the Arduino board.
You can write this sketch program:

#include =¥Keypad,h=

const byte ROWS 4; f/Tour rows
const byte COLS 3; SS/three columns
char keys[ROWS][COLS] = {

{Illplzl.; I:irj_‘l

{I'q'lrrﬁl.l IE:]'J

{7108, ey,

{.ﬁ1rral.| |a-r}
H
Afconnect to the row pinouts of the keypad
byte rowPins[ROWS] = {5, 4, 3, 2},
Afconnect to the column pinouts of the keypad
byte colPins[CoOLS] = {8, 7, 6};

keypad keypad = Keypad(makekeymap{keys), rowPins, colPins, ROWS, COLS);

void setup(){
serial.begin{gcaa);
I

void loop(){
char key = kevpad.getiey();

it (key 1= NO_KEY}{
Serial.printin{key);
1
I

Compile and upload this program to your Arduino board.

Now you can open the Serial Monitor tool from Arduino to see the program
output. You can press any keypad on the module in order to see the program
output.

If you use the Raspberry Pi 7" touchscreen display, we can use matchbox
keyboard software to enter data. You can install it by typing these commands:
% sudo apt-get update

% sudo apt-get upgrade
% sudo apt-get install matchbox-keyboard

If done, you can reboot your Raspberry Pi. Now you can see the matchbox
kevboard. You can find this keyboard from wenu => accessories >> kevsoaro,

' [T, = o} | [3z
Ewe 1 2 3 o 5 1] T B n o = Barap Vrirmm Paklp
THD q W L r L ¥] i o P { ¥ § Eng Peln

-] CIrl AT » T - Ly

Designing a database model

If you have a vending machine with various products and payment methods, it's
recommended you use a database to store all transactions in the vending
machine.

Three data points that you should take care about are product, transaction, and
machine vending capabilities. In general, we can describe the core database

idProdus INT | Transaction v
product code VARGHAR{0) Tranzachon INT
produgt vonong_ coda VARCHAR]S) guancly INT
product namea YARCHAR! 304 fudi 1| prica FLOAT
price FLOAT R

quantty INT

Irassachon_ dale DATETIME

idFrocuct INT
* ¥ Preduct i Praduct INT

ey e im0 VARCHAR 10

I Vending v <
u‘-l'm:u.ln;r.] INT
maching code VAHGHAR{1E]
mashire _rame W ARCHARGH)
sapaelny INT
sayment_mathod VARGHARED
Deation Wi RO A RO

design as follows:

The product table consists of product information, including quantity and price. If
vou look at the schema in the figure, there are two fields: product code and
product_vending_code. product_code is the internal manufacturing identity that the
system will use for all transactions. You can put Stock Keeping Unit (SKU)
data into this field. Each product usually has an SKU ID so we can use it for our
product identity. Otherwise, the product_vending_code field is designed for identity
numbers on vending machines. These are the number that users see and select to
buy on the vending machine. They're usually two- to five-digit numbers
depending on how many producis are in the vending machine.

The Transaction table is used for storing all transactions that occur in the vending
machine. This is useful for logging and tracking. If the vending machine is

connected to the internet, we can identify the current stock of each product
remotely. Once product stock is low; we can deliver new products to the vending
machine.

Lastly, the vending table keeps information about machine capabilities such as
product capacity, payment method, location, and so on. You can put all general
information about the vending machine here.

This is a simple database design. You can extend it based on your use case and
target while building your vending machine.

Building the vending machine

Building a vending machine is a process of integrating and combining several
aspects of technology. Starting to build a cabinet for vending machine and
designing coin and card payment method. This book does not explain to build a
cabinet. Please try to look for information about building a cabinet for vending
machine.

Technically, a vending machine is a finite state machine (FSM). The machine
works under its states. Each state has been defined for input and output. A simple
FSM for a vending machine can be described as follows:

[Select Product J

|

‘-‘-\-‘“\‘

Start with the Select Product state. It waits for input from the user. Once it is
selected, the user can enter coins for the selected product. If the user cancels the
transaction, the money will be refunded. If not, the system will validate the coins
and compare it to the product price. If it's valid, the system will deliver the
selected product.

In our implementation, we can use a Raspberry Pi as the central unit for the
vending machine. The Raspberry Pi will control input from the user and handle
product selection processing. It usually uses a motor, so we need relay modules
to communicate with them.

Displ

| oy
m f‘.‘\ A

The advantage of using a Raspberry Pi for vending machine implementation is to
get the rich features it offers in computing and [oT capabilities. You can make a
cluster of vending machines that can be controlled remotely.

Summary

We learned about designing a vending machine and its technology in this
chapter. Various core technological aspects were also explored in order to get
insight on how to build a vending machine, such as detecting coins and building
UI and UX for user interaction.

In the next chapter, we will explore smart digital advertising and the technology
that is used to build such a system.

A Smart Digital Advertising
Dashboard

Every product and service should be marketed in order to get maximum sales. In
this chapter, we'll learn to explore digital signage systems, including smart
systems. We'll starting with reviewing existing digital signage platforms and go
on to designing a smart digital advertising system and adding sensor devices to
it.

We'll learn the following topics:

Introducing smart digital advertising dashboards
Exploring digital signage platforms

Designing a smart digital advertising system
Detecting human presence

Displaying and delivering ad content

Building a smart digital advertising dashboard

Let's get started!

Introducing smart digital advertising
dashboards

While staying in a hotel or working in an office building, you may see a monitor
with information. The content could be information about the building or
advertising content such as product information.

For instance, look at the monitor with advertising content near the lift in the
following image. You may see one in your office or mall building.

Source ilTlElgE': https://onelan.com/case-studies/corporate/ pwe-a-communication-tool-to-reach-2000-
emplovees. himl

Another example you may see is the advertising monitors in airports on the
walls:

Source iﬂ]ﬂgE‘: http:/fwiww.digitalsignage.com.au/dsn/markets/airports.php

Products and services need to be marketed so people can know about them. It's
important because if people need stuff or services that we are selling, they will
contact us to get further information. It's an opportunity!

In this chapter, we'll learn to explore digital signage platforms to deliver ad
content such as text, image, and video. We'll add features to the digital signage
platform with specific intelligence to get optimized marketing programs.

Exploring digital signage platforms

Building a digital signage system for advertising needs more knowledge in
implementing the system. Some companies and communities have built good
digital signage platforms. In this section, we will review some platforms that can
be deployed on the Raspberry Pi.

1Play

1Play is a digital signage system based on the Raspberry Pi (Pi Zero and Pi 1,2,
and 3). It supports images, videos, RTSP video streaming, and HTML5 content.
The content is pushed from a cloud server. You can also manage all content from
a system. This platform is not free but you can try 1Play with a 30-day free trial.
If you're interested, you can visit the official website at htips://1play.tv/.

Screenly

Screenly is a digital signage platform-based web application. They provide
commercial and open source editions. All ad content such as image, video, and
links can be managed easily. Their official website is https:/www.screenly.io. For the
open source edition, you can read the installation instructions on hups://www.screenly.

infosel.

With respect to the Screenly open source edition, you can deploy it with a
custom image that is provided by Screenly. You can download it from hitps:/github.
com/screenly/screenly-ose/releases, If you have a Raspberry Pi with Raspbian Jessie, you
can install it directly into your Raspberry Pi. Just open terminal and type this
command:

|$ bash ={curl -sL https://www.screenly.io/install-ose.sh)

After it's installed and rebooted, you can see the Screenly dashboard. You can
manage ad content by calling the URL nttp://<server>:8e8e on your remote web
server. Don't run the web browser on your local Raspberry Pi. You can see the
Screenly management page here:

aa0 Bt iy O]

Lo e |)| P e Ao eLR I DT = | Q|
w[r 0eE & Semrg & Eyimm mii
»
Schedule Overview
Mimsma Stard End
@ Sermaryiog LGOI TR0 PR 0ASHNRENI OT98a0 P L] “ o
& Blariatiy Ligo AT DR 1R00 PR DARRRID O %00 P P | “ o=

Want fo gt men ok of SeraanhyT Tey Ecrwsniy Peo.

T HHFANE i ree, i WRELGAD

Source image: https://www.screenly.io/ose/

Screenly is built using Python and runs on a web server called nginx. You can
modify it for your use case. For further information about Screenly's open source
edition ,» 20 10 https://github.com/screenly/screenly-ose.

Xibo

Xibo is an open source digital signage system. It provides ad content such as
videos, images, RSS, text, clocks, tabular data, and so on. You can manage a
schedule for ad content via a CMS portal. Xibo uses a PHP web application to
deliver content and MySQL as database storage. For further information about
Xibo, you can download and install it on hup:/xibo.org.uk.

Concerto

Concerto is a web-based digital signage system. Using Concerto, we can build
digital signage systems to deliver ad content on the Raspberry Pi. It uses
MySQL, SQLite, and Postgres for database options. It also provides a CMS
system to manage your ad content. The official website of Concerto can be
found at hitp:/fwww.concerio-signage.org.

Designing a smart digital advertising
system

A key part of building a smart digital advertising system is to deliver ad content
and get insight. In general, we can build a digital advertising dashboard or digital
signage system using a desktop or web application. This application will act as
content host to deliver ad content. You can see a simple architecture of a digital
signage system here:

Ay e e

Dt

DLy

The Ads System can be a desktop or web application. There is a local database
to store ad content. The application will show ad content periodically.

In some cases, we can deploy multiple ad servers at several locations. We'll build
a central database so ad content can be pushed to each local ad server. We also
can design to deliver ad content based on location. It means each local ad server
has a different ad location. In general, we can build a hybrid centralization and
decentralization model as shown in this figure:

You can see from this figure that we need internet to connect between the server
and local ad servers. Depending on your ad content type and size, we should

estimate network bandwidth capacity in order to deliver ad content well. Ads
content can be pushed to the local server at certain periods.

To make our digital signage system smarter, we can add intelligence features, for
instance, detecting human presence while ad content is showing. The system
should record that information and store it into a local server.

Getting information about the number of people watching ad content is
necessary. We can record this information into a database. From that, we can get
insight in order to determine the peak season for showing ad content.

In general, we can add a machine learning algorithm into the sensor device to
obtain the density of human presence. You can see this in the following figure of
a general architecture:

Mach|ne Learning System

Loaal
Databass

A Syntem

[lsplay

In a real-life implementation, we can use any sensor, including optical sensors
like cameras, to detect human presence. We will discuss this in the next section.

Detecting human presence

In this section, we will explore some methods of detecting human presence. It's
useful to deliver optimized ad content with information about the number of
people watching a monitor. We can configure TV/monitor to go to sleep when
there are no people in the area.

PIR motion sensor

A Passive Infrared Detection (PIR) motion sensor is used to detect object
movement. We can use this sensor to detect human presence. You can find PIR
sensors at SeeedStudio (https://www.seeedstudio,com/PIR-Maotion-Sensor-Large-Lens-version-p-19
76.html), Adafruit {hltps:.".’m-.m,adat‘mit.cnmf'pmduct.fIEH"J, and SPEll'i(Fl]l‘l (https://www.sparkfun.
com/products/13285). A PIR motion sensor usually has three pins: VCC, GND, and
OUT. The OUT pin is the digital output; if we get value 1, it means motion is
detected.

You can see the PIR sensor from SeeedStudio here:

There's another PIR motion sensor from SparkFun, the SparkFun OpenPIR: htps:/
fwww.sparkfun.com/products/13968. This sensor provides analog output so that we can
adjust the motion-detection value. Here's how it looks:

We learned how to use this sensor in Chapter 2, A Smart Parking System. You can
try using it to detect human presence.

Ultrasonic sensor - HC-SR04

The HC-SR04 is a cheap ultrasonic sensor. It is used to measure the range
between itself and an object. Each HC-SR04 module includes an ultrasonic
transmitter, a receiver, and a control circuit. You can use this sensor to detect
human presence in a range of 2 cm to 5 cm, depending on sensor accuracy.

In general, the HC-SR04 module has four pins: GND, VCC, Trigger, and Echo.
You can see the HC-SR04 from SparkFun (https://www.sparkfun.com/products/13958) in
the following image. You can also find this sensor on SeeedStudio: hitps://www.seee
dstudio.com/Ultra-Sonic-range-measurement-module-p-626.html. To save costs, you can bl.l}’ the
HC-SR04 sensor from Aliexpress. To learn how to use this sensor, refer to Chapter
2, A Smart Parking System.

Thermal sensor

Humans can be detected by the surface temperature of their bodies. One sensor
device that can be used to detect human presence based on temperature is the
D6T MEMS thermal sensor: htips://www.omron.com/ech/products/sensor/11/d6t.htmi.

You can connect this sensor to an Arduino board or Raspberry Pi. It delivers
sensor output through the I12C protocol. Here's how it looks:

The FLiR Dev Kit is a thermal imaging sensor from Pure Engineering that can
be attached to Arduino and Raspberry Pi boards. The product can be reviewed at
httpz/fwww.pureenpineering.com/projecis/lepton and is shown in the next im age. You can
also find it on SpEIIkFu{l: hitps: (f'www.sparkfon.com/products/13233.

Technically, this sensor will a generate thermal imaging photo. If you see red
pixels in the photo, it means that area has a high temperature:

Source jmage + httpi/www.pureengineering.com/projects/lepton

Optical sensor

A camera can be used as an optical sensor to capture what's happening in a
certain area. Every camera has different features. You should choose the
appropriate camera for your use case. By adding artificial intelligence (AI)
program with your camera, you can use it to detect human presence.

The Raspberry Pi Foundation provides the official camera for the Raspberry Pi.
Currently, the recommended camera is the camera module version 2. You can
read about and bll}F it at hetps://www.raspberrypi.org/products/camera-module-v2/. The
Raspberry Pi foundation also has the Pi Camera Noire V2. This camera can work
in low light. You can find this pl‘DdllCt al hitps://www.raspberrypi.org/products/pi-noir-camera
-v2/. You can see it here:

L]

L1
Budphersy Bl

®

A simple method to detect human presence is to use a face detection algorithm.
When we connect a camera to an ad monitor, we can assume that if people are
watching the monitor, their faces will be seen.

We can use OpenCV to implement face detection. For instance, we can detect a
face in a picture file using Haar Cascade. You can use this program:

import numpy as np
import cvz

face cascade = cv2.CascadeClassifier('haarcascade frontalface alt.xzml')

img = cv2.imread('IMG_FACE.JPG")
gray = cv2.cviColor{img, cvZ.COLOR_BGRZGRAY)

faces = fTace_cascade.detectMultiscale(gray, 1.3, §)
for (%, ¥, w, h) in Taces:
img = cv2,.rectangle(img, (x, v}, (%+w, y+h), (@, 255, 255), 2)

print "Mumber of faces detected: " + str{faces.shape[0])
cv2.imshow('img', img)

cvZ.wWaltkey(0)
cv2.destroyvallwindows()

You should change the image file with your test picture file. Save this program

dS chod_Taces.py.

Now you can run the program on a Terminal. Type this command:

| $ python che4_faces.py

You can see rectangles on the picture if there is a human face. Take a look at the

test picture here:

In a terminal, the program will display a message that shows the number of
detected faces. You can see it here:

- @ codes — Python chDa_faces.py'— B0x 24

sgusks python chld_face 5.. [.‘;\r
Number of faces detected: 3

Displaying and delivering ad content

If you design advertising with a standalone model, you should have a display
such as a monitor or a tablet in order to show ad contents. The Raspberry Pi has
an official display of 7 inches, shown in the following image. This display can
be attached to a particular box or wall.

You can also use a normal monitor to display ad contents. It's easier to attach to a
Raspberry Pi through HDMI.

In this section, we'll review various backend technologies to deliver ad content.
We'll focus on the backend technology stack with the Python platform. We'll
explore web frameworks for Python that we can use to implement an ad server.

Flask

Flask is a simple web framework based on Werkzeug. It's easy to build wrre
seT/posT requests. If you have a scenario where you want to develop a RESTful
server, Flask can solve your problem fast. The official website of Flask is hup:/fias
k.pocoo.org. You can install Flask using pip. Type this command:

| % pip install Flask

For testing, we can create a simple-to-handle HTTP GET request. Create a
Python file, called chea_riask.py. Write the following program:

from Tlask import Flask
app = Flask(name_)

@app.route("/")
def helle{):
return "Hello,Flask!"

@app.route(' fads/=int:ads _id=')
def show post{ads_1id):
return 'Adversiting id %d' % ads id

This program will handle #rre cer requests: / and rads/<id=.

To run the program, you can type this command:

| $ FLASK_APP=che4_flask.py flask run

It shows a running web server on a specific port, by default seee. Now you can
open a browser and navigate to nttp://localhost:seee and try again to navigate to
http://localhost:seea/ads/10. You can see the sample browser and program output
here:

Hello Flask!

lpcalhast

Adversiting id 10

agush® FLASH _APP=chdd T lask, py lask ruf
= Serving Flesk spp "chdd _[lask®
® Ruaning on Rttpl/F120. R0 15000 (Press TTHL+C to quit)

177, 8.0.1 - - [h/Julyaml? 1:S3038] “GET ¢ MITR/I.1" 2 -

127, 88,1 = = [15/ 26172817 LE153:136] “0ET ¢ Pavicen.lce HTTPAL.1" 404 -

1370801 = = [157Jul/2017 1H:53136] "GET fapple-touch-icon-precomosed. png HITR

F1.1" A =

137, 8.0.1 - = [15/Jul @1} 10:55136] "GET fapple-touth-Lcon.png MTTE/1.1" 484 —
ome 127.R0L1 - - [38F0ul 01 101 8N143] YEET ¢ WTTR/LL1® Sod - r
st l 17, 80001 - - [18/00l/2A17 18:54100] “GET ¢ HTTRSI.1 200 -
Sta(127.8.0.1 = [15/3ulF2R1T 1R154:05) "GET fede/1R HTTPAR. 1 20& -

Wkl

For further information about Flask development, I recommend you read the
Flask documentation at htp:/flask.pocon.org/docs/. Some program samples are
provided to help you get started.

Pyramid

pyramid is a web framework to build web applications based on Python. It's easier
to use and to handle HTTP requests. You can install pyramid by typing this
command:

| % pip install "pyramid==1.8.1"
It will install pyramid version 1.9.1. You can change it.

For testing, we'll build a simple web application to handle the s request. Use the
following code:

from wsgiref .simple server import make server
Trom pyramid.config import Configurator
from pyramid.response import Response

def helle world({reguest):
return Response('Hello world!')
if _ _name_ = ' main__ ":
with Configurator() as confTig;
config.add _route{"hello', '/')
config.add view(hello world, route_name='hello')
app = config.make wsgli app()

print{‘server 1z running')
SErver = make_server{'e.8.8.8', 889%, app)
server.serve forever{)

Save this program to a file called ches _pyramid.py.

Now you can run it. Type this command on the terminal.

| $ python ched_pyramid.py

The program will run on port sess. Open a browser and navigate to
http://localhost:sess. You should get a response saying Hello World! in the
browser:

e 9 Il e : i]

Helo Wordd!

On the terminal side, you can see the running program here:

& & codes — Python chdd_pramid.py — B0=16

sgusk: pythen ch®d_pyramid.py
server is running

Django

Django is a popular web framework for building web applications. You can use
it to deliver ad content. Django provides a complete API to build a web
application, including database access.

You can install it officially via pip. Type this command:

|$ pip install pjango

For testing, we'll build a simple web application. We can create a new web
project using django-admin. For instance, we'll create a project called nysite. You
can type this command:

|$ django-admin startproject mysite

It will generate a web application with a default template. The program will
create the <project_name> folder. You can see the project structure here:

EXFLOHER b iyl The P v e o A, B RIT 1 & mofipgepy x®

DPEM EDITORS

1ame

of« R rem setde tou k& MR ANGE SETTTH
djange. core. mEByeneit Ly = fiom_command Line

ImportError:

calni.I PG

4 CODES

Mmafada oy gxpcuts from_comand linmis Y& argy !

We can run this program by typing the following commands:

% cd mysite/
% python manage.py runserver

If you succeeded, you should see the following response message from the

program:

® & mysite — Fylhon « Python mansge.py nunserver — B0x24

agusks plp install Django
Cnllecting Ojanga
Downloading Django=I.11.3-py2.py3-none-apy.whl {(6.8MB)
lge% | IR | /. 0B 13BKESs
Aeguirement already satisfied: pytz in Jfusrflocal/lib/pythond.T/site-packages (f
rom Django}
Installing collected packages: Dijango
Successfully installed Django=-1.11.3
agusks diango-admin startproject mysite
agusks cd mysiteS
Qusks python nanage.py runserver
Performing system checks...

System check identified no issues [@ silenced).

You nave 13 unapplied migrationis), Your project may nof work properly until you
apply the migrotions Tor app(s): admin, auth, cootenttypes, sessiens.
Aun "python manajge.py migrate’ (o apply them.

Jduly 17, 2017 - @88:89:36

Djengo version 1.11.3, using seitings ‘mysite.settings’
Starting development server at hittp://127.0.%.1:8@08/
Quit the server with CONTROL-C.

By default, Django runs on port sees. Now vou can open a browser and navigate
to nttp://localhost:seee. If successful, yvou should see a simple web application:

& B <

.'_'.i

127001 v 4] h 3 BHiE

It worked!

Congratulations on your first Django-powered page.

hanet, siart your firsl app by running python nanage.py stortapp [epp label|.

¥oure 2oging this messane bocauss you have DEBUG = Troe 0 your Django sottings e and you
haver comdigured any LIRLS. Gal 1o wark!

Building a smart digital advertising
dashboard

Basically, building a smart digital advertising dashboard is the same as building
a digital signage system. We use existing signage system platforms that fit your
case. Depending on your requirements, we can implement digital advertising
using Raspberry Pi with HDMI monitor.

To make our digital signage system smart, we need added values. One of them is
to add a sensor to detect human presence that we learned on previous section.

With respect to data, we should design a database model that covers our sensor
data. For instance, we can add information about the number of viewers in a
certain time period. For a database design sample, you can see the following

| nas_togger v
dlag INT
e e VARCHAR|10Y
| ads ¥ [———— g ol Mawerar INT
Idans INT | whiw doteling DATE TIME
wis podae VARTHARG i I & aic s NT
e YARCHAR{AO) L

uds hype VARCHARY]
wds_content_palh WARCHARIED)
s pds_atart DATETIME

- dn_end I TETIME

] fdE focation ¥
e focation INT
poaiipn oode VARCHAR|1D]
padicn datsil VARCHARED
ads_machane V' RRCHER S0
clanis INT

¢ ars_gads [NT

figure:

You can see from this database design that the number of viewers is represented
as total viewer in the ads_1ogger table. Each ad content should be defined by how
and when the content will be shown. In the ads table, we set the ads type for the ad

content type. It can be text, image, or video. We also define ads_start and ads_end
in the ads table to define the ad display period.

This is a sample database design. You can extend it with additional features,
such as a billing system. Consider you can implement charging model for
companies that want to apply ads. This charging model can use showing time
and location.

Summary

In this chapter, we learned how to create a digital signage system with Artificial
Intelligence with implementing human presence. Various human presence
methods were also explored to provide added value to our digital signage
system.

In the next chapter, we will explore a smart speaker machine and the technology
that is used to build such a system.

A Smart Speaker Machine

Nowadays, speech and voice technology is applied to various IoT platforms. We
can see Amazon and Google already having built smart speaker machines,
Amazon Echo and Google Home. In this chapter, we will explore and learn how
to build a smart speaker machine. For development and testing, we will use the
ReSpeaker board to implement a smart speaker machine.

In this chapter, we'll learn the following topics:

Introducing smart speaker machines
Exploring existing smart speaker machines
Introducing ReSpeaker

Integrating your IoT boards with ReSpeaker
GPIO programming on ReSpeaker
Connecting to the Microsoft Bing Speech API
Building your own smart speaker machine

Let's explore!

Introducing smart speaker machines

In recent years, big companies such as Amazon, Apple, Google, and Microsoft
have invested in speech technology. Speech technology implementation can be
through software, hardware, and hybrid software and hardware. Speech
technology usually uses Artificial Intelligence methods to detect and recognize
speech or voice and then perform something based on the speech/voice input.
Amazon Echo and Google Home are samples of speech technology
implementations in hybrid hardware and software. They can be called smart
speaker machines.

In general, a smart speaker machine consists of microphone and speaker devices
as sensor and actuator. The speaker can record human voice and then convert it
to analog values. A speaker can be used to generate sounds based on signal
parameters such as frequency and amplitude. Human voice in analog form is
converted to digital form so we can process it easily. In digital form, we can
implement various algorithms to it in a computer. One of these tasks is to
convert human speech to text. It is usually called speech-to-text. Alternatively,
we also can synthesize human voice from text. We need a specific algorithm
based in Al to convert text to human speech/voice. You can see a general design

Wiachine
Learning
Engines

of a smart speaker machine here:

Designing a smart speaker machine usually involved integrating a machine
learning program such as speech-to-text and text-to-speech. In this case, we'll
build a program to recognize human speech in digital form and then convert it
into text.

After we obtain text from human speech, we can perform text processing. For
instance, if we get the text "turn on LED", we'll perform actions to turn on the
LED. It involves text processing to obtain meaning from text. You can see a
general design of a text meaning system here:

Text
Processing

Exploring existing smart speaker
machines

Manufacturers make smart speaker machines to perform automation tasks. In
this section, we will explore various smart speaker machines.

Amazon Echo

Amazon Echo is a smart hardware system. Amazon has used an artificial
intelligence engine in Amazon Echo to enable interaction with users. This
program is called Alexa. We can perform tasks on Amazon Echo through voice
commands. There are some keywords that are used by Alexa to identify and
recognize voice commands. Currently, we can buy Amazon Echo from hups:/www,
amazon.com/dp/BO0X4WHPSE/. You can see Amazon Echo here:

Amazon also provides a cheap hardware device for Amazon Echo, called

Amazon Echo Dot (https:/fwww.amazon.com/dp/B01DFKC280/). The model's size is small and it is
163 grams in weight. You can see Amazon Echo here:

To start communicating with Amazon Echo, we should say Alexa. This is a
keyword using which Amazon Echo starts to listen to commands. After
recording the commands, Amazon Echo will interpret these commands to
perform something.

Google Home

Google Home is a smart speaker machine powered by Google Assistant. This
device can guide you based on your experience. As we know, Google has a lot of
information from heterogeneous sources, so we can gather information from
Google Home by giving it voice commands, including home automation tasks.

Like Amazon Echo, Google Home needs specific voice commands to perform
any task. Some languages are supported, and English is the default language. For
further information about Google Home, you can visit the official website at hitps:

/imadeby,google.com/home/. You can see Google Home here:

Ivee

Ivee is a personal voice assistant. Like other machines, Ivee applies natural
language speech (NLP) processing with their proprietary algorithms to
recognize and understand our speech. Ivee also has an advantage in size. If
you're interested, you can visit the official website at hups:/helloivee.com. Here is

what the Ivee looks like:

Triby

Triby is a smart speaker machine that has a built-in Alexa voice service, so the
machine can recognize and understand our speech. Since Triby machine use the
same services as Amazon Echo, we can get more benefits. In addition, Triby
applies additional features and services, such as an e-paper screen so you can
read messages or display something. Interested? You can visit the official
website at hitp://www.invoxia.com/riby/. Here's a picture of the Triby:

Introducing ReSpeaker

Technically, making a smart speaker machine is easy. We need a microphone and
speaker for input and output audio. We also need an audio processing module
and machine learning engine to manipulate speech audio and interpret speech
commands.

In this section, we'll learn about one of the platforms for a smart speaker
machine--ReSpeaker from SeeedStudio. We can use it with [oT boards such as
Arduino and Raspberry Pi to perform automation tasks. You can get this module
from SeeedStudio at hitps:/fwww.seeedstudio.com/ReSpeaker-Core-Based-On-MT7688-and-Open'W
RT-p-2716.html. Here it is:

The ReSpeaker board uses the AI7688 Wi-Fi module, running the OpenWrt OS.
To implement additional automation tasks, ReSpeaker uses the ATMega32U4 as
its coprocessor and WMB960 for its codec engine. You can see the ReSpeaker
core board layout in the following figure:

Once we connect ReSpeaker to a power adapter or a computer through a micro-
USB cable, we can see the Wi-Fi access point from ReSpeaker. It usually shows
up as ReSpeakerxxxxxx, where xxxxxx is a random number. Try to connect to
this Wi-Fi from your computer. Then, you we will be asked to join ReSpeaker to
an existing Wi-Fi network. You can select your existing Wi-FI or even ignore it.

By default, ReSpeaker has the [P address 1s2.188.166.1 if you connect to the
ReSpeaker Wi-Fi. If your ReSpeaker has joined an existing Wi-Fi, you should
verify the ReSpeaker IP address. Now you can open a browser and navigate to
the IP address of ReSpeaker so you can see the ReSpeaker dashboard, shown in
the following screenshot. It shows all states of the ReSpeaker board.

& 1] 0 a2, 168,108, v 0

jﬂﬂg EIBI‘ IPXA BeslcMode - IED =

o SHTLNaTE
OVERVIEW NETWORK WIF1 SYSTEM STATUS
& LAMN

@ WAN

* Us8

O = T

192.166.100.137 {akumbp) "‘ &

MadiaTex MTTEE

= WIFI <% LAN @ WAN

3 = 109 AR 100 1 £ Intermat OFFLINE

Now we test our ReSpeaker board to build a simple smart speaker machine. If
vou look at the ReSpeaker core layout, it has a buili-in analog microphone. To
develop a program in ReSpeaker, the system has provided a Python library to
interact with the board. For testing, we'll build a program for speech-to-text
using Python.

Open your favorite text editor to write the following Python program:

import logoing
import time
from threading import Thread, Event

from respeaker import Microphone

def task{quit_event):
mic = Microphone(quit_event=quit event)

while not quit _event.is_set():
if mic.wakeup{ 'respeaker'):
print('Wwake up")
data = mic.listen(}
text = mic.recognize(data)
if text:
print('Recognized %s' % text)

def main{):

print{'ReSpeaker is running..')
loggino.basicConfig({level=logging.DEBUG)
quit_event = Eventi()
thread = Thread({target=task, args=(quit_ewvent,))
thread.start()
while True:
try:;
time.sleep(1]}
except KeyvboardInterrupt:
print('Quit*}
quit_ewvent.set()
break
thread.join()

if _name == "'_ main__":
main{}

Save this program as ches_respeaker_demo. py.

Transfer this file to ReSpeaker via SFTP. I recommend you use the Filezilla
client app. You can download this application from heps:/filezilla-project.org. After
you have uploaded the file to the ReSpeaker board, you can execute this
program. You can type this command in the ReSpeaker terminal:

|$ python ches_respeaker demo.py

Now you can start to give a command to ReSpeaker by saying respeaker. After
this, you can say anything and the program will convert it to recognize the
speech.

If you get a problem related to the audio channel while running the program, you
can configure it using aisamixer. Run this on the ReSpeaker terminal:

| $ alsamixer

After its has executed, you should see the AlsaMixer application. Configure the
sound card by pressing F6. Once done, you can press the Esc key to exit the
program. The AlsaMixer application is shown here:

L@0=

=100

|

B6<=B6

Headphon Speoaker

Speaker

188
Speaker

agusk — s5h root@192.168.1.130 — 80=24

Speaker

PCH PLay Mono Dut

mic = Microphone(quit_event=quit_event) while not
quit_event.is_set(): if mic.wakeup('respeaker'): print("Wake up')

data = mic.listen()
text = mic.recognize(data)
if text:

print('Recognized %s' % text)

Integrating your IoT boards with
ReSpeaker

ReSpeaker is built with Arduino (ATmega32U4) and Linux-based OpenWrt with
MCU MT7688 so that we can access GPIO pins in our program. We can develop
a sketch program for the ReSpeaker board. Start by downloading the ReSpeaker
]ibl‘&l‘}f for Arduino from https://github.com/respeaker/respeaker_arduino_library. Down load
and extract it to the Arduino library with the name respeaker.

Now vou can use the ReSpeaker library in your Arduino IDE. For testing, we'll
try to access 12 RGB LEDs using the pixels library.

First, you should install Arduino software from this site: hitps://www.arduine.cc/en/Main
/Software. Then, you can write the following sketch program:

#include "respeaker.h”

uinteé t offset = a@;
void setup() {
respeaker.begin();
£ set brighiness level (from @ to 255)
respeaker .pixels(}.set _brightness{12a8};
}

void loop{) {
respeaker.pixels(}.rainbow{offset++);
delay(1@};

}

This program starts to initialize the ReSpeaker library by calling vegin() from the
respeaker 0bject. In the 100p() function, we change colors of the RGB LEDs.

Save this sketch as arduinorespeaker. In order to upload the sketch program to
ReSpeaker, you should configure the target board to Arduino Leonardo and
change the port to your ReSpeaker port.

® "8 ArdulnoReSpeaker | Arduine 1.8.3

ArciuinoRasSpeaker

#include "respeaker.h”

vintE_t offset = @
vold setip() {
respoaker. beglnd);
ff set brightness lewvel (from @ to 255)
respeaker. pixels). set_brightness(128);
1

void Toop() m
respidaker, pi kel o). roi nbowloffset++);
_delov(1@);
}

Arduino Leanardo on fdevicueshmodemida1l

After uploading the program, you should see all RGB LEDs changing their color
gradually. You can see it here;

GPIO programming on ReSpeaker

ReSpeaker has one MCU MT7688 and co MCU ATmega32U4, so we can access
both MCUs from our program. Inside the board, ReSpeaker runs Linux
OpenWrt, so we can perform Linux operations on the ReSpeaker terminal. Not

all GPIO pins are accessible from a program. ReSpeaker exposes specific
GPIOs.

In general, we can use the following GPIO layout of the ReSpeaker board:

[seeed
15 J&

TR AL OUT . PR
e SRATEDAL | LTRSS onpriaenym]
TPl A | Ui s . DA |

ST . : HE I HER
LC : VOBAIDG | AT
Pz | S y | POMMGEM | POORCLIGD

Lt EISBET L R LS
Mo LM vt IEEEE

W AR

TR S AFR Y

You can see here that some GPIO pins belong to MCU MT7688 and MCU
ATmega32U4. If you want to know the complete schematic of the ReSpeaker
core board, I recommend you read this document at hitps:/github.com/respeaker/get_start

ed_with_respeaker/blob/master/Introduction.md#hardware.

To access GPIO pins on MCU ATmega32U4, you can use Arduino software. We
can write a sketch for Arduino program in the MCU ATmega32U4.

For MCU MT7688, we can access GPIO using GPIO programming for Linux
since ReSpeaker uses Linux OpenWrt.

For testing, we'll connect an LED to GPIO on MCU MT7688. You can connect
it on MT_GPIO18/PWM_CHO. You can see my wiring here:

Let's start writing a program using GPIO with the Linux approach. Open the
ReSpeaker terminal. Since we use GPIO18 on MCU MT7688, we activate it
with the output direction. Type these commands: $ echo 18 >
/sys/class/gpio/export $ echo "out" > /sys/class/gpio/gpiol8/direction

In this case, GPIO18 is activated for output mode.

Now you can set values for HIGH and LOW as 1 and . You can type these
commands on the ReSpeaker terminal: $ echo 1 > /sys/class/gpio/gpiol8/value
$ echo 0 > /sys/class/gpio/gpiol8/value

You should see the LEDs light up.

If you don't need this GPIO anymore, you can release it so other programs can
access it. Type this command on the ReSpeaker terminal: $ echo 18>
/sys/class/gpio/unexport

You can see my program output on the ReSpeaker terminal here:

& L “ agusk — <hagh — 80=24

= 1 1/2 oz Gin Shake with a glassful

= 1/4 oz Triple Sec of broken ice and pour

= 3/4 pz Lime Juice unstrained into a goblet.
= 1 1f2 oz Orange Julce

= 1 tsp. Grenadine Syrup

issue: Mtip://ww.oseesd, cc/respegkear

default: usarname: root password:root

reolBReSpasker~# 1s Jsrsfctassfgpln;

nxpurt qn;h; pial’ gpiochin 127 gpiochiphd
L J iochipd gpiochipiz unexpart

rnut@ﬂeSﬁeaker «# ¢chu 18 = Jfasys/ciass/gplofexport

root@ReSpeaker:~# /sys/class/gopiofogpioldys

-asht fsysfclassfopio/gpiold/: Permission denied

reot@Respeaker:=f Ls Ssys/class/gplo/gplol/

active_low dawice direction edge sabdyiten Uevent viatue

rootEReSpeaker:~#f echo "out" > fsysfclass/gpiofgplolB/direction

root@ERespeaker:~# echo 1 = /sys/class/gpiosoplolBs/value

root@ReSpeaker:~# echo @ > Jfuydfclass/gpin/gpiolB S value

ropt@Efespeaker:~f echo 18> Jsys/class/gpiofunexport

We also can develop a Python program to access GPIO on MT7688. In general,
ReSpeaker already provides an installed Python library for MT7688. You read

about it at hups:/github.com/respeaker/respeaker_python_library.

Extending our previous demo, we'll try to turn on/off LEDs on GPI0O18 using

Python. Type this script:

from respeaker import gpio

Qpiols = gpio.Gpio(l8, gplo.DIR OUT)
turn on LED

gpioclE.write{i)

turn off LED

Opiols.writef{@)

close gpio
gpiols,close()

Save it as ches_respeaker_gpio.py. You can run this program by typing this
command on the ReSpeaker terminal:

|5 python ches respeaker gpilo.py

Now you can see LEDs turning on and off.

Connecting to the Microsoft Bing
Speech API

ReSpeaker provides connectivity with the Microsoft Bing Speech API. Using
this library, we can apply speech recognition such as speech-to-text. For further
information about the Microsoft Bing Speech API, you can visit at https://azure.micr

osnfl.com/en-us/services/cognitive-services/speech/.

To use the Microsoft Bing Speech API library, you should register and obtain an
API key. Microsoft provides trial access to use. The API key can be found on
your dashboard page of the Microsoft Bing Speech API. You can see it here:

e -9 L 'S By ; . o

succeshully added Bing Speech AP| (o ywour subscnplion

Bing Speech
APl KEY

Now we can write a Python program to use the Microsoft Bing Speech API:

import legoing

import time

from threading import Thread, Event

from respeaker import Microphone

from respeaker.bing speech_api import BingSpeechAPI

get a key Trom hittps:/ wew.microsoft.com/cognitive-services/en-us/speech-apl
BING_KEY = '=--bing speech api--='

def task{guit_event}):
mic = Microphone{quit_event=quit_event)
bing = BingSpeechAPI{key=BING_KEY)

while not quit_ewvent.is_set():
if mic.wakeup('respeaker']:
print('wWake up')
data = mic.listen(}
try:
text = bing.recognize(data)
it text:
print{'Recognized %s' % text)
gxcept Exceptlion as e;
print{e.message)

def main()}:
print{'ResSpeaker is running....")
logging.basicConfig{level=logging.DEBUG)
quit_ewvent = Ewvent()
thread = Thread{target=task, args=(quit_ewvent,)}
thread.start()
while True:
try:
time,.sleep(l)
except KeyvboardInterrupt;
print('Quit'})
quit_ewvent.set()
break
thread.join()
if _name__ == '_main__":
maing}

Save this program into a file called chos_respeaker.py.

To run this program, you can type this command:

|5 python ches respeaker.py

Since this program uses the Microsoft Bing Speech API, your ReSpeaker should
be connected to the internet.

After running it, say respeaker until the program wakes up. Then, say something
so the program converts speech to text. Speak slowly to make sure ReSpeaker
can recognize your voice.

Building your own smart speaker
machine

We've already leamed how to work with ReSpeaker and develop programs for it.
We also can develop a smart speaker machine. You can see our scenario in the

—
=

I: ReSpaaker, turn on LED J

—

[ReSpeaker, tum off LED =
eSpeaker, tum o
& B

e,
= e

following diagram:

You can see that the ReSpeaker core board connects to lamps. You can see
simple a LED (DC) or lamp (AC) with a relay module.

If you use the Microsoft Bing Speech API, you can develop a smart speaker
machine for recognizing some phrases such as turn on and turn off. After you
obtain the text, you can parse it to determine whether it contains turn on or turn
off. This is a basic smart speaker machine. You can customize it based on your
use case. For instance, you build an automation system with Arduino/Raspberry
Pi. Then, ReSpeaker will be used as speech input. If person says specific word,
ReSpeaker will send command to Arduino/Raspberry Pi to perform something.

Summary

We learned about smart speaker machines using the ReSpeaker core board.
Some samples are provided to get started with ReSpeaker core.

In the next chapter, we will explore an autonomous firefighter robot and the
technology used to build it.

Autonomous Firefighter Robot

Robot development is one of the big challenges in science and technology. It
involves multidisciplinary fields of science and technology. In this chapter, we'll
learn and explore how to build an autonomous robot for firefighting, starting
with exploring robot platforms and then extending robot capabilities to address
firefighting.

We'll learn the following topics:

Introducing autonomous firefighter robots
Exploring robot platforms

Detecting a fire source

Basic remote robot navigation

Detecting obstacles

Designing an autonomous robot

Building an autonomous firefighter robot

Let's explore!

Introducing autonomous firefighter
robots

An autonomous robot is one that has its own decision-making capacity to
perform tasks such as moving, stopping, pressing a button, or some other
specific purpose. Autonomous robots consist of artificial intelligence programs
to perform decision computing. Researchers are interested in building a new
model for autonomous robots. The more general we make an autonomous robot
model, the more attention and effort goes in its development. However,
autonomous robot development still needs a specific purpose so it can execute its
goals.

An autonomous firefighter robot is one autonomous robot model with the
specific purpose of finding and putting out fires. In this chapter, we'll learn and
explore how to build an autonomous robot for firefighting.

A sample firefighter robot implementation is Thermite 3.0. This robot has a
water sprinkler to extinguish fires. You can explore this robot on the official
website, hitp://www.firefightrobot.com. This is what it looks like:

Exploring robot platforms

In this section, we'll explore various existing robot platforms that can be applied
to build autonomous robots. We will review robot platforms with Arduino and
Raspberry capabilities as the robot computing core.

Zumo robot for Arduino

Pololu are an electronics manufacturer and online retailer. They provide various
robot platforms. You can see a list of robot platforms at https://www.pololu.com/category
2/robot-kits. Some robot platforms are available as robot kits without soldering.
This means you can get your robot up and running without performing soldering
on the kit. You can see a list of solder-less robot kits at htps://www.polalu.com/category/

d/robot-kits-without-soldering.

One robot kit you can make without soldering is the Zumo robot for Arduino.
This kit enables your Arduino-based Arduino UNO model to be attached to the
board. If you are interested in this robot kit, you can check it out on hups:/fwww.polo
lu.com/product/2510. The Zumo robot for Arduino can be seen here:

MiniQ Discovery Arduino robot Kit

The MiniQQ Discovery Arduino robot kit is a robotic platform that is ready to use.
This kit is manufactured by DFRobot. They have made custom a Arduino board,
called the Romeo board, to manage the robot. This board has a built-in motor
driver to manage motor movement.

If you are interested in this kit, you can visit https://www.dfrobot.com/product-1144. html.
You can see the MiniQQ Discovery Arduino robot kit the following image. In this
book, I will use this robot kit for my implementation.

Turtle kit - a 2WD DIY Arduino
robotics kit for beginners

Another robot kit from DFRobot is Turtle kit. This robot uses the Romeo BLE
board, which consists of an Arduino UNO model with a BLE module. The
Romeo BLE board can be controlled from a smartphone through a BLE network.

You can see the Turtle kit in the following figure. Its website is https://www.dfrobot.co
m/product-1225.html.

GoPiGo robot

GoPiGo is a robot platform-based Raspberry Pi that is manufactured by Dexter
industries. They provide a basic kit that you can bring your own Raspberry Pi to.
It's called the GoPiGo robot Base Kit: https://www.dexterindustries.com/shop/gopigo3-robot-b
ase-kit/. You can see its form here:

Detecting a fire source

One of requirements of building an autonomous firefighter robot is to find a
fire's source. Fire-detection sensors are available for Arduino and Raspberry Pi.
In this section, we'll explore fire-detection sensors.

Grove - flame sensor

If you have a Grove shield from SeeedStudio, we can use the Grove flame
sensor to detect a fire. Technically, this sensor uses the YG 1006 sensor with high
photosensitivity. This sensor is easy to use on Arduino and Raspberry Pi. If you
are interested, you can visit the website to obtain further information: hups://www.se
eedstudio.com/Grove-Flame-Sensor-p-1450.hitml. You can see the Grove flame sensor here:

SainSmart flame detection sensor
module

If you don't have a Grove shield for a flame sensor, you can use any flame sensor
module, for instance, the flame sensor module from SainSmart. This sensor
module enables the Arduino and Raspberry Pi to be attached to the board. This
sensor module is cheap, and you can find it at https://www.sainsmart.com/ir-infrared-flame-
detection-sensor-module-detect-fire-flame-sensor-for-arduino.html. This is how it looks:

Basically, a flame sensor is cheap and you can find it on Aliexpress, Banggood,
or another online store. A flame sensor usually has three or four pins: GND,
VCC, A0, and D0. Some flame sensors have the A0 pin or DO pin or both.

Demo - fire detection

In this section, we'll develop a simple application to detect fire. In this case, we
need two modules: flame sensor and buzzer. We will implement this demo using
an Arduino board.

Our scenario is to read a fire-detection value from the flame sensor. If the sensor
reading reaches a certain value, Arduino will turn on a buzzer device to generate
a sound.

In general, the buzzer device has three pins: GND, VCC and Signal. We can
connect the buzzer device to PWM pins on the Arduino. You can see the buzzer
device here:

Let's start to implement the hardware wiring. Use the following connections:

Buzzer GND pin connected to Arduino GND pin

Buzzer VCC pin connected to Arduino 5V pin

Buzzer S (signal) pin connected to Arduino digital 9 pin
Flame sensor GND pin connected to Arduino GIND pin
Flame sensor VCC pin connected to Arduino 3.3V pin
Flame sensor AO pin connected to Arduino analog A0 pin

You can see the wiring diagram here:

gom-.,

Iﬁ IIIND
—

For example, you can see my wiring implementation on the Arduino Leonardo
here:

To access the buzzer device and generate sound, we can use the Tone object. You
can learn more about it from hitps://www.arduino.cc/en/Reference/ Tone.

The algorithm implementation is easy. Firstly, we open the Arduino software and
write the following sketch program:

int TlameSensor = A8;
int buzzer = 9;
int val = 8;

vold setup() {
pinMode{buzzer, QUTPUT) ;
Serial.begin{96ea);

1

yvoid loop{) {
val = analogRead(Tlamesensor);
if{val = 50) {
Serial.print("sensor Value = "};
Serial.print(val);
Serial.printlin(®, Fire detected!i1™);

tone{buzzer,1088);
L

else
noTone{buzzer);

delay(58a);
}

Save this sketch as arduinorirepetection.

Now yvou build and upload your sketch program to your Arduino board. After it's
uploaded, you can open the Serial Monitor tool from Arduino to see the program
output.

Try to move your sensor next to a flame so you can see the sensor value on the
Serial Monitor tool. You can see a sample program output here:

Sensor
Sensor
hensor
Sensor
Sensar
Sensar
Sensor

Sensor
Sernsor
Sensor
Sensor
Sensor
Sensor

&

Volue
Volue
Volus
Volusg
Value
Valus
Volue
Volug
Volus
Volue
Volue
Volue
Valus

SENS0F VOTuE =

(U | 1 AR A O N N)

Autoscroll

o TITE

=4

R R4

SEREERTS

Fire
Fire
Fire
Fira
Fire
Fire
Fire
Fire
Fira
Fire
Fire
Fire
Fire

jdevicy usbmodem 1421 [(Arduing Leonardo)

Send

LB TET
detected]| |
detecked!!
detected]| |
detected| |
detected| |
detacted| |
detectad| |
decected! |
detected| |
detected! !
detected! |
detected]| !
detected]| |

Both ML & CR

B 9500 baud

Clear autput

How 1t works

This program initializes all required pins in the setup() function.

int val =

b

a;

void setup() {
pinMode{buzzer, DUTPUT);
Serial.begin{9&@a);

int TlameSensor = AG;
int buzzer = 9;

In 100p() function, we read the flame sensor value by calling the analogread()
function. In this case, we set the threshold value to se. If the reading is greater
than se, we turn on our buzzer device by calling the tone() function:

}

else

void loop{}) {
val = analogRead(Tlamesensaor);
if{val = 56) {
Serial.print("sensor Value = ");
Serial.print{val);
Serial.printlin(”,

delay(s58a);

noTone(buzzer):

tone{buzzer, 1088);

Fire detectedii™]);

You can change the threshold value based on the results of your experiment.

Basic remote robot navigation

A robot can be controlled remotely through radio communication. We can use an
RF module, Wi-Fi, or Bluetooth to communicate between robot and another
system.

In this section, we'll try to control a robot from a computer using Bluetooth. In
general, a communication model between a robot and a computer can be
described as follows:

There are some radio and wireless modules that you can use to integrate with
your robot to communicate with a computer.

For testing, [use the MiniQQ Discover Arduino for robot platform from DFRobot:
https://www.dfrobot.com/product-1144.himl. Since this robot platform uses the Romeo
board (Arduino compatible) as the core robot board, it supports an RF/wireless
module-based XBee shield. You can check it out at https://www.dfrobot.com/product-844.
html. This is what it looks like:

I use Bluno Bee (hltp5:-"-’um'w.dfrubm,q:umJ'prudu::[—l[]?lhlml} from DFRobot for the RF
module on the Romeo board. This module has a serial BLE network stack. You
can attach it to the board and listen for incoming messages from serial pins.
Bluno Bee has the same pin model as the XBee module. You can see it here:

Put the Bluno Bee module into the MiniQQ Discover Arduino robot on the Romeo
board. You also need another Bluno Bee that is attached to your computer
through a micro-USB cable. You can see my implementation of the robot kit

here:

Now we'll continue to develop a program to enable our robot to be controlled
from a computer. Make sure you've turned off the robot. Using a micro-USB
cable attached to the Romeo board, you can write a sketch program.

Open the Arduino software and write the following complete program:

Afstandard PWM DC control

int E1 = 5; FiM1 Speed Control

int E2 = &; f/M2 speed control

int M1 = 4; F£fM1 Direction Control

int M2 = 7; SfM1 Direction Control
void stop(void) f/s5top
{

Serial.println("stop");
digitalWrite{E1l, LOW);
digitalwrite{EZ2, LOW);

vold advance(char a,char b) HfMove Torward
{

serial.printin("advance");

analogWrite (E1,a); S /PwWM Speed Control

digitalwrite{M1, HIGH);
analogWrite (EZ,b);
digitalwrite{M2,HIGH);

vold back off {(char a,char h) A/Move backward
{

serial.printin("back off");

analogWrite (E1,a);

digitalwrite{M1, LOW);

analogWrite (EZ,b);

digitalwrite{™Mz,LOW);

vold turn L (char a,char b) HiTurn Left

{
serial.printin("turn_L"};
analogWrite (E1,a);

digitalwrite{™Mi, LOW);
analogWrite {E2,b);
digitalWrite{™M2,HIGH);

void turn_R (char a,char b) AfTurn Right
i

Serial,printin{“turn_R"};

analogWrite (E1,a);

digitalwrite{Mi, HIGH);

analogWrite {E2,b);

digitalWrite{™M2, LOW);

void setup(void)
i
int i;
for({i=4;1==7;1++)
pinMode(i, OUTPUT);
serial.begin{1i5z26a); S/5et Baud Rate
Serial,.printin{"Run keyboard control™);

seriall.begin(iis2aa); Ji5et Baud Rate

void loop(void)

{

if(serigli.available()){
char val = Seriall.read();

if({wal 1= -1)
{
switch{wval)
{

case 'wW'://Move Forward
Serial.println{"Move Forward");
advance (108,188); Simove Torward
break;

case 's'://Move Backward
Serial.println{ "Move Backward");
back off (18€,188); dimove back
break;

case 'a'://Turn LefTt
Serial.println{"Turn Left");
turp_L (ie0,180);
break;

case 'd'://Turn Right
Serial.println{"Turn Right"™);
turn_R (i00,180);
break;

case 'z':
Serial.println{"Hello"};
break;

case 'x':
stop();
break;

}

]
else stop();
H
1

Save this sketch as arduinorobotoems. Now you can build and upload it to the
Romeo board.

Now your robot should switch to battery power. Your robot should be ready to
receive a command from the computer.

Since one Bluno Bee module is connected to a computer, you can use any serial
tool to send messages to Bluno Bee. I use CoolTerm (hup:/freeware.the-meiers.org) for
testing.

Connect the CoolTerm application to the serial port of Bluno Bee. By default, it
uses a baud rate of 115200. Based on our sketch program, you can use these keys
to move the robot:

W to move forward

S to move backward

A to move left

D to move right

Z to print hello to the serial port
X to stop

You can see my CoolTerm application output here:

- -] CoalTerm_ 0

[To e [a1 i J

h-1= @ K & -3

Maw DOpan Baye Cotnwct Disconnect Ciew Data Dpbons View Hes' Halp

zad:.m{
usbmedam 1411 | 115200 8-8-1 @17 @RS @om @ ooo
Conneeted B2 218 @ @cs @osn @R

Detecting obstacles

To move properly, our robot shouldn't be hindered by obstacles. A common
solution to detect obstacles is to use an ultrasonic sensor. A sample sensor
implementation is HC-SR04. You can get it from SparkFun: hups://www.sparkfun.com/
products/13959. You can see it here:

The HC-SRO04 sensor has four pins: VCC (Power), Trig (Trigger), Echo
(Receive), and GND (Ground), which are easy to connect to Arduino and
Raspberry Pi.

Another sensor is the IR distance sensor. A sample sensor implementation is the
Sharp GP2Y0A21 IR Distance Sensor, hitps://www.dfrabot.com/product-328.html, from
DFRobot. Since I'm using the MiniQQ Discovery Arduino robot, this sensor can
be attached directly to the robot shield. You can see this here:

The GP2Y0A21 sensor has three pins: VCC, GND, and Signal. The Signal pin
of GP2Y0A21 can be connected to analog pins from the Arduino board.

We can also scan obstacles around the robot. In this case, we need a servo motor
and attach our sensor to the servo motor. You can get it from DFRobot on this
site: hitps://www.dfrobot.com/product-255.html. You can also can see this kit here:

In general, a servo has three wires with the following pinout information:

» Brown wire is GND
» Red wire is VCC
» Orange wire is the signal line

You can connect a servo to Arduino through PWM pins.

To attach the Sharp GP2Y0A21 IR distance sensor to a servo motor, you need a
mounting bracket like this product (hups://www.dfrobot.com/product-127 html):

DFRobot also provides a complete kit, which consists of a Sharp GP2Y0A21
sensor, servo motor, and mounting bracket. You can check it out on https://www.dfro
bot.com/product-715.html.

For this demo, we will wire it as follows:

GP2Y0A21 VCC to Arduino 3.3V
GP2Y0A21 GND to Arduino GND
GP2Y0A21 Signal to Arduino analog pin A0
Servo VCC to Arduino 5V

Servo GND to Arduino GND

Servo Signal to Arduino digital pin 9

After you've attached the sensor, mounting, and servo motor to the robot, you
can start developing your sketch program. You can see my implementation here:

In the sketch program, we can access the servo motor using the Servo library.
For further information on the Servo library, I recommend you read hitps:/www.ardu

ino.co’en/Reference/Servo.

We will develop a sketch program to scan the obstacle distance around a robot.
We'll move our sensor from 0 to 180 degrees through the servo motor.

Now you can open the Arduino software and write this sketch program:

#include =Servo.h=

SErVD Serva;
#define svo Pin 9
#deTine GPZYEAZ1 A8

void setup() {
servo.attach{svo_Pin);
serial.beogin{968a);

1

vold loop() {

for (int i=0;i=186;i++)

£
SeETvVo.Write(i);
uintis ¢ walue = analooRead(GP2YOAZL);
uintls t range = get_gp2di2{value);
Serial.print("Distance. Value; ");
Serial.print(value);
Serial.print(". Range: "};
Serial.print(ranoe);
Serial.printin{® mm"};

delay({zoa);

H
delay(2860);

}

uintle_t get_gp2diZ (uintle_t wvalue) {

iT (value = 18) wvalue = 18;

return ((67870.0 / (value - 3.@8)) - 40.09);
}

Save this sketch program as arduinopisctancescanner.

Build and upload the program to your Arduino board. You can open the Serial
Monitor tool from Arduino to see the following program output:

@ L] fdevicy. Usbmodam 1427 (Ardulne Leorarde)
| Send

DISTHRCE. VOLUE. G40, FGnge: % [
Distonce. Volwe: 916, Renge: 34 mm
O stance, Value: 915, Raige: 34 mm
Distance. Volus: 915, Ronge: 34
Distance. Volwe: 915. Ronge: 34 mm
Distance. Volwe: 915. Ronge: 34
ristance. Volue; 915. Range: 34 mm
Distonce. Volws: 915. Ronge: 34 jm
Distance, Volue: 919, Ronge: 34 mm
Distonce. Vaolws: 935, Fonge: 32 mm
Distonce. Volwe: 928. Range; 33 mm
Bistonce. Volwe: 916, Ronge: 34 mm
Distance. Volwe: 916, Ronge: 34 mm
Distonce. Volwe: 916. Fonge: 34 mm

& Autosernll Mo line ending E 9600 baud E Clear sutput

#include <Servo.h>
Servo servo;
#define Svo Pin 9

#define GP2Y0A21 A0D

void setup() {

servo.attach(Svo_Pin); Serial.begin(9600); }
void loop() {

for (int i=0;i<180;i++) {

servo.write(i); uint16_t value = analogRead(GP2Y0A21); uint16_t
range = get_gp2dl12(value); Serial.print("Distance. Value: ");
Serial.print(value); Serial.print(". Range: "); Serial.print(range);
Serial.printin(" mm");

delay(200); }

delay(2000); }
uint16_t get_gp2d12 (uintl6_t value) {

if (value < 10) value = 10; return ((67870.0 / (value - 3.0)) - 40.0); }

Designing an autonomous robot

Designing and implementing an autonomous robot needs a lot of work. The
biggest challenge of an autonomous robot is being movement and navigation and
how to achieve objectives.

An autonomous robot runs on its own accord. This is challenging because we
need to make our robot decide how it moves. From an artificial intelligence
perspective, we can classify two models: supervised and unsupervised.

A supervised autonomous robot requires some objectives or guidelines to
achieve its goals. On the other hand, an unsupervised autonomous robot can
learn from its experiences and then make own decision based on certain
conditions.

To build an autonomous robot for movement and navigation, we can design our
algorithm as follows:

Miwving

Clntacle

an ety

Dbstacle

el Tiarn right
on right?

Before starting, a robot will initialize all parameters included for its sensors and
motors. Then, we'll start by moving it in a random direction. While moving, the
robot may detect an obstacle. If one is found, the robot will change direction.

In this scenario, we aren't defining the the goal of the autonomous robot. An
example goal could be if it finds a star sign, the robot should stop and power off.
You can define your own decisions and goals.

Building an autonomous firefighter
robot

An autonomous firefighter robot is basically an autonomous robot with an
objective of sprinkling water on a fire. To achieve this goal, the robot will move
around to find a fire source. While moving, a robot should handle obstacle
problems.

A sample design of an autonomous firefighter robot can be seen here:

Obstacle Detection
Sensor

Rabot Platform

The robot should have a water sprinkler module and fire and obstacle detection
sensors. The robot platform can be based in Arduino, Raspberry Pi, or other
MCU boards.

Water Sprinkler Fire Detection

The idea of an autonomous robot for firefighting is similar in behavior to a
common autonomous robot, but with additional features to detect fires and
sprinkle water on them.

We can modify our autonomous robot design from the previous section for a
firefighter robot scenario. You can see the modified design here:

MDVIng

Ohistatl=
an loft?

Dbstache?

Chstatie

Tum nght
an right#

ALhate Walir

F_.|:-ri| wiler

We've added fire detection and water sprinkling to our algorithm. When the
robot is moving, it should detect obstacles and fire. If it finds a fire, it should
sprinkle water on it to put it out.

Summary

We learned about robot platforms in this chapter. Then, we learned about
firefighter robots that move and detect a fire source and obstacles. Lastly, we
design an autonomous robot for firefighting.

In the next chapter, we will explore multi-robot cooperation using swarm
intelligence.

Multi-Robot Cooperation Using
Swarm Intelligence

Coordinating autonomous robots is challenging: each robot has its own
intelligence system. These robots try to perform self-managed activities to
achieve a particular goal. In this chapter, we'll learn how to work and deal with
multiple robots in order to execute their goals.

We will learn about the following topics:

Introducing multi-robot cooperation

Learning about swarm intelligence

Implementing a mesh network for a multi-robot scenario

XBee development for Arduino

Designing a multi-robot cooperation model using swarm intelligence

Let's start!

Introducing multi-robot cooperation

Communicating and negotiating among robots is challenging. We should ensure
our robots address collision while they are moving. Meanwhile, these robots
should achieve their goals collectively.

For example, Keisuke Uto has created a multi-robot implementation to create a
specific formation. They take input from their cameras. Then, these robots
arrange themselves to create a formation. To get the correct robot formation, this
system uses a camera to detect the current robot formation. Each robot has been
labelled so it makes the system able to identity the robot formation.

By implementing image processing, Keisuke shows how multiple robots create a
formation using multi-robot cooperation. If you are interested, you can read
about the project at hups://www.digi.com/blog/xbee/multi-robot-formation-control-by-sel f-made-rob
ots/. Here they are in action:

< e

Image source: hitps:/f'www.digi.com/blog/xbee/multi-robot-formation-control-by-sel f-made-robots/

For another example, can have soccer matches in which the players are not
human; they are all robots. Such a competition can use custom robots or existing
commercial robots such as the Nao robot, hitps://www.ald.softbankrobatics.com/en/robots/na
0. You can see Nao robots in a soccer match here:

Image source: hitp:/www.robocup?014.0rg/?p=893

As we know, a robot soccer game involves robots, and they need skill and
knowledge in order to win. The robot should detect the ball and score goals.
Meanwhile, each robot should perform group cooperation. Addressing collision
among robots and passing the ball to its group are challenging in this area.

Learning about swarm intelligence

Swarm intelligence is inspired by the collective behavior of social animal
colonies such as ants, birds, wasps, and honey bees. These animals work
together to achieve a common goal.

Swarm intelligence phenomena can be found in our environment. You can see
swarm intelligence in deep-sea animals, shown in the following image of a

school of fish in formation that was captured by a photographer in Cabo Pulmo:
o = y

Image source: hitp://octavioaburto.com/cabo-pulmo

Using information from swarm intelligence studies, swarm intelligence is
applied to coordinate among autonomous robots. Each robot can be described as
a self-organization system. Each one negotiates with the others on how to
achieve the goal.

There are various algorithms to implement swarm intelligence. I recommend you
read textbooks about it. Some math and statistics are applied for implementing
swarm intelligence. The following is a list of swarm intelligence types that
researchers and developers apply to their problems:

» Particle swarm optimization

Ant system

Ant colony system

Bees algorithm

Bacterial foraging optimization algorithm

The Particle Swarm Optimization (PSQ) algorithm is inspired by the social
foraging behavior of some animals such as the flocking behavior of birds and the
schooling behavior of fish. A sample of PSO algorithm in Python can be found
at https:/gist.github.com/tbytes/79877. This program needs the numpy]_ibrarj,r. numpy
(Numerical Python) is a package for scientific computing with Python. You
computer should has installed Python. If not, you can download and install on
this site, hups:/www.python.org. If your computer does not have numpy , you can install
it by typing this command in the terminal (Linux and Mac platforms): $ pip
install numpy

For Windows platform, please install numpy refer to this hitps://www.scipy.org/install.htm].

You can copy the following code into your editor. Save it as cha7_pso.py and then
run it on your computer using terminal:

from numpy import array
from random import random
from math import sin, sgrt

iter _max = 10880
pop size = 1@8
dimensions = 2
cl = 2

cZ2 = 2

grr_crit = p.0a081

class Particle:
Pass

def Te{param}:

"*'schaffer's F6é functiomn'®"'

para param*io

PaTa paramfe;:2]

num = (sin{sgrt((para[@] * paral[@]l) + (paral[i] ® paral1])))) * %\
{sin(sgrt({para[e] * para[e]) + (para[i] * para[1]))}) - 8.5

denom = (1.8 + 6.8001 * ({para[e] * para[e]) + (parall] * parafi]))) * &

(1.8 + @.801 * ((para[e] * parafe]) + (para[l] * paraf1]}})

f6 = 0.5 - (num/Sdenom)

errorfé = 1 - 76

return f6, errorfe;

#initialize the particles
particlies = []
for i in range{pop_size):

p = Particle()

p.params = array([random{} for 1 in range{dimensions}]}
p.fitness = 4.8

p.¥ = 8.9

particles.append(p)

let the Tirst particle be the global best
gbest = particles[@]
Brr = 9959993999
while i = iter_max :
for p in particles:
fitness,err = T&({p.params)
if Titness = p.Titness:
p.Titness = Titness
p.oest = p.params

if fitness = ghest.fltness:
gbest = p
¥ = p.v + cl * random{) * {(p.best - p.params} %
+ c2 * random{) * {gbest.params - p.params)
p.params = p.params + v

i +=1
if err = err_crit:
break
#progress bar, .' = 18%
if 1 % (iter_max/10) == @;
print ".'

print '‘“nParticle Swarm Optimisation’n'
print 'PARAMETERSAR',"'-'*9

print 'Populatlion size : ", pop_sizZe
print 'dimensions ; ', dimensions
print 'Error Criterion : ', err_crit
print 'cl ; ', ci print 'c2 : °, C2

print 'function : f&'

print 'RESULTSMM', '-'*7

print 'gbest Titness v ', gbest.fitness
print 'ghest params : ', gbest.params
print 'iterations A v

Uncomment to print particles
for p in particles:
print ‘params: %s, Titness: %s, best: %s' % (p.params, p.Titness, p.best)

You can run this program by typing this command:

| $ python che7_pso.py

You can see a sample of my program output here:

] 1] ehT — bash — BOx24
agusks python chB7_pso.py

FParticle Swarm Optimisation

PARAMETERS

Population sire @ 106

Dimersions H 2

Errar Criterion @ 1e-B5

cl i 2

[i o2

fumction I

RESULTS

gbest fitness 1 B.999253080881

gbest parans t | 7 B56E3575e-B5 1.1BE34P232-04]
iterstians 1 g

params: [1.29335985%e—-B4 -9.77756137e-05], Titness: ©.399397991953, best: [B.

BORSSA0T -0.AA13IAADT]

params; [-0.00846164 -0, @02E08337], Titneoss: ©.3993929G667268, best: [B.00152604
6.081R2832]

params: [0.00145855 @.,@0316542], fitness: 8.0009732038170, best: [-0.01487944 -
2. BYEBAESL]

params: [-0.A01RAG421 —@. PAAIGE2L], fitness: @.OO0000G6754870, bhest: [A.0@1TRIZE —

This program will generate PSO output parameters based on input. You can see
PARAMETERS value on program output. At the end of codes, we can print all
PSO particle parameter while iteration process.

Implementing mesh network for
multi-robot cooperation

To implement multi-robot cooperation, we need a communication medium. In
general, RF communication is chosen by researchers and makers to exchange
data among robots. In this book, we will use XBee modules from Digi
International to establish RF communication.

XBee modules

XBee modules are RF modules that are manufactured by Digi International.
There are various XBee modules that we can use in our robots. One of the XBee
modules is the XBee Series 1 that supports the IEEE 802.15.4 protocol. This
module has features to address multi-point packets. For further information
about the XBee Series 1, you can visit this site: https://www.digi.com/products/xbee-rf-solut
ions/2-4-ghz-modules/xbee-802-15-4.

XBee modules can be found in several online stores and even in your local
stores. The following image is of the XBee Pro 60mW PCB Antenna - Series 1
that is available on SparkFun: hitps://www.sparkfun.com/products/11216. Another product
model that can also be used is the XBee 1mW Trace Antenna - Series 1 (https://ww

w.sparkfun.com/producis/1121 5}.

Basically, the XBee Series 1 supports point-to-point networks but we can
configure it using DigiMesh firmware in order to work with a mesh network. I
will explain how to configure the XBee Series 1 to use DigiMesh firmware in
the next section.

Another option is you can buy the XBee DigiMesh and XBee S2C or the latest
of XBee Series 2 module to work with mesh networks. For further information
about the XBee DigiMESh, you can read htips:/fwww.digi.com/products/sbee-rf-solutions/2-4-

ghz-modules/xbee-digimesh-2-4. Here is what the XBee S2C looks like:

These XBee modules have their own header pins so if we want to access these
pins, we'll need an XBee shield or breakout. There are many XBee shields that
fit your board. They are also available for use through PCs via XBee USB, for
example, SparkFun XBee Explorer USB: https:/www.sparkfun.com/products/11812. You
can put an XBee module into this breakout. Then, you can connect it to your
computer through a USB cable. You can see the SparkFun XBee Explorer USB

here:

Configuring XBee modules

Digi has provided a software tool to configure all XBee modules. It's called
XCTU. It can be downloaded from hitps://www.digl.com/producis/xbee-rf-splutions/xctu-so ftw

are/xctu. Download the version for your OS platform. Here's what it looks like:
HETU

Y.

#

@ reiesoiins {3 o Caregaraton | - o0 13z00eRIED]
I RE! nﬂxmmmu g ‘:K ‘? iﬂ J—‘!'- IT' > Q 1
E Paet; uskseral-ARC.. [&IN/T/N - AT Read | Wirite Dofoui Upddle Profile
MAG: 0013A200408FCEED 0 Produst family; X824 Function set: XBEEBDZ1EZ Firmwareversion: 1080
v Hutvfurkmg&_smlrlt't
Modify Pretworking settings

| oM Channel e 9 G
| b BANID 3001 4 60
| W Destiretion AddressMgh 00
| L DessmtioAddressiow 4 00
|y 10-bit Source Address 2 A 00

|5t Seral uber High 134200 3]

|5t Sl Numbui Low A09FQEED e
| MM MAC Mo 802,15 4 M ACKs 1] B 400
| R Xeou Hetrias- o 00
| RN Random Celay Siots 0 60
| T Node Diseayer Time 18 woom o OO0
| WO Node Discovw Ogffons g 00
| G Costdrinter Enable End Device 101 B 60
| §C SeanChamneln =33 Bitfedd B 00

_

Make sure all XBee modules have installed the XBee Digimesh firmware in
order to build a mesh network.

After the XBee module is attached to an XBee breakout USB and connected to a
computer, you can add it to the XCTU application. If you have an XBee series 1,
you should update your XBee modules with XBee Digimesh. Select the latest

firmware for the XB24-DM firmware model, as shown in the following

screenshot, on the updated firmware dialog:
o

lﬂ. a3

. Regls w2006 ﬂ X ﬁ Hadio Caréigaratian | - GOTEAJ00E0GFCTED]

— -
| 2 @ Upesate fnmwane

Update the radio medule frmware
{3 “fou must select oma firmeare version,

[

T
r Firmware vorsion: 10at

Selet the product femily of your device, the newfunction sef and fhe fimware version 1o flash:

() product iy Functon set fmmese B OO
{824 Lo none 20 JSTRp—"
HBIa-OM WHes Deaibkiesh 1.4 - MO Adsnier ROTD I .‘ e G
¥Bea Dinibiesh 7,4 - DIO Adeater BOET 9 0
‘¥Bea DraiMesh 1.4 - RS2 7 Adaoter B0BE
Dégi A - RE4BE Ad BOB
iRl P 400
4090
S
Forca the module to maintain @9 current configuration, Seloct current 9
! 2400
00
- 00
aom @O0
00
s 00

00

Installing Digimesh firmware on XBee modules has its benefits. We don't need a
coordinator in a network. We only need to define our network ID for network
identity.

Demo - data communication using
XBee

In this section, we'll develop a Python application to show how to communicate
between XBee modules. We need two XBee modules or more to implement our
demo. We will implement a mesh network like the following for our demo:

%&sh
wk

All XBee modules should already have XBee Digimesh firmware installed. Now
we'll configure our mesh network.

First, we define a network ID for our mesh network. We can do this

using XCTU. You can open each XBee module in the XCTU
application. Then, we'll set a network ID (ID) in XCTU:

Port: wsbeerial-ARC, . BINTIN < AT

Funetion; XBee DigiMesh 2,4
Prrt: wtbeserini-AGLL SN N - AT
MAG: 007342004041 BOFE

{:]- Asdn Cemigurmmn | - LG4 ARICOAURTEED|

- ool] ()
S i 2 g
Tosd . Wi Oofagh Updsts Profiie:

Product tamily; XB1-0M

Function sot: ®BesDsh 28

-

Firmware version; 3073

= MAC/PHY
Change MAC|FHY Seitings

i eH Tperating Channel c
i 1D Network ID. :
| M Broadcast Wi-Tronamits 3

| pL T Power Lovel
| AR Unicost Rtries 0
| ea CoA Thieshald 2

g2

490

08

490

00
00

490

Further, you also need to configure the Baud Rate (BD) as ssee (3] and set the
API Enable value to API Mode with Escapes [2]. These settings can be seen

here:

-[E]- Aad Condiguration | - 001 MICCHOICEED)

Name: “ 14 @‘
AR g
31| Functon; KBeeDightesn 2.4 ° '?\ o= a0 q A4
Port; usbosrial-ADC.. NI - AT foad Wrke Dottt Updsts Prflle
o 001 BA20040SFCEED -:Pangé Sestity Parameters
| ' g Encryplion Enable: | v
- . B ki 00
H Function: ¥Bee Dightesn 2.4 s | Ky MESEncryption Key | 90
wbserinl-AB0,. BN/ K - AT
Port RN |+ sl netacn
MAC: 001382004047 60F8 Change module interdacing aptions
| gD Bauthate 3600 11 4 2400
| NB Parlty o Paify 0] 00
| RO Packetaion Timeaut 1 * character ines ‘90
| F FiowConral Threshold EE Biftes
| AP APiEnadlo AP Mo Wit Ecanes (2] e 00
| A APl Ootions AP Rt ndicator-0480 01 00
* |10 Settings

After changing these XBee parameters in XCTU, you can write these changes to
the XBee module by clicking on the Write icon. Close XCTU if vou are done.

Now we can develop our Python application. We'll use the xnee library for
Python. You can find it at hetps://pypi.python.org/pypi/X Bee. To install this library on
your computer, you can use pip. Type this command:

|$ pip install xbee
We'll develop two programs, an XBee reader and an XBee sender.

The XBee reader application will listen for all incoming messages. Once the
XBee module receives a message, the application will print the message to
terminal. Create a Python file called che7_xbee reader.py and paste this program
into it:

import time
from xbee import DigiMesh
import serial

#PORT = 'COM8'
PORT = '/dev/cu.usbserial-AGeiFziu’
BAUD_ RATE = 96808

def ByteToHex{bytestr):
return "', join{ ["w02xX" % ord(x)} for x in bytestri).strip()

def decodeReceivedFrame(data):
source_addr = ByteToHex(data['source_addr'])
rf_data = data['data’]
options = ByteToHex(data['options'])
return [source_addr, rf_data, options]

Open serial port
SBr = s5erial.Serial{PORT, BAUD_RATE}

Create API object

xhee = DigiMesh(ser, escaped=True)
import pprint
pprint,pprint{xbee.api_commands)

while True:
try:
data = xbee.wait_read frame()
decodedData = decodeReceivedFrame{data)
print{decodedData)

except KeyboardInterrupt:
break

¥hee. halt{)
ser.close()

Change the PORT value based on your attached XBee serial port.

The next step is to develop the XBee sender application. For our demo, we'll
send the messages se1lo xsee 2 to all XBee modules on the mesh network with a
certain ID. You can write the following program:

import time
from xbee import DigiMesh
import serial

#PORT = 'COMT'
PORT = '/devscu.usbserial-ASCNVHEX'
BAUD_ RATE = 9580

Open serial port
ser = serial.Serial(PORT, BAUD_RATE)

Create API object
¥hee = DigiMesh(ser, escaped=True)
import pprint

pprint.pprint{xbee.api_commands)

xbee with long address
KBEEZ_ADDE_LONG = "\ x00%\x80\xX08\x00 X0\ x08\xFF\XFF"

while True:
try:
print "send data"
whee, txX(frame='8x1"', dest_addr=xXBEEZ_ADDR_LONG, data='Hello XBee 2')
time.sleep(l)
except KeyboardInterrupt:
break

¥hee. halt{)
ser.close()

Change the PORT value based on your XBee serial port. Save this program into
d file Cﬂlled che7_xbee sender.py.

Now you can start running your XBee reader application. Type this on a
computer to which the XBee module for the reader application is attached:

| $ python che7 xbee reader.py

Then, run the XBee sender application by typing this command:

|$ python che7_xbee sender.py

You should see incoming messages in the XBee reader application, shown here:

- = codes — fython chid? sbee readenpy — B0« 24

‘tate [{"deteult’s '\m1B°, 'len':t 1, ‘name't ‘Ld°},
|“default’s '\x@B', ‘ten': 1, ‘neme’': ‘frame_id'},
{'defaull’: Mone; ‘len'i B, 'name’: '"dest_addr'},
{*defeutt’: '\xffixfe’, 'Llen': 2, 'name': 'reserved'},
{*defeulr’s ‘\=x@@', ‘len't 1, "nempe': "Droadcasi_radius'},
{“default®: '\x@8', 'len':t 1, 'mame': 'optioms'}
["defeult®y Mone, *leén': MNone, ‘namet: ‘data’}ll

[*RE13AZeB400FCEER", ‘Hello XBee 2', 'C2°]

["@RLIARGBARIFCEER", "Hello XBee 2', "C2°|
[*@01IA2@R4QOFCEER", "Hello XBee 2°, °C2°|
["R0i3A20B4Q0FTEER", "Hello XBee 2', "C3°]
[*R@13A2GR4RIFCEER", "Hello XBee 2', "C2°]
['R@13A20R4@9FCEER", "Hello XBee 2°', "C2°1
[*O013A2SR4Q0FCEER", “Hello XBee 2', "C3°]
['@813A2GBIRIFCEER", "Hello XBee 2', "C2°]
[*@@1IAZGRIRUFCEER", "Hello XBee 2!, "C2°]
[*OA13A2804Q9FCEER", "Hello XBee 2', "C2°]
[*R@13A2SRERSFCEER", "Hello XBee 2', “C2°]
[*O@IIAZERISIFCEED", "Hello XBee 2!, "C2°]
| *BO13AZGR4QOFCEER", "Hello XBee 2', "C2°]
[*9813A2¢R4@IFCEER", “Hello XBee 2', “C2°]
[“BE13AZBR4QOFCEER", "Hello XBes 2', "CR']
[*0B13ATEGBSQIFCEER", "Hello XRes 2', "C2°I

You'll also see messages in the XBee sender application. Sample program output
can be seen here:

w® [codes—Python chO? xbes sendenpy — B0« 34
{'default': Mome, 'len'i 2, 'rame’i ‘command'},
{'default': Mone; 'ilen'i MNeone, “name'i 'parameter’});
"tatr [{'defoult’: *\x18*, "len': 1, 'nome’: "id'},

{'default': "\x08", "len't 1, 'name': 'frame_ld'},
{*defaulit': Mone, ‘len': B, ‘name': ‘dest_addr'},
{"defavit®: "‘\«ffi\xfe’', 'len': Z, "name’: "resecved'}
{"default': "\x@8', “len': 1, 'name': 'broadcast _radius'l,
{*default': "\x@8*', “len'i 1, 'name't 'optiops'},
["defaulr': Mane, 'len': Mone, ‘name’: 'data'}]}

send data

sond data

sefnd date

send dats

sand data

sond data

send data

send date

send data

send data

sand data

send data

send data

send dats

import time

from xbee import DigiMesh

import serial

#PORT ='COM7'
PORT = "/dev/cu.usbserial-A9CNVHXX'

BAUD_RATE = 9600

Open serial port

ser = serial.Serial(PORT, BAUD_RATE)

Create API object

xbee = DigiMesh(ser, escaped=True) import pprint
pprint.pprint(xbee.api_commands)

while True:

try: data = xbee.wait_read_frame() decodedData =
decodeReceivedFrame(data) print(decodedData)

except KeyboardInterrupt: break
def ByteToHex(byteStr):
return ".join(["%02X" % ord(x) for x in byteStr]).strip()

def decodeReceivedFrame(data): source_addr =
ByteToHex(data['source_addr']) rf_data = data['data’]

options = ByteToHex(data['options']) return [source_addr, rf_data,
options]

xbee with long address

XBEE2 _ADDR_LONG = "x00x00\x00\x00\x00\x00\xFF\xFF"

while True:
try: print "send data"

Xbee.tx(frame='0x1", dest addr=XBEE2 ADDR LONG,
data="Hello XBee 2') time.sleep(1) except KeyboardInterrupt: break

XBee development for Arduino

If your robot platform uses Arduino as the MCU model, we can use XBee on the
Arduino board. Several Arduino shields for XBee are available as well. Some
robot platforms based on Arduino even provide an XBee shield in the board.

In this section, we'll develop an application to communicate between our
computer and an XBee module on an Arduino board. We need two XBee
modules for this demo.

Configuring the XBee module

We're using a mesh network for communication among XBees. In the previous
section, we applied DigiMesh firmware to our XBee modules. In this demo,
we'll develop an application to send data from XBee on an Arduino to XBee on a

computer.

First, we configure all XBee modules using XCTU. After opening XBee using
XCTU, we can start to configure it. Set Destination Address Low (DL) with rrrr.

You can see it here:

LY.

l Raoy kMouEs
il
-1 Functin; KBow Digiesa 2,8
E P ibsernl- AR BN/ -AT

Meme:
Eunctian; XHee Duglkees 2.4
Port; abemrinl-ARO. RN IN- AT
MacT 001342004041 BAFE

£

H-ESO-

-m- Rl S gue | - DO CHRCRED|

\.. 1
S & i ==

| BH Broodesst Hops

i pee Watwor Faps

| A Mesh Unicast Aeties
I e Network Delny Slot

= Adedfeasing
& hangn Addressmg Rettings

| 5H Serial Humber High

| L Serlal Nurbe Low

| DM Dewtirtian Adtress High

| oL Dostination Address Law

| Mo et

| WT Motk Dlsegvirty Bick-off
| o Network Discovary Dations
| g1 Closisr D

)
& - g,
Read Wriw o Dl Updals | Prefie

b L

Mtealt Ubl. Retrles

L - -l (=

s

TaaR00

ADBFCEED

il
PR é

laz “iooms |4

o

11

2 EIE

+1 =

o0
0
o0
S0

o

o

80
00
00
00
00
00 |

You also need to set API Enable (AP) as transparent mode [8], as shown in the
following figure. If finished, you can write all changes to the XBee:

ofl & &

a
*-:‘ @ Bfi #—l# lt-.‘ . Q ry
Mesd Wile Detat Upiis Profile
| EE Encryption Erable Hisaglemiol, = Ow
| Ky AEB Eneryption fny I e0

= Sorial interfaeing
Crangih e infnrfasing npmiann

| DO BuidAams BE00 (31 : 00
™ W ﬂ_q.?.l_:l:u;_[ﬁl—:-. 0
| Ao PackstafenTitesst 1p “enrscurives 4 © O
| AP AP Erabie Trarsnarant Woas 10| 2 00
A AP Ostons e T =

= || O Settings
Aa ey DD med AT Dinna

i Do BIDOARD Disasslag 101, i d 00
(e ARy T 5 a6 |

-m- Natba Cerdurmtann [- (51 3A3E040MREEED]

Implement these steps for both XBee modules.

void setup() {

/I start serial Serial.begin(9600); while (!Serial) ;

// Arduino Leonardo // Seriall.begin(9600); // while (!Seriall) ;

void loop() {

//Seriall.println("hello"); // Leonardo Serial.println("hello");
delay(1000); }

Save this program as ArduinoxBee. This program will send the
message hello. If you use Arduino Leonardo, uncomment the
commented section because Arduino Leonardo uses Seriali to
communicate with XBee.

Testing

Compile and upload the sketch program to your Arduino board. After this, you
can open the Serial Monitor tool from the Arduino software.

You should also run a serial application such as CoolTerm and open the XBee
module to see incoming messages from the Arduino-mounted XBee.

You can see messages from the Arduino in Serial Monitor:

e @ Jdevjeu usbmodem 1421 (Arduing Leonardo)

| Send
AELLD
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

Autoscroll No line ending E 8600 baud ﬂ Clear output

In CoolTerm as well, you can see incoming messages from the Arduino:

CoolTerm.0

DEBE B X & =6

New Open Save Conneci Discopnect Clear Data ﬂp_th':j'lx View Hex Help
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

usbserial-ASCNVHXX [9500 B-N-1 @7 (RS (DR @ DCD
Connected 00:00:46 @rt Lcs @DSR UR

Working with the XBee library for
Arduino

In the previous section, we learned how to communicate with XBee on Arduino
through the Serial object. Our XBee works in API Enabled (AP) 0, transparent
mode.

You also worked with the XBee in AP 2 mode, so you can control all parameters
in XBee, including the destination address of XBee receivers. For sketch
programs, we can utilize the Xbee-Arduino library, https://github.com/andrewrapp/xbee-a
duino. This library supports XBee Series 1 and Series 2. You also can install it on
the Arduino via Library Manager:

& @& Library Manager
Type All ﬂ Topic Al H xhee

XBee-Arduino ibrary by Andrew Rapp Yersian 0.6.0 INSTALLED

Library for talking to to various wirebess XBee modules from Digl. The supports vanows divices, conflgured fo use the more sdvarded
“AFTT mode.

Mute |nfg

Cigse

Another library option is the Bee library: hitps:/github.com/kmark/Bee. This library is
designed for DigiMesh firmware.

To get started, I recommend you try program samples from these libraries.

Designing a multi-robot cooperation
model using swarm intelligence

A multi-robot cooperation model enables some robots to work collectively to
achieve a specific purpose. Having multi-robot cooperation is challenging.
Several aspects should be considered in order to get an optimized
implementation. The objective, hardware, pricing, and algorithm can have an
impact on your multi-robot design.

In this section, we will review some key aspects of designing multi-robot

cooperation. This is important since developing a robot needs multi-disciplinary
skills.

Defining objectives

The first step to developing multi-robot swarm intelligence is to define the
objectives. We should state clearly what the goal of the multi-robot
implementation is. For instance, we can develop a multi-robot system for soccer
games or to find and fight fire.

After defining the objectives, we can continue to gather all the material to
achieve them: robot platform, sensors, and algorithms are components that we
should have.

Selecting a robot platform

The robot platform is the MCU model that will be used. There are several MCU
platforms that you use for a multi-robot implementation. Arduino, Raspberry Pi,
ESP8266, ESP32, TI LaunchPad, and BeagleBone are samples of MCU
platforms that can probably be applied for your case.

Sometimes, you may nee to consider the price parameter to decide upon a robot
platform. Some researchers and makers make their robot devices with minimum
hardware to get optimized functionalities. They also share their hardware and
software designs. | recommend you visit Open Robotics, hitps:/www.osrfoundation.org,
to explore robot projects that might fit your problem.

Alternatively, you can consider using robot kits. Using a kit means you don't
need to solder electronic components. It is ready to use. You can find robot kits
in online stores such as Pololu {hltps:.f.-"ww.pnlu]u.mm), SparkFun (hetps:/fwww.sparkfun.c
nm), DFRobot (https://www.dfrobot.com), and Makeblock (htrp'.ﬂmw.makehinck .com).

You can see my robots from Pololu and DFRobot here:

Selecting the algorithm for swarm
intelligence

The choice of algorithm, especially for swarm intelligence, should be connected
to what kind of robot platform is used. We already know that some hardware for
robots have computational limitations. Applying complex algorithms to limited

computation devices can drain the hardware battery. You must research the best
parameters for implementing multi-robot systems.

Implementing swarm intelligence in swarm robots can be described as in the
following figure. A swarm robot system will perform sensing to gather its
environmental information, including detecting peer robat presence.

Ds

BB

R
—

A Swarm Robot

By combining inputs from sensors and peers, we can actuate the robots based on
the result of our swarm intelligence computation. Actuation can be movement
and actions.

Summary

We explored designing multi-robot systems. Key aspects of communication for

robots were also reviewed. This chapter can help you get practice in developing

several types of robot hardware to build swarm robots. Research should be done
to achieve the best performance for a multi-robot system.

Essential Hardware Components

Since this book is in the form of projects, it goes without saying that you are

required to have certain pieces of hardware to actually build the projects
provided in this book. Here is a list of all the required components along with
their Amazon hyperlinks:

Units | Components | Type Description Manufacturers | URL
Adafruit Adafruit WiFi hittps:)
1 WICED WICED Microcontroller | Adafruit goo.gl.
WiFi WiFi Development Industries ERHC
Feather Feather Board .
Solderless
Solderless hiearbaand, mmﬁ:'i"
goo.al
1 MB-102 breadboard | POWeT supply, NA i
and jumper b
wires
Haitronic
120pcs 20cm
length Jumper
Wires/dupont
cable
Multicolored(10
Dupont color) 40pin M h“F*'*-'i'
1 JMPR Jumper to F, 40pin M to | NA i
Wires M, 40pin Fto F 0z
for Breadboard
/ Arduino based
/I DIY/
raspberry Pi 2
3/Robot Ribbon
Cables Kit
Winomo
REED Magnetic Magnetic door g/

SWITCH

Door

switches

Winomo

goo.gl,

Waidei TIP7w
Contact
Raspberry Pi 3
Complete
Raspberry Camera Kit - it
Pi3 Pi 3 Camera | Includes Vilros g
Kit Raspberry Pi 3 N
and SMP
Camera Module
Gikfun DHT22
AM2302
DHT22 Temperature g
DHT22 Temperature | And Humidity Gikfun E;gc%i
Sensor Sensor for E
Arduino
EK1196
Arducam Mini
Module Camera
Shield with
OV2640 2 hitps)
0ov2640 ArduCam Megapixels Arducam E?D\;ﬂ
Lens for g
Arduino UNO
Mega2560

Board

